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Analysis of Optimal Macroeconomic Policy  

Using Dynamic Optimization 

     

 

 

Abstract 

This paper analyzes policy maker’s optimal macroeconomic policy path that minimizes 

Taylor-rule like social loss function of inflation gap and output gap, using a dynamic 

optimization structure. Under the assumption that policy maker can dynamically control the 

real output, this paper solves dynamic optimization equations and draw optimal path of output 

and inflation expectation variables, with the analysis of its stability. Three different cases of 

optimization are tested (forward-looking, backward-looking, and mixed expectation 

formation scenario), and the phase diagrams show that each system obtains a converging path, 

namely a saddle path, which ultimately reaches a stable and unique equilibrium point. The 

policy implications may seem to be quite paradoxical, although it could still stand and avoid 

inflation / deflation divergence under certain assumptions.  

 

Keywords: Optimal macroeconomic policy, Taylor Rule, (in)stability, dynamic optimization  

JEL Classification: E5, E12, E52 

  



3 

 

1. Introduction 

For central bank/government policy makers, what is their definition of an optimal 

macroeconomic policy? The Fed economists Khan et al. (2003) described from a central bank 

standpoint: “Optimal monetary policy maximizes the welfare of a representative agent, given 

frictions in the economic environment.”1  
 

Monetary policy wouldn’t have to be a sole channel of optimizing social welfare. Davig and 

Gürkaynak (2015) point out that many of the past literatures focusing on optimal policy refer 

them as a monetary policy, instead of mixing fiscal policy into their welfare function. They 

point out that monetary policy which single-handedly maneuvers interest rates cannot address 

all inefficiencies in the economy, especially in a world of multiple policymakers (such as fiscal 

policymakers) with different objectives.  

Approaches on its study of optimal policy differs among literatures. Rotemberg and 

Woodford (1997) analyzed monetary policy optimization through econometric approach, 

using vector autoregression models. As a variation of optimal monetary policy, for instance, 

Acharya et al. (2020) takes into account consumption inequality in their model, by assuming 

a heterogeneous agent, instead of a representative agent model. Also, Brayton et al. (2014) 

tackled this problem using the FRB/US Model to figure what they call “optimal-control 

policy”. 
 

In this paper, as many literatures do, a welfare loss function is formulated by inducing a 

simple Taylor-rule function in the model. Taylor-rule, which was elaborated by Taylor (1993) 

is not explicitly adopted as a policy instrument to determine a policy rate, yet it is still a very 

influential notion widely among policy makers. For example, in the Federal Reserve Bank 

(Fed) semiannual Monetary Policy Report2, they provide Taylor Rule with several different 

versions since 2017 as a reference to theoretically show the appropriate policy rate. The 

current Fed chairman Jerome Powell pointed out on Taylor Rule that it never has been used 

as a strict policy instrument, though acknowledged it is still a useful reference to signal an 

appropriate interest rate3.  
 

In the Monetary Policy Report which was published in June 2022, all the versions of Taylor 

 
1 They challenged to incorporate each of the mainstream views of Fisher, Keynes, and Friedman, and came 

to one of their conclusions that economy under a small deflation is a partial factor of an optimal monetary 

policy to stabilize the price level. 

2 For example, the Monetary Policy Report (June 17, 2022) 

https://www.federalreserve.gov/monetarypolicy/2022-06-mpr-summary.htm 

3 Chair Powell’s quote on Taylor Rule mentioned in John Taylor’s blog 

https://economicsone.com/2022/06/25/play-by-the-rules/  
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Rule are implying that the Federal Funds rate should have been higher than what it was at 

that moment4. The core personal consumption expenditure inflation as of May 2022 was 4.7% 

year on year, which is substantially higher than the Fed’s target of 2%. The unemployment 

rate as of May 2022 was 3.6%, which is well below the Fed’s longer-run projection of 4%5. 

The Fed intends to raise the policy rate expeditiously until the inflation rate heads back to the 

target, acknowledging the risk of facing higher unemployment rate. However, from its 

significant gap from the target, a concern of over-killing the economy has been arising and 

the Fed’s handling of the policy rate setting seems more and more challenging. It would be 

beneficial if the Fed / government owns a certain instrument which guides an appropriate 

policy path to achieve the policy goals. 
 

We analyze consolidated government (central bank and government)’s optimal policy path 

that minimizes social loss function using a dynamic optimization structure. The loss function 

here is defined by the Taylor Rule-like output/inflation gap combination, and the dynamic 

optimization is solved subject to the inflation expectation function constraint. Under the 

assumption that policy maker can dynamically control the real output, this paper solves the 

dynamic optimization equation and draw an optimal path of the output and inflation 

expectation variable, with the analysis of its stability. Similar approach were taken by Asada 

(2010) and Semmler and Zhang (2004) to derive the optimal monetary policy and its 

characteristics at the equilibrium point, but this paper takes further steps, by switching the 

parameter of the inflation expectation function, which represents people’s stance on their 

inflation expectation. Three different cases of optimization are tested: forward-looking, 

backward-looking, and mixed expectation formation scenarios. 

  

2. Formulation of the Model 

Eq(1) is the conventional linear “expectations-augmented Phillips curve”. Variable 𝜋 

represents inflation, parameterεis a reaction parameter from the output gap, 𝑌 is the real 

output, and �̅� represents natural output, or real output target. Eq(2) is the dynamic inflation 

expectation formation, which combines forward-looking and backward-looking expectations6.  

 

 
4 Monetary Policy Report (June 17, 2022)   

5 June 15, 2022 FOMC Projection materials,  

 https://www.federalreserve.gov/monetarypolicy/fomcprojtabl20220615.htm 

 

6 This paper sets real output Y as a control variable, whereas Asada(2010) puts nominal interest rate as a 

control variable.  
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(1)      𝜋 = 𝜀(𝑌 − �̅�) + 𝜋𝑒  ; 𝜀 > 0    

(2)     �̇�𝑒 = 𝛼{𝜉(𝜋 − 𝜋𝑒) + (1 − 𝜉)(�̅� − 𝜋𝑒)} ;  𝛼 > 0, 0 ≦ 𝜉 ≦ 1    

   

Parameter ξ represents the weight of people’s stance on their inflation expectation. If ξ

=1, the equation of motion for �̇�𝑒  is dependent on the inflation gap, which here is 

represented by the difference between actual inflation 𝜋 and inflation expectation 𝜋𝑒. This 

shows that people have adaptive behavior on inflation. On the other hand, if ξ=0 , the 

equation turns out to express people’s behavior as forward-looking, since �̇�𝑒  is now 

dependent on the gap between government’s inflation target �̅� and 𝜋𝑒. If  0 < 𝜉 < 1, then 

people’s behavior on inflation is mixed between forward and backward-looking. The 

parameter αis the reaction parameter to the inflation expectation dynamics. 
 

Eq(3) is derived by substituting Eq(1) into Eq(2), and now the equation of motion for  �̇�𝑒 

has real output as one of the variables. 

 

(3)     �̇�𝑒 = 𝛼{𝜉𝜀(𝑌 − �̅�) + (1 − 𝜉)(�̅� − 𝜋𝑒)}   

 

Case of ξ=0 

Based on the model mentioned above, here, the case of ξ=0 is considered. As previously 

explained, this transforms the �̇�𝑒  equation into a forward-looking system. Eq(3) now 

becomes Eq(4). 

 

(4)      �̇�𝑒 = 𝛼(�̅� − 𝜋𝑒) ; 𝛼 > 0                             

 

The social loss function is defined as below. This transformation is similar to the method 

used in Taylor(1989), Chiang(1992), Woodford(2001) and Asada(2010)7.  

 

(5)    𝑉 = 𝜃(𝑌 − �̅�)2 + (1 − 𝜃)(𝜋 − �̅�)2 = 𝑉(𝑌, 𝜋)   ;    0 < 𝜃 < 1                            

  

The parameter 𝜃 is the positive parameter which represents the weight of how much the 

policy maker prioritize between real output and inflation gap.  
 

Eq(1) is now substituted into Eq(5), and in order to minimize the loss function, Eq(5) is 

turned into negative. 

 
7 Consideration in monetary policy tradeoffs, welfare loss function, and problem solving of optimal 

monetary policy are also conducted by Galí (2015) and Woodford(2002). 
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(6)    −𝑉 = −[𝜃(𝑌 − �̅�)2 + (1 − 𝜃){𝜀(𝑌 − �̅�) + 𝜋𝑒 − �̅�}2] = 𝑊(𝑌, 𝜋𝑒)     

0 < 𝜃 < 1 

 

Combining Eq(4) and Eq(6) gives the following dynamic optimization problem subject 

to the constraint equation. 

(7)      max
𝑌
∫ 𝑊(𝑌, 𝜋𝑒)𝑒−𝜌𝑡
∞

0
𝑑𝑡 

𝑠. 𝑡.  �̇�𝑒 = 𝛼(�̅� − 𝜋𝑒) 

 

In order to derive the optimal macroeconomic policy path, a current-value Hamiltonian 

equation is formalized as below, where 𝜆 is the co-state variable. 

 

(8)    𝐻 = −[𝜃(𝑌 − �̅�)2 + (1 − 𝜃){𝜀(𝑌 − �̅�) + 𝜋𝑒 − �̅�}2] + 𝜆𝛼(�̅� − 𝜋𝑒) 

 

As explained in Chiang (1992), Pontryagin’s maximum principle conditions are given as 

follows8. 

 

(9)              Max
𝑌
𝐻(𝑌, 𝜋𝑒 , 𝜆) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0,∞]  

 �̇�𝑒 =
𝜕𝐻

𝜕𝜆
                   [𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛 𝑓𝑜𝑟  �̇�𝑒] 

�̇� = −
𝜕𝐻

𝜕𝜋𝑒
+ 𝜌𝜆               [𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝜆] 

lim
𝑡→∞

𝜆𝑒−𝜌𝑡 = 0                   [𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛] 

 

This Hamiltonian system here is solved with respect to the real output, Y. This implies that 

policy maker is controlling real output to minimize (optimize) the social loss function 

previously proposed.  
 

A first order condition is required to show that the optimal control of Y will be an interior 

solution. 

(10)   
𝜕𝐻

𝜕𝑌
= −[2𝜃(𝑌 − �̅�) + 2𝜀(1 − 𝜃){𝜀(𝑌 − �̅�) + 𝜋𝑒 − �̅�}] = 0 

 
8 Explanation on Pontryagin’s maximum principle conditions and dynamic optimization are also available 

from Chiang and Wainwright (2010). 
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 Further differentiation of Eq(10) with the result of negative shows that the control variable 

Y does maximize the Hamiltonian system. 

(11)     
𝜕2𝐻

𝜕𝑌2
= −[2𝜃 + 2𝜀2(1 − 𝜃)] 

= −2[𝜃 + 𝜀2(1 − 𝜃)] < 0 

Equation of motion for  �̇�𝑒 is defined as below. 

(12)       �̇�𝑒 =
𝜕𝐻

𝜕𝜆
= 𝛼(�̅� − 𝜋𝑒) = 𝐹1

1(𝜋𝑒)      

Equation of motion for 𝜆, which is a costate variable, is described below. 

 

(13)      �̇� = −
𝜕𝐻

𝜕𝜋𝑒
+ 𝜌𝜆 = [2(1 − 𝜃){𝜀(𝑌 − �̅�) + 𝜋𝑒 − �̅�}] + 𝜆(𝛼 + 𝜌)  

 

Real output Y of Eq(10) can be transformed as below.  

 

(14)            𝑌 =
�̅�{𝜀2(1−𝜃)+𝜃}+𝜀(1−𝜃)(�̅�−𝜋𝑒)

𝜃+𝜀2(1−𝜃)
= 𝑌(𝜋𝑒) 

 

Eq(14) can be substituted into Eq(13) as below. 

 

(15)    �̇� = [2(1 − 𝜃){𝜀(𝑌(𝜋𝑒) − �̅�) + 𝜋𝑒 − �̅�}] + 𝜆(𝛼 + 𝜌) = 𝐹2
1(𝜋𝑒, 𝜆) 

 

Phase diagram in case of 𝝃 = 𝟎 

From the equilibrium point of  �̇�𝑒   in Eq(12), the solution �̅� = 𝜋𝑒 can be derived. Then, 

we can derive Figure 1. It is assumed here that the policy maker would indirectly maneuver 

the costate variable of 𝜆 by controlling the real output Y, which can be termed as a marginal 

increase (or decrease) in inflation expectation,  
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Figure 1 

Assuming equilibrium �̇� = 0 in Eq(13), equation of 𝜆 can be derived as below. 

(16) 

𝜆 =
−2(1 − 𝜃){𝜀(𝑌(𝜋𝑒) − �̅�) + 𝜋𝑒 − �̅�}

𝛼 + 𝜌
 

 

Since    
𝑑𝑌

𝑑𝜋𝑒
= −

𝜀(1−𝜃)

𝜃+𝜀2(1−𝜃)
< 0 , 

We have the following relationship from Eq(16).  

 

𝑑𝜆

𝑑𝜋𝑒
|
𝜆=0̇

=
−2(1 − 𝜃) {𝜀

𝑑𝑌
𝑑𝜋𝑒

+ 1}

𝛼 + 𝜌
< 0 

 

Therefore, we obtain Figure 2, since 
𝜕�̇�

𝜕𝜋𝑒
> 0 from Eq(15). 

 ̇ > 𝟎  ̇ < 𝟎

 ̇ = 𝟎

 ̅
  

 

𝟎
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Figure 2 

 

By combining Figure 1 and Figure 2, the phase diagram is complete. 

 

 

Figure 3 

 

As depicted in Figure 3, an implication drawn under the rule ξ=0 is that there is only one 

policy path which enables policy maker to achieve full employment and the inflation target 

goal, and this unique path toward the equilibrium is the saddle path. Only the saddle path 

satisfies the transversality condition in Eq(9). From a given initial state variable 𝜋𝑒(0), an 

inflation expectation, policy maker needs to select the initial point of 𝜆 and control it 

following the saddle path, by indirectly maneuvering Y. Or else, the inflation expectation 

 ̇ < 𝟎

 ̇ > 𝟎

  

 

𝟎

 ̇ = 𝟎

 ̇ = 𝟎

 ̅
  

 

𝟎

 ̇ = 𝟎

E
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and costate variable 𝜆 would not end up at the equilibrium point of E.  
 

If the starting point of inflation expectation exceeds the inflation target, the policy maker 

would have to raise Y to lower inflation expectation while increasing the costate variable, 𝜆, 

since 
𝑑𝑌

𝑑𝜋𝑒
< 0. On the other hand, if the initial point of inflation expectation is below the 

target, Y would have to decrease in order to lower 𝜆. This is quite a paradoxical result, since 

in general, output and inflation expectation have a positive correlation, and increase in 

output would lead to a further rise in inflation expectation. The only way to achieve the 

policy target is to follow the saddle path, and if any other path is to be chosen, the output 

and inflation expectation would spread out indefinitely. 
 

By taking into account Eq(12) and Eq(15), the characteristic equation of this system at the 

equilibrium point is described below, where 𝜆1.and 𝜆2 are two characteristic roots9.  

 

(17) 

|𝜆𝐼 − 𝐽1| = 𝜆
2 − (𝑡𝑟𝑎𝑐𝑒𝐽)𝜆 + (𝑑𝑒𝑡𝐽) 

= (𝜆 − 𝜆1)(𝜆 − 𝜆2) = 𝜆
2 − (𝜆1 + 𝜆2)𝜆 + 𝜆1𝜆2 = 0 

 

Where, 

𝐽1 = [
−𝛼 0
𝐹21
1 𝐹22

1 ] 

𝐹21 =
𝑑𝐹2
𝑑𝜋𝑒

= 2(1 − 𝜃) {
𝜃

𝜃 + 𝜀2(1 − 𝜃)
} > 0 

𝐹22 =
𝑑𝐹2
𝑑𝜆

= 𝛼 + 𝜌 > 0 

𝑡𝑟𝑎𝑐𝑒 𝐽 = 𝜆1 + 𝜆2 = −𝛼 + 𝐹22 

𝑑𝑒𝑡𝐽 = 𝜆1𝜆2 = −𝛼𝐹22 < 0.  

 

This shows that the equilibrium point is a saddle point because the characteristic equation 

Eq(17) has one positive real root and one negative real root.. 

 

Case of ξ=1 

Now, this time, a backward-looking type of inflation expectation, is considered. This is the 

case of ξ=1 in Eq(3).  

The equation of motion for �̇�𝑒 now becomes a function of real output Y.  

 
9 Evaluating the dynamical properties of interest rate and policy tool is also done by Drumon et al.(2021) 
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(18)     �̇�𝑒 = 𝛼𝜀(𝑌 − �̅�) ; 𝛼 > 0 

 

Eq(18) becomes a constraint function, and the dynamic optimization problem is formulated 

as below. 

max
𝑌
∫ 𝑊(𝑌, 𝜋𝑒)𝑒−𝜌𝑡
∞

0

𝑑𝑡 

𝑠. 𝑡.  �̇�𝑒 = 𝛼𝜀(𝑌 − �̅�) 

 

As similar to Eq(8), a current value Hamiltonian becomes as follows. 

 

(19)  𝐻 = −[𝜃(𝑌 − �̅�)2 + (1 − 𝜃){𝜀(𝑌 − �̅�) + 𝜋𝑒 − �̅�}2] + 𝜆𝛼𝜀(𝑌 − �̅�) 

 

where 𝜆 is the co-state variable. 

 

First order condition and second derivative are described below.  

 

(20)   
𝜕𝐻

𝜕𝑌
= −[2𝜃(𝑌 − �̅�) + 2𝜀(1 − 𝜃){𝜀(𝑌 − �̅�) + 𝜋𝑒 − �̅�}] + 𝜆𝛼𝜀 = 0 

𝜕2𝐻

𝜕𝑌2
= −[2𝜃 + 2𝜀2(1 − 𝜃)] 

= −2[𝜃 + 𝜀2(1 − 𝜃)] < 0 

 

Equation of motion for the inflation expectation  �̇�𝑒 is given below. 

 

(21)       �̇�𝑒 =
𝜕𝐻

𝜕𝜆
= 𝛼𝜀(𝑌 − �̅�) = 𝐹1

2(𝑌)  

 

From the first order condition in Eq(20), the equation of 𝜆 can be obtained. 

 

(22)     𝜆 =
2

𝛼
[(𝑌 − �̅�) {

1

𝜀
𝜃 + 𝜀(1 − 𝜃)} + (1 − 𝜃)(𝜋𝑒 − �̅�)] 

 

Differentiation of Eq(22) with respect to time t gives Eq(23).  

 

(23)  �̇� =
2

𝛼
[�̇� {

1

𝜀
𝜃 + 𝜀(1 − 𝜃)} + 𝛼𝜀(1 − 𝜃)(𝑌 − �̅�)] 
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Additionally, from the one of the maximum principal conditions, the motion for 𝜆 is 

obtained below. 

 

(24)  �̇� = −
𝜕𝐻

𝜕𝜋𝑒
+ 𝜌𝜆 = 2(1 − 𝜃){𝜀(𝑌 − �̅�) + 𝜋𝑒 − �̅�} + 𝜌𝜆(𝑌, 𝜋𝑒) 

 

Transversality condition is termed as follows. 

 

(25)    lim
𝑡→∞

𝜆 𝑒−𝜌𝑡 = 0 

 

By combining Eq(23) and (24) and bringing �̇� to the left side, the equation of motion for 

real output Y can be described as below.  

 

(26)     �̇� =
1

𝐴
[2(1 − 𝜃)(𝜋𝑒 − �̅�) + 𝜌𝜆(𝑌, 𝜋𝑒)] = 𝐹2(𝑌, 𝜋

𝑒) 

 

Phase diagram in case of 𝝃 = 𝟏 
 

The locus for  �̇�𝑒 = 0 is derived from Eq(21), where  

 

0 = 𝛼𝜀(𝑌 − �̅�) 

 

The  �̇�𝑒 = 0 curve becomes horizontal, as sketched below. The level of Y at the 

equilibrium point, �̅� is given below. 

 

𝑌 = �̅� 
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Figure 4 

 

The �̇� = 0 line is depicted by solving the total derivation of Eq(26), as shown below. 

 

(27)    
𝑑𝑌

𝑑𝜋𝑒
= −

∂𝐹2
∂𝜋𝑒

∂𝐹2
∂𝑌

< 0 

 

Each partial derivations are solved as below. 

 

∂𝐹2
2

∂𝜋𝑒
= 𝐹21

2 =
1

𝐴
{2(1 − 𝜃) + 𝜌(1 − 𝜃)} > 0 

∂𝐹2
2

∂𝑌
= 𝐹22

2 =
1

𝐴
𝜌
2

𝛼
{
1

𝜀
𝜃 + 𝜀(1 − 𝜃)} > 0 

 

From the result of the total derivation, it is clear that �̇� = 0 line is negatively inclined.  

 ̇ > 𝟎

 ̇ < 𝟎

 ̇ = 𝟎

  

 

𝟎

 ̅
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Figure 5 

 

By combining both lines, the phase diagram is depicted as below. It is now clear that the 

system with ξ=1 also has an unique path which converges into a saddle point E. Again, as 

like the case with ξ=0, the conclusion is quite paradoxical. If the starting point of inflation 

expectation is below the inflation target �̅�, the policy maker needs to decrease the output, 

𝑌. On the other hand, if the inflation expectation is exceeding the target, the policy maker 

now needs to increase the output to suppress the inflation expectation.  

 

Figure 6 

 

The evaluation of the dynamical properties of the model using the Jacobian matrix is 

described below, which shows that the equilibrium point becomes saddle point. 

 ̇ > 𝟎

 ̇ < 𝟎

 ̇ = 𝟎

  

 

𝟎

 ̇ = 𝟎

 ̅   

Y

𝟎

 ̇ = 𝟎 ̅
E
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(28)  𝐽2 = [
0 𝛼𝜀
𝐹21
2 𝐹22

2 ] 

𝐹21
2 =

1

𝐴
{2(1 − 𝜃) + 𝜌(1 − 𝜃)} > 0 

𝐹22
2 =

1

𝐴
𝜌
2

𝛼
{
1

𝜀
𝜃 + 𝜀(1 − 𝜃)} > 0 

𝑑𝑒𝑡𝐽 = 𝜆1𝜆2 = 0− 𝛼𝜀𝐹21 < 0 

 

Case of 𝟎 < 𝝃 < 𝟏 

Thirdly, the system with 0 < 𝜉 < 1 is tested to figure out its dynamic behavior. The loss 

function of policy maker is same as the previous cases. The dynamic optimization problem 

in this model is described as below.  

 

(29)    max
𝑌
∫ 𝑊(𝑌, 𝜋𝑒)𝑒−𝜌𝑡
∞

0
𝑑𝑡 

𝑠. 𝑡.  �̇�𝑒 = 𝛼{𝜉𝜀(𝑌 − �̅�) + (1 − 𝜉)(�̅� − 𝜋𝑒)}    

 

Thus, current-value Hamiltonian is formatted using the new constraint function. 

 

(30)   𝐻 = −[𝜃(𝑌 − �̅�)2 + (1 − 𝜃){𝜀(𝑌 − �̅�) + 𝜋𝑒 − �̅�}2] + 𝜆𝛼{𝜉𝜀(𝑌 − �̅�) + (1 − 𝜉)(�̅� − 𝜋𝑒)} 

 

First order condition and second derivative become as follows. 

 

(31)  
𝜕𝐻

𝜕𝑌
= −[2𝜃(𝑌 − �̅�) + 2𝜀(1 − 𝜃){𝜀(𝑌 − �̅�) + 𝜋𝑒 − �̅�}] + 𝜆𝛼𝜉𝜀 = 0 

𝜕2𝐻

𝜕𝑌2
= −[2𝜃 + 2𝜀2(1 − 𝜃)] < 0 

 

We can derive the following expression of 𝜆 by transforming the result from the first 

derivative equation above.  

 

(32)  𝜆 =
2

𝛼𝜀
[(𝑌 − �̅�) {

1

𝜀
𝜃 + 𝜀(1 − 𝜃)} + (1 − 𝜃)(𝜋𝑒 − �̅�)] = 𝜆(𝑌, 𝜋𝑒) 

 

Equation of motion for  �̇�𝑒  is obtained below. 
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(33)       �̇�𝑒 =
𝜕𝐻

𝜕𝜆
= 𝛼{𝜉𝜀(𝑌 − �̅�) + (1 − 𝜉)(�̅� − 𝜋𝑒)} = 𝐹1

3(𝑌, 𝜋𝑒)  

 

Differentiation of Eq(32) with respect to time gives an equations of �̇�. 

(34)  �̇� =
2

𝛼𝜉
[�̇� {

1

𝜀
𝜃 + 𝜀(1 − 𝜃)} + 𝛼(1 − 𝜃){𝜉𝜀(𝑌 − �̅�) + (1 − 𝜉)(�̅� − 𝜋𝑒)}] 

 

Another equation of �̇�, which is part of the maximum principle, is described below. 

 

(35)  �̇� = −
𝜕𝐻

𝜕𝜋𝑒
+ 𝜌𝜆 = 2(1 − 𝜃){𝜀(𝑌 − �̅�) + 𝜋𝑒 − �̅�} + 𝜆(𝑌, 𝜋𝑒){𝛼(1 − 𝜉) + 𝜌} 

 

By combining Eq(34) and (35), and bringing �̇� to the left side, the equation of motion for 

real output Y is available. 

 

(36)    �̇� =
1

𝐴
[2(1 − 𝜃) {𝜋𝑒 − �̅� −

1

𝜉
(1 − 𝜉)(�̅� − 𝜋𝑒)} + 𝜆(𝑌, 𝜋𝑒){𝛼(1 − 𝜉) + 𝜌}] 

= 𝐹2
3(𝑌, 𝜋𝑒) 

 

Phase Diagram in case of 𝟎 < 𝝃 < 𝟏 

Phase diagram of this system can be depicted from Eq(33) and Eq(36).  

It is clear that the slope of  �̇�𝑒 = 0 line is positive. 

(38)     
𝑑𝑌

𝑑𝜋𝑒
|
�̇�=0

= −
𝜕𝐹1
3

𝜕𝜋𝑒

𝜕𝐹1
3

𝜕𝑌

> 0 

 

Where,  

𝜕𝐹1
3

𝜕𝜋𝑒
= 𝐹11 = −𝛼(1 − 𝜉) < 0 

𝑑𝐹1
3

𝑑𝑌
= 𝐹12 = 𝛼𝜉𝜀 > 0 
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Figure 7 

 

The slope of  �̇� = 0 line is negative, as described below. 

𝑑𝑌

𝑑𝜋𝑒
|
�̇�=0

= −

𝜕𝐹2
3

𝜕𝜋𝑒

𝜕𝐹2
3

𝜕𝑌

< 0 

Where,  

𝜕𝐹2
3

𝜕𝜋𝑒
= 𝐹21

3 =
1

𝐴
[2(1 − 𝜃) {1 −

1

𝜀
(1 − 𝜉)}

2

𝛼𝜉
(1 − 𝜃){𝛼(1 − 𝜉) + 𝜌}] > 0 

𝑑𝐹2
𝑑𝑌

= 𝐹22
3 =

1

𝐴
[
2

𝛼𝜉
{
1

𝜀
𝜃 + 𝜀(1 − 𝜃)} {𝛼(1 − 𝜀) + 𝜌}] > 0 

 

Figure 8 

 ̇ < 𝟎

 ̇ > 𝟎

  

 

𝟎

 ̇ = 𝟎

 ̇ > 𝟎

 ̇ < 𝟎

 ̇ = 𝟎

  

 

𝟎
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The combination of Figure 7 and 8 gives the phase diagram, as depicted in Figure 9. 

 

Figure 9 

  

The system is stable as it converges to the equilibrium point, as proven in the Jacobian 

matrix below. 

𝑑𝑒𝑡𝐽3 = 𝑑𝑒𝑡 [
−𝛼(1 − 𝜉) 𝛼𝜉𝜀

𝐹21
3 𝐹22

3 ] < 0 

 

Where again, 

𝐹21
3 =

1

𝐴
[2(1 − 𝜃) {1 −

1

𝜀
(1 − 𝜉)}

2

𝛼𝜉
(1 − 𝜃){𝛼(1 − 𝜉) + 𝜌}] > 0 

𝐹22
3 =

1

𝐴
[
2

𝛼𝜉
{
1

𝜀
𝜃 + 𝜀(1 − 𝜃)} {𝛼(1 − 𝜀) + 𝜌}] > 0 

As discovered previously in the other cases, the system with the case of 0 < 𝜉 < 1 also 

owns a saddle path which converges to the equilibrium point of E.  

 

3. Policy Implications 

Here, we consider the policy implication under different scenarios. First is the case which 

inflation (inflation expectation) is above the target. In this case, the initial point of real 

output 𝑌 would have to be placed below the target, �̅�. From this starting point, the 

appropriate path converging to the equilibrium point of �̅� and �̅� would be to increase the 

real output. This initial condition of high inflation and low output is commonly called as 

stagflation. The process of increasing the output while lowering inflation rate may be 

  

 

𝟎

 ̇ = 𝟎

 ̅

 ̇ = 𝟎

 ̅

E
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possible through the increase in investment to enlarge its supply capacity. 
 

 The opposite case is when inflation rate is below the target, a situation which is called as a 

deflationary economy. Under this scenario, the initial point of real output needs to be above 

the target. From there, the appropriate path for the policy maker to reach the inflation target 

is to continuously lower the real output. This is somewhat counterintuitive, though one 

possible case is when policy maker stimulates the economy at the starting point and locates 

the initial point of real output substantially higher than the target. Inflation generally reacts 

with a lag, so the inflation rate could possibly move higher while the real output is 

contracting to the equilibrium point.  
 

 Our findings imply that the optimal policy solutions for the policy makers are more or less 

the same, regardless of people’s forward/backward-looking stance on their inflation 

expectation. As a contrast, although Williams (2003) uses FRB/US macroeconomic model in 

its analysis, the author concluded that the performance of efficient monetary policy differs 

under rational and backward-looking models. Carlstrom and Fuerst (2000) argues that 

aggressive and backward-looking stance are necessary for the monetary authority to ensure 

determinacy. Benhabib et al. (2003) tested the stabilization behavior of the backward-

looking interest-rate rules, which they figured that parameters distinguish the stabilization, 

and not all backward-looking feed-back rules guarantee the uniqueness of equilibrium. 
 

The implications above are the policy paths which converge to the stable equilibrium point, 

but we need to consider here the cases when the policy actions were unsuccessful. The 

output/inflation expectation paths would then diverge, letting the two variables 

increase/decrease indefinitely. One consequence is the upward divergence of real output 

and inflation expectations, what is called as an inflation spiral, and the other is the 

downward divergence, which is a deflation spiral. The former case is frequently observable 

especially among the emerging economies, Developed economies also faced somewhat 

similar phenomenon in the 1970s that are commonly attributed to oil embargo factor, but at 

the same time to a wage-price spiral. The Fed’s response under then-chairman Paul Volcker 

was the rampant hike of the policy rate, which consequently led to a deep recession 

afterwards10. Since then, the Fed’s important objective upon achieving price stability is to 

first stabilize people’s inflation expectation close their target, and it has seemingly been 

successful until the Covid-19 inflation. The opposite case, –deflationary spiral – is relatively 

 

10 Detail on the history of the Fed’s battle against great inflation: Federal Reserve History 

“The Great Inflation 1965-1982”, (https://www.federalreservehistory.org/essays/great-

inflation)    
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rare, and its movement of economic variables haven’t been as dramatic. One of the few 

examples is Japan, particularly since the beginning of the 1990s. The sluggish economy of 

Japan has experienced negative rate of year-on-year core inflation for nearly 20 years, which 

should be long enough to categorize Japan as the country which faced deflationary spiral. 
 

We think that it is reasonable for the policy makers to aim the optimal policy path which 

converges to the target, considering its detrimental consequences of both cases of 

inflationary/deflationary spiral. As Bernanke (2002) made an important argument on 

Japan’s stagnating economy: “Japan’s deflation problem is real and serious; but, in my view, 

political constraints, rather than a lack of policy instruments, explain why its deflation has 

persisted for as long as it has”, the responsibility is on policy maker’s hands, and they should 

have the tools and policy space to deal with the problem.    

 

4. Conclusion 

In this paper, by applying Hamiltonian equations, several optimal policy paths were derived 

under different scenarios of inflation expectation behavior. First was a forward-looking 

inflation expectation scenario, second was the backward-looking scenario, and the third was 

the mixed behavior of the two. The phase diagrams showed that each system obtains a unique 

converging path, namely a saddle path, which ultimately reaches a stable and unique 

equilibrium point. 
 

The dynamic relationship between the real output and inflation expectation derived here 

implies that if inflation expectation is above the inflation target, the optimal option for policy 

maker is to select an initial point of real output that is below the target to position itself at the 

appropriate trajectory (saddle path). Then the optimal policy is to increase the output and 

follow the saddle path until the expected inflation converges to the equilibrium, or the 

inflation target. On the other hand, if the expected inflation is below the target, the optimal 

policy is to lower the real output by controlling it over the saddle path. In either case, if the 

policy outcome fails to follow the optimal path, inflation expectation and real output would 

dissipate and not end up reaching the equilibrium point. These implications are somewhat 

paradoxical, since an orthodox policy to stabilize the economy is to undertake anti-cyclical 

measures. 
 

Similar antitheoretical observations are pointed by Asada (2010) and Mankiw (2001), 

against the New Keynsian dynamic model which can be found in the literature by Galí (2015). 

They referred to their findings as a “sign-reversal” problem. “Sign-reversal” problem is a 

paradoxical properties of the “New Keynesian” dynamic model that shows a counterfactual 

relationship between inflation and real output. According to Asada(2010), the New Keynsian 
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dynamic model implies that “the rate of inflation accelerates whenever the actual output level 

is below the natural output level, and it decelerates whenever the actual output level is above 

the natural output level”. The author pointed out the same problem for the New Keynsian IS 

model as well.  
 

Lastly, we want to conclude by pointing out some caveats on this paper’s analysis. The model 

assumes that policy maker is omniscient and have the capacity to start from wherever they 

prefer, which is referred to as a “jump variable” by Asada (2010) and Asada(2013). Also, it 

assumes that the real output is controllable so it can follow the optimal path without deviation. 

However, this is quite an unrealistic assumption, which similar argument has been made by 

Asada(2010). The dynamically optimal solution which is derived in this study should be 

considered as a “reference” or “yardstick” to observe how the real-life macroeconomic policy 

is deviating from the optimal path. 
 

In the real-life policy setting, governors can only impact the real output 𝑌 indirectly. A 

derived form of the equilibrium condition for the goods market is usually formed as below. 

 

𝑌 = 𝑌(𝑟 − 𝜋𝑒 , 𝐺); 
𝜕𝑌

𝜕(𝑟 − 𝜋𝑒)
< 0 ,

𝜕𝑌

𝜕𝐺
> 0 

 

 Here, 𝑟 =nominal interest rate and 𝐺 =real government expenditure. Normally, nominal 

interest rate is controlled by a central bank’s monetary policy, and real government 

expenditure is decided by a government’s fiscal policy. As such, the real output 𝑌 is not a 

variable which policy maker can directly control, instead is an indirect control variable which 

comes from a monetary and fiscal mixed policy. Optimal macroeconomic policy model 

which sets these policy tools as control variables may be the next step for the future study. 

  



22 

 

 

Reference 

[1] Archarya, S., Challe, E., Dogra, K. (2020), “Optimal Monetary Policy According to 

HANK”, Federal Reserve Bank of New York Staff Reports, No.916 

 

[2] Asada, T. (2010), “Central Banking and Deflationary Depression: a Japanese Perspective”, 

Central Banking and Globalization, Nova Science Publishers, New York, pp.91-114 

 

[3] Asada, T. (2013), “An Analytical Critique of ‘New Keynesian’ Dynamic Model”, Post 

Keynesian Review, Vol.2, No.1, pp. 1-28 (the 31st August, 2013) 

 

[4] Benhabib, J., Schmitt-Grohé, S., Uribe, M. (2003), “Backward-looking Interest-rate Rules, 

Interest-rate Smoothing, and Macroeconomic Instability”, Journal of Money, Credit, and 

Banking, Vol.35, No.6, pp.1379-1412 

 

[5] Bernanke, B.S., (2002), “Deflation- Making Sure “It” Doesn’t Happen Here”, BIS Review, 

68/2002, pp.1-8 

 

[6] Brayton, F., Laubach, T., and Reifschneider, D. (2014). “Optimal-Control Monetary 

Policy in the FRB/US Model”, FEDS notes, Washington: Board of Governors of the Federal 

Reserve System, November 21, 2014. https://doi.org/10.17016/2380-7172.0035   

 

[7] Carlstrom, C.T. and Fuerst, T.S. (2000), “Forward-Looking Versus Backward-Looking 

Taylor Rules”, No.0009, Federal Reserve Bank of Cleveland 

 

[8] Chiang, A.C. (1992), Elements of Dynamic Optimization, McGraw-Hill, New York 

 

[9] Chiang, A.C. and Wainwright, K. (2005), Fundamental Methods of Mathematical 

Economics Fourth Edition, McGraw-Hill, New York 

 

[10] Davig, T. and Gürkaynak, R.S. (2015), “Is Optimal Monetary Policy Always Optimal?”, 

International Journal of Central Banking, 11(4), pp.353-382 

 

[11] Drumond, C.E.I, de Jesus, C.S., Pereima, J.B. and Yoshida, H., (2022), “Alternative 

Monetary Policy Rules and Expectational Consistency.” Evolutionary and Institutional 

Economics Review, Springer, vol.19(1), pp.319-341 



23 

 

 

[12] FOMC Projection Materials, Accessible Version (June 15, 2022), Board of Governors of 

the Federal Reserve System, 

 < https://www.federalreserve.gov/monetarypolicy/fomcprojtabl20220615.htm> 

 

[13] Galí, J.(2015), Monetary Policy, Inflation, and the Business Cycle: An Introduction the 

the New Keynesian Framework and its Applications, Second Edition, Princeton University 

Press. 

 

[14] Khan, A., King, R.G., Wolman, A.L., (2003), “Optimal Monetary Policy”, The Review of 

Economic Studies 70(4), pp.825-860 

 

[15] Mankiw, N.G. (2001), “The Inexorable and Mysterious Tradeoff between Inflation and 

Unemployment”, The Economic Journal, Vol.111, pp. 45-61,  

http://www.jstor.org/stable/2667829  

 

[16] Monetary Policy Report (June 17, 2022), Board of Governors of the Federal Reserve 

System, https://www.federalreserve.gov/monetarypolicy/2022-06-mpr-summary.htm 

 

[17] Rotemberg, J.J., Woodford, M. (1997), “An Optimization-Based Econometric Framework 

for the Evaluation of Monetary Policy”, NBER Macroeconomics Annual, 12, pp.297-346 

 

[18] Semmler, W. and Zhang, W (2004), “Monetary Policy with Nonlinear Phillips Curve and 

Endogenous NAIRU”, Center for Empirical Macroeconomics, Bielefeld 

 

[19] Taylor, D. (1989), “Stopping Inflation in the Dornbusch Model: Monetary Policies with 

Alternative Price-Adjustment Equations.”, Journal of Macroeconomics, Spring pp.199-216 

 

[20] Taylor, J.B. (1993), “Discretion versus Policy Rules in Practice”, Carnegie-Rochester 

Conference Series on Public Policy 39, pp.195-214 

 

[21] Taylor, J.(2022), “Play By The Rules”, Economics One, 

 <ttps://economicsone.com/2022/06/25/play-by-the-rules/> 

 

 

 

https://www.federalreserve.gov/monetarypolicy/2022-06-mpr-summary.htm


24 

 

[22] Bryan, M. (2013), “The Great Inflation 1965-1982, Federal Reserve History”,  

Economic Research Federal Reserve Bank of St.Louis,  

<https://www.federalreservehistory.org/essays/great-inflation> 

 

[23] Williams, J.C., (2003), “Simple Rules for Monetary Policy”, Economic Review-Federal 

Reserve Bank of San Francisco, 1 

 

[24] Woodford, M.(2001), “The Taylor Rule and Optimal Monetary Policy”, American 

Economic Review 91(2), pp.232-237 

 

[25] Woodford, M. (2002), “Inflation Stabilization and Welfare”, Contributions to 

Macroeconomics, vol.2, Issue 1, Article 1, pp.1-51 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
中央大学経済研究所 

 ( INSTITUTE OF ECONOMIC RESEARCH, CHUO UNIVERSITY) 
 代表者 林 光洋  (Director: Mitsuhiro Hayashi) 
 〒192-0393 東京都八王子市東中野 742-1 
 (742-1 Higashi-nakano, Hachioji, Tokyo 192-0393  JAPAN) 
 TEL: 042-674-3271    +81 42 674 3271 
 FAX: 042-674-3278    +81 42 674 3278 
 E-mail: keizaiken-grp@g.chuo-u.ac.jp 
 URL: https://www.chuo-u.ac.jp/research/institutes/economic/ 
 

 
 


