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Abstract

The present paper introduces a generalization of a closedness under
relation behavior (CURB) notion to simultaneous-move games with un-
awareness. The study, using a type-based approach, models a myopic
discovery process in which players take the best responses to opponents’
preceding plays and revise their subjective games. Mainly, the study
shows that the plays of all players converge to some realizable CURB
set through any myopic discovery process. Given any simultaneous-move
game with unawareness, any myopic discovery process converges to some
revised game in which players do not need further revision of their subjec-
tive games. Moreover, we explore the relationships of the CURB notion
with other solution concepts in our model.
JEL classification : C70; C72; D80; D83
Keywords: Game Theory; Unawareness; Discovery of Actions; Growing
Awareness; Closedness under Rational Behavior; Block Game

1 Introduction

In the present paper, we mainly discuss the following model and result:

• Generalizing a notion of closedness under rational behavior (CURB) to
simultaneous-move games with unawareness,
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• Modeling the myopic discovery process, and

• Proving the main theorem that plays of all agents converge to some CURB
set in a certain discovered game in which players do not need further
revision of their subjective games.

Although a lack or abundance of knowledge influences people’s decision-
making, the human community is stable. Specifically, stability in people creates
a specific solution (or equilibrium). However, people do not always choose a
particular solution from the beginning. People need to start by recognizing the
decision-making or interactive situation they are in and find a specific solution
through trial and error. The main purpose of this study is to demonstrate
how agents discover and play a specific solution under a lack of knowledge or
understanding by using discovery processes in simultaneous-move games with
unawareness.

Studies of unawareness analyze decision-making and interactive situations
assuming a lack of knowledge or understanding. Models of unawareness assume
that agents are unaware of events, choices, opponents’ plays, and so on.1 In
games with unawareness, the outcomes of players’ implementations might be
different from their play expectations because the players “did” not know some
of the opponents’ actions. Therefore, since the players observe the opponents’
play, they are surprised by the play and may realize the error of their subjec-
tive views about the game’s situation. Thus, prior beliefs about the opponents’
play may be different from those reformulated after the opponents’ play. Con-
sequently, the players’ next-stage game might change.

Schipper (2021) proposed models of discovery processes to analyze belief re-
vision and replay through the revision process.2 In a discovery process, players
add opponents’ actions that they are unaware of in each stage game. Schipper
(2013) focused on extensive-form games with unawareness and showed that a
rationalizable discovery process where every player implements rationalizable ac-
tions converges to some revised game possessing a rationalizable self-confirming
equilibrium.3

This study adopts the idea of discovery processes and discusses the con-
vergence of plays. To discuss such convergence, we introduce and generalize
a CURB notion. A CURB notion is a set-wise solution concept, that is, re-

1Schipper (2014) provided a historical survey. In this paper, we present related literature
in Section 5.

2A discovery process is different from a learning process. Learning is an update process of
probability distributions. However, as shown by Schipper (2013), unawareness of an event is
different from assigning probability 0 to the event. Any event that agents are unaware of is
not included in the subjective state space. Hence, the agent cannot assign any probability to
the event. If such an event occurs, the subjective state space must be expanded. In games
with unawareness, the set of actions must also be increased when actions that players were
unaware of are played. Therefore, learning cannot be applied to games with unawareness.
Discovery processes are alternative models of learning processes that were proposed to avoid
this issue.

3Note that Schipper (2021) did not show that a rationalizable discovery process converges
to some solution.
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finements of the strict Nash equilibrium and rationalizability. It combines the
characteristics of an equilibrium notion and rationalizability notion as follows.

• When players implement actions in some CURB set, they do not have
inventive deviation from the CURB set. Hence, we can apply stable con-
vention to a CURB notion.

• If players’ belief formation consists of mixed actions, a CURB notion can
avoid disconfirmation difficulties for probability distributions.

A CURB notion possessing the above features might be a convergence of imple-
mentations by players who best respond to opponents’ immediately preceding
plays. In fact, Hurkens (1995) and Young (1998) showed that in a standard
game, Markov plays converge to a minimal CURB set, considering the possibil-
ity of error. Although we do not assume the possibility of error, we show myopic
play, namely, that all players best respond to opponents’ preceding plays and
converge to some CURB set in simultaneous-move games with unawareness.

However, in some simultaneous-move games with unawareness, some players’
subjective games might not have a CURB set that is on the objective game
because the player is unaware of a subset of the CURB set. Hence, we try to
generalize a CURB notion to simultaneous-move games with unawareness. The
key here is the realizable action set, that is, the Cartesian product of the set of a
player’s realizable actions. We focus only on CURB sets on the realizable action
set, namely, realizable CURB sets. Our main theorem is that players’ myopic
play converges to some realizable CURB set.4 When myopic players implement
actions on some realizable CURB set and do not deviate from the CURB set,
then all players’ actions in the CURB set are stable.5

We first formulate simultaneous-move games with unawareness in Section
2 based on a type-based approach. Additionally, in this section, we generalize
a CURB notion. Section 3 models the myopic discovery processes and con-
vergence of those processes and shows our main result. Certainly, we need to
discuss the relationship of a CURB notion and other solution concepts and fea-
tures of discovery processes. This discussion is provided in Section 4. Other
discussions are presented in Section 5. In this section, we consider the block
game notion in (simultaneous-move) games with unawareness, adaptive plays,
and the limitations of this work, and review related literature. Our framework
is based on Perea (2018), albeit with some issues. We point out the issues and
offer a solution in the Appendix.

4Note that some realizable CURB set is not CURB in some player’s subjective game.
Hence, we have to distinguish whether the set is CURB in all subjective games or not.

5However, we do not show that plays converge to specific actions in the CURB set. Players
might choose to alternate actions over the CURB set.
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2 Preliminaries

2.1 Simultaneous-Move Games with Unawareness

This section provides a definition of simultaneous-move games with unaware-
ness, which are type-based models, and generalizes a CURB notion to simultaneous-
move games with unawareness. LetG = (I, A, u) be a standard finite simultaneous-
move game. I is a finite set of players and I−i = I \ {i}. A = ×i∈IAi, where Ai

is the non-empty finite set of i’s actions, and each element on the set is ai ∈ Ai.
Let A−i = ×j∈I−i

Aj . u = (ui)i∈I , where ui : A → R is i’s utility function. De-
note i’s mixed action on Ai by mi ∈ M(Ai), where M(Ai) is the set of i’s mixed
actions, and a mixed action profile on A bym = (mi)i∈I ∈ M(A) = ×i∈IM(Ai).
We denote i’s expected utility for m ∈ M(A) by Eui(m).

First, we define simultaneous-move games with unawareness.6 For any stan-
dard simultaneous-move game G, let V = ×i∈I(2

Ai \ {∅}) be the set of possible
views of G. That is, the set of a Cartesian product of a non-empty action
subset. Like most previous work, this study assumes that the set of players is
commonly known and that each player’s utility for each action profile is the
same among all the possible views. Let v ∈ V be a (possible) view or block,7

and Av
i be the set of i’s actions in v = ×j∈IA

v
j . Let Av

−i = ×j∈I−i
Av

j . Here,
when player i is given v, i is aware of a ∈ v and unaware of a ∈ A \ v. For
any v, v′ ∈ V , v is contained in v′ if Av

i is a subset of Av′

i for any i ∈ I, that

is, Av
i ⊆ Av′

i . Let M(Av
i ) = {mi ∈ M(Ai)|Σai∈Av

i
mi(ai) = 1}. Given any

δ, δ′ ∈
⋃

v∈V

⋃
X∈2I\{∅} M(×i∈XAv

i ), δ ≡ δ′ means that δ and δ′ have the same

supports and probabilities. Therefore, we can say that δ and δ′ are equivalent.
Let Γ = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I) be a simultaneous-move game with un-

awareness as follows: for each i ∈ I,

• Ti is a finite and non-empty set of i’s type, one of which is their actual
type t∗i .

• vi : Ti → V is i’s view function.

• bi : Ti → T−i is i’s belief function, where T−i = ×j∈I\{i}Tj . If bi(ti) =
(tj)j∈I\{i}, then for each j ∈ I \ {i}, vj(tj) must be contained in vi(ti).
Simply put, we do not assume probabilistic beliefs.

Let us call G an objective game (in Γ). An objective game can be interpreted

6Our definitions are similar to those of Perea (2018). Note that there are two major
differences. First, Perea’s (2018) model did not fix belief hierarchies on views. We assume
that the “actual type” of players is given. Second, Perea (2018) considered probabilistic beliefs
on awareness, whereas our players always have point beliefs on their opponents’ awareness,
as is often assumed in studies of games with unawareness. Furthermore, in the Appendix, we
model a probabilistic belief different from Perea’s (2018) framework. He assumed that each
agent assigns probabilities to all opponent types, whereas we assume that opponents’ type
spaces that the agent believes might be different when the agent is given different types.

7A block is a Cartesian product of non-empty subsets of actions.
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as the “true game” in Γ.8 i’s type ti describes their view about the game and
belief about the opponents’ types. At ti, vi(ti) = v means that i is aware of
v and unaware of A \ v, while bi(ti) = (tj)j∈I\{i} means that at ti, i believes
that the others’ types are (tj)j∈I\{i} and that each j’s view is vj(tj). Given
(i, ti) ∈ I × Ti, we denote a sequence ti1 , ti2 , . . . , tih , . . . , where ti1 = ti, and
for any h ≥ 2, tih = bih−1

(tih−1
)(ih). We say that ti leads to tj if and only if

there exists a subsequence ti1 , . . . , tih such that ti1 = ti and tih = tj . Here, we
suppose

⋃
i∈I Ti =

⋃
i∈I{t∗ih}h≥1;t∗ih

=t∗i
.

The set of each player’s actual play A
vi(t

∗
i )

i may be a proper subset of i’s

full action set Ai. In such a scenario, they cannot play ai ∈ Ai \ A
vi(t

∗
i )

i . In
other words, a player’s realized actions exclude the non-realized actions. Let

×i∈IA
vi(t

∗
i )

i be the realizable action set. Some players may not perceive the
realizable action set.

2.2 Closedness under Rational Behavior (CURB)

We generalize a CURB notion, which is one of the set-wise notions, to simultaneous-
move games with unawareness. A CURB notion is a refinement of a strict Nash
equilibrium and a rationalizable set proposed by Basu and Weibull (1991). It
has the features of both an equilibrium and a rationalizability notion. A ratio-
nalizable action is a support of all mixed equilibria, whereas a CURB set is a
subset of the supports of such equilibria. In a mixed equilibrium, players might
not be able to disconfirm a distribution of mixed actions, whereas a CURB
notion avoids the impossibility of disconfirmation. Moreover, since games with
unawareness assume asymmetric subjective views, players attempt to disconfirm
their beliefs on the opponents’ subjective views. A CURB notion can be used
for such tests.

First, we define the generalized strategies. For any i ∈ I, let si : Ti →⋃
ti∈Ti

M(A
vi(ti)
i ) with si(ti) ∈ M(A

vi(ti)
i ) for all ti ∈ Ti. Then, given ti, si(ti) ∈

M(A
vi(ti)
i ) is i’s local action at ti. We denote i’s generalized strategy by si =

(si(ti))ti∈Ti , and a generalized strategy profile by s = (si)i∈I . In the generalized
strategy profile s, each player i’s actual play is mi ∈ M(Ai) with mi ≡ si(t

∗
i )

and the profile is called the objective outcome induced from s.
Second, we propose a generalization of a CURB notion to simultaneous-

move games with unawareness. Although Basu and Weibull (1991) first defined
a CURB notion on a standard game G, this paper defines it on each view. Given
any standard simultaneous-move game G, any possible view v̂ ∈ V , and mixed
action profile m ∈ M(v̂), let

βv̂
i (m−i) = {ai ∈ Ai|ai ∈ supp(mi) be such thatmi ∈ arg max

x∈M(Av̂
i )
Eui(x,m−i)}

8The term “objective game” was used by Halpern and Rêgo (2014). Feinberg (2021)
referred to such a game as the “modeler’s normal-form game” and Perea (2018) called it the
“base game.” In this context, we follow the study by Halpern and Rêgo (2014).
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be the set of i’s pure-action best responses to their beliefs on m−i ∈ M(Av̂
−i).

For any v ⊆ v̂, let

βv̂
i (A

v
−i) =

⋃
m−i∈M(Av̂

−i):m−i≡m′
−i∈M(Av

−i)

βv̂
i (m−i)

be the set of i’s optimal actions under beliefs inM(v), and let βv̂(v) = ×i∈Iβ
v̂
i (A

v
−i).

Then, CURB is defined as follows:

Definition 1. Given a standard simultaneous-move game G and v̂ ∈ V , C ⊆ v̂
is a CURB set on v̂ if βv̂(C) ⊆ C. C is a minimal CURB set on v̂ if C is CURB
on v̂, and every proper subset of C is not CURB on v̂.

Basu and Weibull (1991) showed that every standard game has a minimal
CURB set.

Remark 1. Given any standard game, every possible view has a minimal CURB
set.

In standard games, we only need to consider a CURB set on the full action
set. However, since a given possible view for each player may not be consistent
with the full action set in games with unawareness, realizable CURB sets might
be different for standard games and games with unawareness. Hence, we must
distinguish CURB notions between the two models. In the CURB notion un-
der unawareness, we define a CURB set on the realizable action set, called a
realizable CURB set, as follows:

Definition 2. Given a simultaneous-move game with unawareness Γ, let v∗ =

×i∈IA
vi(t

∗
i )

i be the realizable action set. C ∈ V is a realizable CURB set if
C ⊆ v∗ and βv∗

(C) ⊆ C. C is a minimal realizable CURB set if it is CURB on
v∗, and every proper subset of C is not CURB on v∗.

Realizable CURB notions have the following property:

Lemma 1. Every simultaneous-move game with unawareness Γ has a minimal
realizable CURB set; it is non-empty.

Proof. Let us construct a game G′ = (N,A′, u′) such that the following assump-
tions hold:

• N is common in Γ.

• A′ = ×i∈IA
vi(t

∗
i )

i .

• For any i ∈ I, u′
i : A

′ → R such that ui(a) = u′
i(a) for any a ∈ A′.

Following Basu and Weibull (1991), there must be a (minimal) CURB set C ⊆
A′ in G′. In other words, there exists a set of each player’s pure-action best
response, β′(C), such that β′(C) ⊆ C in G. Since β′(C) is defined on A′ =

×i∈IA
vi(t

∗
i )

i , C is a minimal realizable CURB set.
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Given Γ, some realizable CURB set C ∈ V may be C ⊆ vi(ti) for any
(i, ti) ∈ I×Ti. However, the set might not be CURB in vi(ti) at some ti. Given
a realizable CURB set, we distinguish between a case in which the realizable
CURB set is CURB in every vi(ti) for any (i, ti) ∈ I × Ti, and one in which it
is not as follows:

Definition 3. In a simultaneous-move game with unawareness Γ, C ∈ V is
a common (minimal) realizable CURB set if for any (i, ti) ∈ I × Ti, C is a
(minimal) realizable CURB set and C ⊆ vi(ti). C is a common (minimal)
CURB set if for any (i, ti) ∈ I × Ti \ {t∗i }, C is CURB in vi(ti), and for any i,

β
vi(t

∗
i )

i (AC
−i) ⊆ AC

i .
9

A common realizable CURB set is a subset in each subjective view, but the
set might not be CURB from some view. By contrast, a common CURB set is
CURB in each subjective view other than the player’s actual view,10, and each
player’s actions in the CURB set best respond to the opponents’ actions in the
CURB set in the player’s actual view.

Example 1. Let us consider that two players, Alice (A) and Bob (B), face the
following objective game:11

vO =

A / B b1 b2 b3
a1 3, 3 0, 5 0, 0
a2 5, 0 1, 1 0, 0
a3 0, 0 0, 0 2, 2

.

Here, if Alice is unaware of her own action a2, then her view is as follows:

vA =

A / B b1 b2 b3
a1 3, 3 0, 5 0, 0
a3 0, 0 0, 0 2, 2

,

If Bob is unaware of his own action b2, then his view is as follows:

vB =

A / B b1 b3
a1 3, 3 0, 0
a2 5, 0 0, 0
a3 0, 0 2, 2

.

Let us suppose that Alice believes that Bob’s view is the same as hers, that
is, they both believe that they hold the same view vA, while Bob believes that
Alice’s view is the same as his, that is, they both believe that they hold the
same view vB .

9Tada (2020), noted that a common CURB set means only a CURB set on the full action
set. By contrast, this paper generalizes this notion by focusing on a realizable action set.

10Here, an actual view means the view when the agent’s actual type is given.
11This example is similar to Example 3 in Schipper (2018). An idea of our similar example

is borrowed from his example.
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Here, we formulate this game (with unawareness) Γ = (vO, (TA, TB), (vA, vB), (bA, bB))
as follows:

TA = {t∗A, tA}, and TB = {t∗B , tB};
given t∗A, vA(t

∗
A) = vA, and bA(t

∗
A) = tB ;

given tA, vA(tA) = vA, and bA(tA) = t∗B ;
given t∗B , vB(t

∗
B) = vB , and bB(t

∗
B) = tA; and

given tB , vB(tB) = vB , and bB(tB) = t∗A.

Since Alice’s realizable actions are a1 and a3, while Bob’s realizable actions
are b1 and b3, the realizable action set is the following table:

vR =
A / B b1 b3
a1 3, 3 0, 0
a3 0, 0 2, 2

.

Then, there exists three CURB sets on the realizable action set, that is,
three realizable CURB sets:

C1 = {a1} × {b1};
C2 = {a3} × {b3}; and
C3 = {a1, a3} × {b1, b3}.

Here, C3 is a maximum CURB set. Since, C1, C2, C3 ⊆ vA and C1, C2, C3 ⊆
vB , every realizable CURB set is a common realizable CURB set. Moreover,
C2 is the only unique common CURB set because the common CURB set is
CURB on vA and vB . □

3 Myopic Discovery Process

Standard game models study the convergence to a minimal CURB set by using a
learning model or an adaptation model, for example, Hurkens (1995) and Young
(1998). Previous literature on standard models shows that when all the players
best respond to the opponents’ preceding previous play, their plays converge to
some minimal CURB set. We can also predict that in dynamics of simultaneous-
move games with unawareness, all the agents’ implementations converge to some
generalized CURB set when they best respond to the opponents’ preceding play.
To prove this prediction, we model a myopic discovery process in this section.

A discovery process represents an update process by which each player revises
their own belief about the game’s structure and the opponents’ play. This model
was first introduced by Schipper (2021) to games with unawareness. He ana-
lyzed a rationalizable discovery process in extensive-form models, which is based
on Heifetz et al. (2013). This study models a discovery process in simultaneous-
move games with unawareness based on Perea (2018). Although our definition,
at first glance, may seem different from that of Schipper (2021), both are essen-
tially the same.
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Definition 4. Γ′ = (G, (T ′
i )i∈I , (v

′
i)i∈I , (b

′
i)i∈I) is a discovered game with s =

(si)i∈I in Γ = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I) if for any (i, ti) ∈ I × Ti, and any se-
quence of players i1, i2, . . . , ih, . . . , with a sequence of types ti1 , ti2 , . . . , tih , . . . ,
where ti1 = ti, there exists t

′
i ∈ T ′

i and a sequence of types in Γ′, t′i1 , t
′
i2
, . . . , t′ih , . . . ,

where t′i1 = ti, such that for any h ≥ 1,

v′ih(t
′
ih
) = ×j∈I [A

vih
j (tih) ∪ supp(sj(t

∗
j ))],

where t∗j is j’s actual type in Γ. Note that some Γ,Γ′ may be T ̸⊆ T ′ and
T ′ ̸⊆ T , or T ∩ T ′ = ∅.

[]

Example 2. Consider the following objective game played by Colin (C) and
David (D):

v0 =

C / D d1 d2 d3
c1 3, 3 0, 5 0, -1
c2 5, 0 1, 1 1, 0
c3 -1, 0 0, 1 2, 2

;

and two possible views as follows:

v1 =

C / D d2 d3
c1 0, 5 0, -1
c3 0, 1 2, 2

and v2 =

C / D d1 d3
c1 3, 3 0, -1
c2 5, 0 1, 0

.

Let us formulate the game with unawareness Γ = (v0, (TC , TD), (vC , vD), (bC , bD))
as follows:

TC = {t∗C , tC}, and TD = {t∗D, tD};
given t∗C , vC(t

∗
C) = vC , and bC(t

∗
C) = tD;

given tC , vC(tC) = vC , and bC(tC) = t∗D;
given t∗D, vD(t∗D) = vD, and bD(t∗D) = tC ; and
given tD, vD(tD) = vD, and bD(tD) = t∗C .

Here, suppose that Colin and David play a generalized strategy profile:

s = ([sC(t
∗
C) = c1, sC(tC) = c2)], [sD(t∗D) = d2, sD(tD) = d3]).

The objective outcome is (c1, d2) induced by s.
Let Γ′ be the discovered game with s in Γ. Then, each player’s type set in

Γ′ is T ′
C = {t′∗C , t′C}, and T ′

D = {t′∗D, t′D}, where

b′C(t
′∗
C ) = t′D;
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b′C(t
′
C) = t′∗D;

b′D(t′∗D) = t′C ;

b′D(t′D) = t′∗C ;

v̂1 = v′C(t
′∗
C ) = v′D(t′D) =

C / D d2 d3
c1 0, 5 0, -1
c3 0, 1 2, 2

;

and

v̂2 = v′C(t
′
C) = v′D(t′∗D) =

C / D d1 d2 d3
c1 3, 3 0, 5 0, -1
c2 5, 0 1, 1 1, 0

.

□
Definition 5. A discovery process P = (⟨Γ1, s0⟩, ⟨Γ2, s1⟩, . . . , ⟨Γλ, sλ−1⟩, . . . ),
is defined as follows:

• for any λ, Γλ = (G, (Tλ
i )i∈I , (v

λ
i )i∈I , (b

λ
i )i∈I),

• when λ = 0 and s0 = ϕ, while for any λ ≥ 1, sλ is a played generalized
strategy profile in Γλ, and

• for any λ ≥ 2, Γλ is a discovered game with sλ−1 in Γλ−1.

Let us call Γ1 the initial game with unawareness (in P ).

From definition 4, definition 5 implicitly assumes perfect recall. If we exclude
the assumption, some player may forget some action at λ even if they are aware
of the action at λ− 1.

This study assumes that every player implements a pure action. Meanwhile,
standard game models might assume that every player implements and observes
a mixed action. By contrast, in games with unawareness, it does not seem
appropriate that every player implements and observes a mixed action because
under unawareness, the players cannot observe the frequency of their opponents’
actions at each stage of the game during any discovery process.12

In a discovery process, cautious players might carefully revise their beliefs
about the game, opponents’ plays and rationalities, and pay-off uncertainty
(e.g., they might play rationalizable strategies). However, in the real world,
the agents must pay a higher cost for revising such beliefs and implementing
rationalizable strategies. If the players are myopic, they do not pay a high cost
for revising their beliefs. This section explains the myopic discovery process in
which every player best responds to the opponents’ previous plays.

First, we define a strategy of myopic play in a discovered game as follows:

12I thank an anonymous referee for pointing this out.
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Definition 6. Let Γ′ be a discovered game from Γ. s′ is a myopic best response
in Γ if there exists the belief system, µ′ = (µ′

i)i∈I such that for any (i, t′i) ∈ I×T ′
i ,

1. s′i(t
′
i) ∈ argmax

x∈M(A
v′
i
(t′

i
)

i )
Eui(x, µ

′
i(t

′
i)); and

2. µ′
i(t

′
i) ≡ (s∗j (t

∗
j ))j∈I−i

, where s∗ is played in Γ, and for any j ∈ I−i, t
∗
j ∈ Tj

is j’s actual type in Γ.

Second, we provide a myopic discovery process.

Definition 7. Any discovery process P = (⟨Γ1, s0⟩, ⟨Γ2, s1⟩, . . . , ⟨Γλ, sλ−1⟩, . . . ),
is a myopic discovery process if for any λ ≥ 2, sλ is a myopic best response at
λ. A discovery process P is converging to Γ if there exists h such that for any
λ ≥ h, Γλ = Γ.

From the above formulations, we can show the convergence of a CURB set
as follows:

Theorem 1. Given any simultaneous-move game with unawareness Γ, every
myopic discovery process, P , converges to a discovered game, possessing a com-
mon realizable CURB set. Thus, a subset of the supports of all the agents’
myopic best responses converges to that common realizable CURB set.

Proof. Since we consider a myopic discovery process, it is necessary to focus
only on the realizable action set. For any objective outcome in the initial

game m ∈ M(×i∈IA
vi(t

∗
i )

i ), let βλ(m) be an objective outcome induced by
a myopic best response on the realizable action set, and it is defined as fol-
lows: β0(m) = supp(m), β1(m) = β′ ◦ β0(m), β2(m) = β′ ◦ β1(m), . . . ,
βλ(m) = β′ ◦ βλ−1(m), . . . . Suppose that for any CURB set on the realizable

action set C ⊆ ×i∈IA
vi(t

∗
i )

i , and natural number λ, βλ(m) ̸⊆ C. As pointed out
by Basu and Weibull (1991), since the set of the rationalizable strategy profile

on ×i∈IA
vi(t

∗
i )

i , R ⊆ ×i∈IA
vi(t

∗
i )

i , is CURB,13 βλ(m) ̸⊆ R for any λ, this is a
contradiction. Therefore, there exists a realizable CURB set, C, and natural
number, n, such that βn(m) ⊆ C. Suppose that there exists λ ≥ n, satisfying
βλ(m) ̸⊆ C. Simply, β′ ◦ · · · ◦ β′ ◦ βn(m) ̸⊆ C. However, since C is CURB,
that is, β(v′) ⊆ C for any v′ ⊆ C with ∅ ̸= Av′

i ⊆ AC
i , this is a contradiction.

Therefore, βλ(m) ⊆ C for any λ ≥ n. Since, βλ(m) supports an objective out-
come induced by a myopic best response at λ and C is a realizable CURB set,
the support for the objective outcome is included in the realizable CURB set.
From definition 4, since CURB, C, is common, C is a common realizable CURB
set.

It is known that many intuitively appealing adjustment processes eventually
settle down in a minimal CURB set (cf. Hurkens, 1995; Young, 1998). The-
orem 1 adds to previous literature, highlighting the importance of the CURB

13Specifically, R is a maximum fixed under rational behavior (FURB) set. An action profile
set, C ∈ V , is a FURB set if β(C) = C.
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set. However, the process therein converges to a general CURB set and, not
necessarily, a “minimal” one, such as in Hurkens (1995) and Young (1998).14

Example 2 (Continued). Let Γ be an initial game, that is, a game at λ = 1.
Then, the realizable action set is as follows:

vR =

C / D d1 d3
c1 3, 3 0, -1
c3 -1, 0 2, 2

.

vR has three CURB sets, C1 = {c1} × {d1}, C2 = {c3} × {d3}, and C3 =
{c1, c3} × {d1, d3}. Here, C2 is a mutual CURB set.

Let us focus on two generalized strategy profiles:

s1 = ([sC(t
∗
C) = c1, sC(tC) = c2], [sD(t∗D) = d1, sD(tD) = d2]); and

s2 = ([sC(t
∗
C) = c3, sC(tC) = c2], [sD(t∗D) = d3, sD(tD) = d3]).

First, we focus on the former strategy profile, s1. The objective outcome is
(c1, d1). Since Colin is unaware of d1, he is surprised and revises his view as
follows:

v1
′
=

C / D d1 d2 d3
c1 3, 3 0, 5 0, -1
c3 -1, 0 0, 1 2, 2

.

Then, at λ = 2, the discovered game Γ′ = (G, (T ′
C , T

′
D), (v′C , v

′
D), (b′C , b

′
D)),

where

T ′
C = {t2∗C , t2C}, and T ′

D = {t2∗D , t2D};

v′C(t
2∗
C ) = v1

′
, and b′C(t

2∗
C ) = t2D;

v′C(t
2
C) = v2, and b′C(t

2
C) = t2∗D ;

v′D(t2∗D ) = v2, and b′D(t2∗D ) = t2C ; and

v′D(t2D) = v1
′
, and b′D(t2D) = t2∗C .

At λ = 2, when they play myopic best responses, the generalized strategy profile
is

s21 = ([s2C(t
2∗
C ) = c1, s

2
C(t

2
C) = c1], [s

2
D(t2∗D ) = d1, s

2
D(t2D) = d1]).

Neither of the players discover the opponents’ actual plays. Hence, the next
stage game, at λ = 3, is the same as Γ′. In Γ′, the play s21 is not a generalized

14Hurkens (1995) and Young (1998) showed the convergence of a minimal CURB set by
using the adaptive plays proposed by Young (1993). This paper discusses a discovery process
with adaptive plays in Section 5.
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Nash equilibrium and the objective outcome is (c1, d1). The support of the
objective outcome, {c1} × {d1}, is a subset of a realizable CURB set, C1.

Second, let us focus on the latter generalized Nash equilibrium s2. The
objective outcome is (c3, d3). Since David is unaware of c3, he is surprised and
revises his view as follows:

v2
′
=

C / D d1 d3
c1 3, 3 0, -1
c2 5, 0 1, 0
c3 -1, 0 2, 2

.

Then, at λ = 2′, Γ′′ = (G, (T ′′
C , T

′′
D), (v′′C , v

′′
D), (b′′C , b

′′
D)), where

T ′′
C = {t2′∗C , t2

′

C}, and T ′′
D = {t2′∗D , t2

′

D};

v′′C(t
2′∗
C ) = v1, and b′′C(t

2′∗
C ) = t2

′

D;

v′′C(t
2′

C ) = v2
′
, and b′′C(t

2′

C ) = t2
′∗

D ;

v′′D(t2
′∗

D ) = v2
′
, and b′′D(t2

′∗
D ) = t2

′

C ; and

v′′D(t2
′

D) = v1, and b′′D(t2
′

D) = t2
′∗

C .

At λ = 2′, when they play myopic best responses, the generalized strategy
profile is

s2
′

2 = ([s2
′

C (t2
′∗

C ) = c3, s
2′

C (t2
′

C ) = c3], [s
2′

D(t2
′∗

D ) = d3, s
2′

D(t2
′

D) = d3]).

Neither of the players discover the opponents’ actual play. Hence, the next
stage game, at λ = 3′, is the same as Γ′′. In Γ′′, the play, the generalized strategy
profile is a cognitively stable generalized Nash equilibrium and a support of the
objective outcome, {c3} × {d3}, is a subset of a common CURB set, C2 in Γ′′.
□

4 Discovery Process and Other Solution Con-
cepts

4.1 Relationships among Other Solution Concepts

This section discusses the relationship between a CURB notion and other solu-
tion concepts, for example, the generalized Nash equilibrium, the self-confirming
equilibrium, and rationalizability.
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4.1.1 Equilibrium Notions

Previous literature discusses and proposes equilibrium notions, whereas in this
study we focus on generalized Nash (Halpern and Rêgo 2021 and Sasaki 2017)
and self-confirming equilibria (Schipper2021 and Kobayashi and Sasaki 2021).

Given any generalized strategy profile s, let µ = (µi)i∈I be the belief system

in s, where for any (i, ti) ∈ I × Ti, µi(ti) ∈ M(A
vi(ti)
−i ) and µi = (µi(ti))ti∈Ti .

This study allows correlated beliefs. Therefore, the generalized Nash equilibrium
is defined as follows: in a simultaneous-move game with unawareness Γ, s∗ is
a generalized Nash equilibrium if there exists belief system µ such that for any
(i, ti) ∈ I × Ti,

1. s∗i (ti) ∈ argmax
x∈M(A

vi(ti)

i )
Eui(x, µi(ti)), and

2. µi(ti) ≡ (s∗j (bi(ti)(j)))j∈I−i
.

As they pointed out, a generalized Nash equilibrium is best interpreted as
“an equilibrium in beliefs” (Halpern and Rêgo, 2014: 50). However, as pointed
out by Schipper (2014), a generalized Nash equilibrium can consist of wrong
beliefs. In that case, each player would revise their own beliefs about a game’s
structure and the opponents’ play, and may not play the same generalized Nash
equilibrium.

To avoid this scenario, previous literature has discussed refinements of gen-
eral equilibria as steady-state notions, namely, the stable-belief-hierarchies no-
tion, cognitive stability notion, and self-confirming notion.

First, we consider the stable-belief-hierarchies notion and cognitive stability
notion, as proposed by Sasaki (2017):

• The generalized Nash equilibrium s∗ has stable belief hierarchies if belief
system µ satisfies that for any (i, ti) ∈ I × Ti, µi(ti) ≡ (s∗j (t

∗
j ))j∈I−i

.

• The generalized Nash equilibrium s∗ is cognitively stable if for any (i, ti) ∈
I × Ti, s

∗
i (ti) ≡ s∗i (t

∗
i ).

The former notion means that every player’s belief about the opponents’ plays
is correct, while the latter means that each player’s decision-making on their
arbitrary type is equivalent to their actual play.

Sasaki (2017) expressed the following:

Remark 2. Generalized strategy profile s∗ is a generalized Nash equilibrium
with stable belief hierarchies if and only if s∗ is a cognitively stable generalized
Nash equilibrium.

Such a generalized Nash equilibrium is called a cognitively stable generalized
Nash equilibrium in this paper. A cognitively stable generalized Nash equilib-
rium has the following property:

Remark 3. For any simultaneous-move game with unawareness Γ, let s∗ be a
cognitively stable generalized Nash equilibrium. Then, the objective outcome
m∗ ≡ (s∗i (t

∗
i ))i∈I is a Nash equilibrium on the realizable action set.
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Proof. Suppose that s∗ is a cognitively stable generalized Nash equilibrium, that
is, for any (i, ti) ∈ I × Ti, s

∗
i (ti) ≡ m∗

i . Then, m∗ ≡ m ∈ M(vj(tj)) for any

(j, tj) ∈ I × Tj . Assume that m′ ∈ M(×i∈IA
vi(t

∗
i )

i ) with m′ ≡ m∗ is not a Nash
equilibrium on the realizable action set. In other words, there exists i ∈ I such
that

m∗
i ≡ m′

i ̸∈ arg max
x∈A

vi(t
∗
i
)

i

Eui(x,m
′
−i).

Then, for any (i, ti) ∈ I × Ti,

m∗
i ≡ m′

i ≡ m′′
i ̸∈ arg max

x∈A
vi(ti)

i

Eui(x, µi(ti)),

where µi ≡ m′
−i ≡ m∗

−i. However, since s∗ is a cognitively stable generalized
Nash equilibrium, this is a contradiction. Therefore, m′ is a Nash equilibrium
on the realizable action set.

The relationship between a CURB notion and a cognitive stability notion
has the following property:

Proposition 1. Any simultaneous-move game with unawareness possessing a
common CURB set has a cognitively stable generalized Nash equilibrium.

Proof. Assume that any simultaneous-move game with unawareness has a com-
mon CURB set C ∈ V . That is, for any (i, ti) ∈ I × Ti, C is CURB on
vi(ti). Then, following Basu and Weibull (1991), a Nash equilibrium on vi(ti),
m∗ ∈ M(vi(ti)) exists, satisfying m∗ ≡ m′ ∈ M(C). Suppose that m′ is

not a Nash equilibrium on v. Simply, (i, ai) ∈ I × A
vi(ti)
i exists, such that

Eui(ai,m
′
−i) > Eui(m

′). However, since C is a common CURB set, this
is a contradiction. Therefore, m′ is a Nash equilibrium on C. Thus, since
(i, ti) ∈ I × Ti is arbitrary, m∗ ≡ m′ is a Nash equilibrium on vi(ti). Thus, s∗

with s∗i (ti) ≡ m∗
i for any i ∈ I and ti ∈ Ti is a cognitively stable generalized

Nash equilibrium.

Proposition 1 suggests one of the conditions for the existence of a cognitively
stable generalized Nash equilibrium in any game with unawareness. The contra-
position is that if any cognitively stable generalized Nash equilibrium does not
exist, then any common CURB set does not exist. This means that if some of
the players cannot perceive any CURB set in the realizable action set, then the
players are surprised about a realized play because the player’s belief about the
opponents’ plays is wrong. Our proposition suggests a condition for all players’
stable plays, that is, rational players do not deviate from a specific play.15

The following corollary is obvious from the above proof of Proposition 1.

Corollary 1. Given any simultaneous-move game with unawareness, a common
CURB set includes the support of some cognitively stable generalized Nash
equilibrium.

15I thank Masakazu Fukuzumi for this suggestion.
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Second, let us consider the self-confirming equilibrium proposed by Fu-
denberg and Levine (1993). Schipper (2021) generalized a rationalizable self-
confirming equilibrium to include extensive-form games with unawareness. Kobayashi
and Sasaki (2021) focused on only simultaneous-move games with unawareness
and discussed a rationalizable self-confirming equilibrium by using epistemic
models. We discuss the k-self-confirming equilibrium, which means that all the
players in the k-th order mutually believe that all the players’ beliefs are correct.
The following definition of self-confirming equilibria is based on Kobayashi and
Sasaki (2021). s∗ is a k-self-confirming equilibrium if there exists belief system
µ such that for any h = 1, . . . , k + 1 and ih ∈ I, where ti1 = t∗i ,

1. s∗ih ∈ argmax
x∈M(A

vih
(tih

)

i )
Eui(x, µi(tih)), and

2. µih ≡ (s∗ih+1
(tih+1

))ih+1∈I−ih
.

4.1.2 Rationalizable Notions

Rationalizability was proposed by Bernheim (1984) and Pearce (1984). Heifetz
et al. (2013b) generalized Pearce’s extensive-form rationalizability to games
with unawareness. This notion is one of the approaches that avoids the issue of
equilibrium notions in general.

Let us give a type profile (ti)i∈I , let A(h) = ×ih∈IAih(ih), and let A−ih(ih) =

×j∈I−ih
A

vj(bih (tih )(j))

j . Here, given A(h), βk(A(h)) = β ◦ · · · ◦ β︸ ︷︷ ︸
k

(A(h)). Then,

this study defines rationalizability in simultaneous-move games with unaware-
ness as follows: In a simultaneous-move game with unawareness Γ, for any i ∈ I,
R((tih)ih∈I) =

⋂
k=1 β

k(A(h)) is a rationalizable action set at tih , where ti1 = t∗i ,
and the rationalizable strategy R = (R((tih)ih∈I))h∈N :N is the set of natural numbers..

16

As pointed out by Basu and Weibull (1991), the rationalizable action set is the
maximum FURB set.17

Kobayashi and Sasaki (2021) proposed a k-rationalizable self-confirming
equilibrium as follows: In a simultaneous-move game with unawareness Γ, s∗ is
a k-rationalizable self-confirming equilibrium if it is a k-self-confirming equilib-
rium and supp[(s∗i (t

∗
i ))i∈I ] ⊆ R((tih)ih∈I), where for any i ∈ I, h = 1, . . . , k + 1

such that ti1 = t∗i . Kobayashi and Sasaki (2021) remarked as follows:

Remark 4. s∗ is a ∞-rationalizable self-confirming equilibrium if and only if
s∗ is a cognitively stable generalized Nash equilibrium.

4.1.3 Example

This section compares a CURB notion with other solution concepts.

16As pointed out by Basu and Weibull (1991), the rationalizable action set is a maximum
FURB set, we can use β to define rationalizability.

17Some rationalizable action set might not be the maximum CURB set. Given the ratio-
nalizable action set X ⊆ A in standard game, Y ⊆ A might exist such that X ⫋ Y and
β(Y ) ⫋ Y .
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Example 1 (Continued). Let us reconsider Example 1. First, we consider
generalized (pure) Nash equilibria in the game. Four generalized pure Nash
equilibria exist:

s1 = ([sA(t
∗
A) = a1, sA(tA) = a2], [sB(t

∗
B) = b1, sB(tB) = b2]);

s2 = ([sA(t
∗
A) = a1, sA(tA) = a3], [sB(t

∗
B) = b3, sB(tB) = b2]);

s3 = ([sA(t
∗
A) = a3, sA(tA) = a2], [sB(t

∗
B) = b1, sB(tB) = b3]);, and

s4 = ([sA(t
∗
A) = a3, sA(tA) = a3], [sB(t

∗
B) = b3, sB(tB) = b3]).

Then, the cognitively stable generalized Nash equilibrium is only s4.
Second, we consider self-confirming (pure) equilibria in the game. A 0-

self-confirming equilibrium and ∞-self-confirming equilibrium exist. The 0-self-
confirming equilibrium is only

s5 = ([sA(t
∗
A) = a1, sA(tA) = a1], [sB(t

∗
B) = b1, sB(tB) = b1]).

Note that the 0-self-confirming equilibrium is not the k-self-confirming equilib-
rium (k > 1) because in k+1, Alice’s a1 does not respond best to Bob’s b1, and
Bob’s b1 does not respond best to Alice’s a1.

By contrast, the ∞-self-confirming equilibrium is only s4. When compar-
ing a cognitively stable generalized Nash equilibrium with an ∞-self-confirming
equilibrium, both the equilibria are the same.

Third, we consider rationalizability. Given three tuples t1 = (t∗A, t
∗
B), t2 =

(t∗A, tB), and t3 = (tA, t
∗
B), the rationalizable strategy is R = (R(t1), R(t2), R(t3)),

and the pure rationalizable actions at t2 and t3 are as follows:

R(t2) = {a1, a3} × {b2, b3}; and
R(t3) = {a2, a3} × {b1, b3}.

Then, at t1,

R(t1) = β
vi(t

∗
A)

A ({b2, b3})× β
vi(t

∗
B)

B ({a2, a3}) = {a1, a3} × {b1, b3}.

Here, it is obvious that 0-self-confirming equilibrium s5 is a 0-rationalizable
self-confirming equilibrium and that ∞-self-confirming equilibrium s4 is an ∞-
rationalizable self-confirming equilibrium.

Let us compare a CURB notion with the other notions. First, we compare
a CURB notion with equilibrium notions. From Proposition 1, any common
CURB set includes a support for the objective outcome, induced from the cog-
nitively stable generalized Nash equilibrium. Since the ∞-rationalizable self-
confirming equilibrium and cognitively stable generalized Nash equilibrium are
the same, C2 includes a support for the objective outcome (a3, b3), induced
from a cognitively stable generalized Nash equilibrium and ∞-rationalizable
self-confirming equilibrium, s4. By contrast, a common realizable CURB set
C1, which is not a common CURB set, is a support for the objective outcome
(a1, b1), induced from 0-rationalizable self-confirming equilibrium s5. In C1 or
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s5, each player is rational but their first-order belief is irrational play.18 More-
over, they might be certain about the opponent’s irrationality.

Next, we consider a relationship with rationalizability. Given a type t1,
R(t1) = C3. As shown by Basu and Weibull (1991), a rationalizable action set
is equivalent to a maximum CURB set. By contrast, minimal CURB sets, C1

and C2, are subsets of the rationalizable action set, that is, any minimal CURB
set is a refined notion of rationalizability. □

As shown in the above example, a realizable CURB notion is related to other
solution concepts, that is, a CURB notion has similar characterizations to the
other notions.

4.2 Discovery and Equilibrium Notions

This section discusses the relationships between discovery processes and equi-
librium notions.

4.2.1 Rationalizable Discovery Process and Self-Confirming Equilib-
rium

Schipper (2021) modeled rationalizable discovery processes in which all players
implement rationalizable actions in each stage game. We formulate rationaliz-
able discovery processes based on Perea (2018) as follows:

Definition 8. A discovery process P = (⟨Γ1, s0⟩, ⟨Γ2, s1⟩, . . . , ⟨Γλ, sλ−1⟩, . . . )
is a rationalizable discovery process if for any λ, Rλ is the set of rationalizable
strategy.

Schipper (2021) modeled a rationalizable discovery process based on Heifetz
et al. (2013b) and showed that every rationalizable discovery process (in any
extensive-form game with unawareness) converges to a self-confirming game, in
which no rational player needs further revision and possesses some (0-)rationalizable
self-confirming equilibrium.

However, in our framework, we do not show Schipper’s (2021) result.

Example 3. Let us consider two agents Elena and Filip and assume they face
a zero-sum game:

v =

E / F f1 f2
e1 1, -1 -1, 1
e2 -1, 1 1, -1

.

Here, suppose that in a zero-sum game with unawareness, there exists a view as

v′ =
E / F f1 f2
e1 1, -1 -1, 1

,

TE = {t∗e, te, t′e} and Tf = {t∗f , tf},
18Rational play means that the players maximize their utilities.
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given t∗e, ve(t
∗
e) = v and be(t

∗
e) = tf ,

given te, ve(te) = v′ and be(te) = t∗f ,
given t′e, ve(t

′
e) = v′ and be(t

′
e) = t∗f ,

given t∗f , vf (t
∗
f ) = v′ and bf (t

∗
f ) = t′e, and

given tf , vf (tf ) = v and bf (tf ) = te.

Then, a strategy profile that is uniquely rationalizable is

s = ([se(t
∗
e) = e1, se(te) = e2, se(t

′
e) = e1], [sf (t

∗
f ) = f2, sf (tf ) = f1]),

that is, the actual play is (e1, f2). In the play, Filip’s belief is correct, whereas
Elena’s belief is wrong because she predicts that Filip plays f1. However,
both players are aware of the actual play, that is, discoveries do not occur.
Hence, in the next-stage game, they play the same s. Then, there is no n-
rationalizable self-confirming equilibrium for any natural number n, that is, the
0-rationalizable self-confirming equilibrium does not exist because in Elena’s ac-
tual subjective view v, a unique self-confirming equilibrium is that both players
assign probability 1

2 to each of their actions, while in Filip’s actual subjective
view v′, the unique self-confirming equilibrium is (e1, f2). □

4.2.2 Myopic Discovery Process and Cognitive Stability

In this section, we consider cognitively stable generalized Nash equilibria in
myopic discovery processes. First, we provide a mutual CURB notion that each
player’s actual view has the same CURB set.

Definition 9. In any simultaneous-move game with unawareness Γ, C ∈ V is
a mutual CURB set if for any i ∈ I, C is a non-empty CURB set in vi(t

∗
i ).

A mutual CURB notion has the following property.

Lemma 2. Every mutual CURB set is a realizable CURB set.

Proof. Given any mutual CURB set, C ∈ V , C ⊆ vi(t
∗
i ) for any i ∈ I. Suppose

that C is not a realizable CURB set, that is, there exists some i, such that
β∗
i (A

C
−i) ̸⊆ AC

i in the realizable action set. Since the realizable action set is

defined by ×i∈IA
vi(t

∗
i )

i , β
vi(t

∗
i )

i (AC
−i) ̸⊆ AC

i . This contradicts that C is a mutual
CURB set. Hence, C is a realizable CURB set.

Lemma 3. In a simultaneous-move game with unawareness, if a mutual CURB
set is present in every view, then a common CURB set exists.

Proof. Suppose that a mutual CURB set, C, is present in every view in a
simultaneous-move game with unawareness. Suppose that for some (i, ti) ∈
I × Ti, C is not CURB in vi(ti). Since for some j ∈ I vi(ti) ⊆ vj(t

∗
j ), where

t∗j is j’s actual type and t∗j leads to ti, C is not CURB in vi(t
∗
i ). This is a

contradiction. Therefore, the mutual CURB set is CURB in every view in the
game. Then, from Lemma 2, since the mutual CURB set is a realizable CURB
set, the set is a common CURB set.
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When relating mutual CURB notions with steady-state equilibrium notions,
we can show the condition for converging a discovered game possessing some
steady-state equilibrium. Moreover, we can show the condition for converging a
game such that every equilibrium is a steady-state equilibrium. This is proved
in the following theorems:

Proposition 2. In any simultaneous-move game with unawareness: If there
exists a mutual CURB set such that the CURB set is CURB in every view in
the game with unawareness, then there exists a cognitively stable generalized
Nash equilibrium.

Proof. Suppose that some mutual CURB set is present in every view in a
simultaneous-move game with unawareness. From Lemma 3, the mutual CURB
set is a common CURB set. Then, from Proposition 1, a cognitively stable
generalized Nash equilibrium exists.

Theorem 2. Suppose a simultaneous-move game with unawareness, Γ, has a
mutual CURB set. Then, a myopic discovery process converging to a discovered
game possessing a cognitively stable generalized Nash equilibrium exists.

Proof. Suppose that a mutual CURB set, C, in Γ exists. From Lemma 2,
C is a realizable CURB set. From Theorem 1, a myopic discovery process,
P , converging to C exists. Since C is a common realizable CURB set from
Lemma 3, from Proposition 2, a cognitively stable generalized Nash equilibrium
exists.

Corollary 2. Suppose that every realizable CURB set is a mutual CURB set
in Γ. Then, every myopic discovery process converges to a discovered game
possessing a cognitively stable generalized Nash equilibrium.

Note that the process considered in the present study starts from an arbitrary
generalized strategy profile. Our convergence result holds even if the starting
point is not necessarily a generalized Nash equilibrium.19

Next, let us consider a relationship with a Nash equilibrium in an objective
game. Sasaki (2017) discussed the relationships between a cognitively stable
generalized Nash equilibrium and a Nash equilibrium in an objective game in
any simultaneous-move game with unawareness. The researcher showed the
following proposition:

Proposition 3. Given any simultaneous-move game with unawareness Γ, for

any i ∈ I, if A
vi(t

∗
i )

i = Ai, where t∗i is i’s actual type, then every cognitively
stable generalized Nash equilibrium induces an objective outcome to be a Nash
equilibrium in objective game G.

19Tada (2018) discussed a revision process in which players play a generalized Nash equi-
librium in each round and conjectured that the process converges to a cognitively stable
generalized Nash equilibrium, if there is any. However, the conjecture is wrong in assuming
that players play a generalized Nash equilibrium in each round. This study yields a result in
the same spirit as that, under another condition, in which players play myopic best responses.
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Proof. Given any simultaneous-move game with unawareness Γ, suppose that for

any i ∈ I, A
vi(t

∗
i )

i = Ai, where t
∗
i is i’s actual type. Suppose that the generalized

strategy profile, s∗, is a cognitively stable generalized Nash equilibrium. From
Remark 3, the objective outcome induced from a cognitively stable generalized
Nash equilibrium is a Nash equilibrium of the realizable action set. Since every
player is aware of their own actions in the objective game, the realizable action
set is equivalent to the action set of the objective game. Hence, since every Nash
equilibrium of the realizable action set is a Nash equilibrium in the objective
game, the support of the objective outcome, induced by a cognitively stable
generalized Nash equilibrium, is a Nash equilibrium in the objective game.

From Theorem 1 and Proposition 3, we show the following theorem:

Theorem 3. In any simultaneous-move game with unawareness Γ, for any i ∈ I,

if A
vi(t

∗
i )

i = Ai, where t∗i is i’s actual type, then any myopic discovery process
converges to a discovered game such that any cognitively stable generalized Nash
equilibrium induces an objective outcome to be a Nash equilibrium in objective
game G.

5 Discussion

5.1 A CURB Block Game and Economy of Cognitive Costs

In our model, some myopic discovery processes do not converge to a discovered
game possessing a common CURB set. Some of the players may be certain of
the opponents ’irrationality. However, by using the block game notion (e.g.,
Myerson and Weibull, 2015) of a smaller game than each player ’s subjective
game, the players can reconstruct a block game possessing a common CURB
set from a discovered game that a myopic discovery process converges to and
they can then ascertain each other’s rationality.

Let us consider a case in which a discovered game possesses a realizable
CURB set. When all the players implement a generalized strategy profile so
that the objective outcome is in the realizable CURB set, if they are rational,
they do not perform actions outside the realizable CURB set. Thus, all the
actions in the complementary set of the realizable CURB set are redundant
for them. Therefore, each player excludes the actions in the complementary
set to economize the cognitive costs of the true structure of the game. If they
economize these cognitive costs, their subjective games are the smallest games in
which the action set is a common realizable CURB set. The following definition
represents the “economy of knowledge” about a game’s structure.

Definition 10. Given any game with unawareness, Γ = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I),
and any common realizable CURB set, C ∈ V in Γ, Γ′ = (G, (T ′

i )i∈I , (v
′
i)i∈I , (b

′
i)i∈I)

is an economized game by C in Γ, if for any (i, ti) ∈ I × Ti, there exists t′i ∈ T ′
i

so that

• v′i(t
′
i) = C; and
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• for any (j, tj) ∈ I−i × Tj with bj(tj)(j) = tj , there exists t′j ∈ T ′
j so that

b′j(t
′
j)(j) = t′j , and v′j(t

′
j) = C.

Then, GC = (I, C, uC) is called a realizable CURB block game with C, where
uC = (ui)

C
I∈I , and uC

i : C → R so that for any a ∈ C, uC
i (a) = ui(a).

In Example 2, when Colin and David play s1 in the initial game and s21 in
the next stage of the game, since the objective outcome induced by s21 is (c1, d1),

the realizable CURB block game with C1 is GC1

= (I, C1, (uC1

C , uC1

D )). Thus,

in the economized game, ΓC1

, all the subjective games are GC1

.
The following remark is obvious:

Remark 5. Every economized game, Γ′ by C, in Γ has a cognitively stable
generalized Nash equilibrium.

In ΓC1

in Example 2, there exists a unique generalized Nash equilibrium
such that Colin and David play c1 and d1 in each subjective game, respectively.
Thus, from the definition of cognitive stability, the generalized Nash equilibrium
is cognitively stable.

When Γ is a discovered game that a myopic discovery process converges
to, every subjective game is a realizable CURB block game with a CURB set
such that supports for players’ actual actions converge in the process. Hence, a
rationalizable discovery process is a search process for larger subjective games,
whereas our myopic discovery process is a search process for common, smaller
subjective games, that is, realizable CURB block games.

5.2 Adaptive Play

This study considers myopic agents and myopic play. In the model, each player
responds best to the opponents’ strategies in the previous stage of the game.
However, a bounded agent may not be able to provide their best response to
the opponents’ strategies. Young (1993) provided adaptive play models that do
not allow participants to provide their best responses to previous plays. This
subsection discusses a generalization of the adaptive plays to simultaneous-move
games with unawareness.

First, we provide a definition of adaptive plays in a discovered game.

Definition 11. Let Γ′ be a discovered game from Γ and let ε > 0 be an error
rate such that ε is sufficiently small. The generalized strategy profile, s′, is an
adaptive play in Γ′, if for any (i, t′i) ∈ I × Ti, with probability 1 − ε, player
i chooses a best response to i’s beliefs µ′

i(t
′
i) ≡ (s∗j (t

∗
j ))j∈I−i

such that s∗ is a
generalized strategy profile played in Γ, and t∗j is j’s actual type in Γ; further,

with probability ε, i chooses an action in A
v′
i(t

′
i)

i at random.

We propose a discovery process with an adaptive play as follows, based on
Definition 11.
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Definition 12. Any discovery process, P = (⟨Γ1, s0⟩, ⟨Γ2, s1⟩, . . . , ⟨Γλ, sλ−1⟩, . . . ),
is an adaptive discovery process if for any λ ≥ 2, sλ is an adaptive play profile
at λ.

In a game without unawareness, Hurkens (1995) and Young (1998) used an
adaptive play notion and showed the convergence to a minimal CURB set. Our
proof of Theorem 1 focuses on only the realizable action set. Additionally, we
can conjecture the following:

Conjecture 1. Given any simultaneous-move game with unawareness, in any
adaptive play, The supports of the objective outcome induced by adaptive plays
converge to a common minimal realizable CURB set.

Informal proof. Given any simultaneous-move game with unawareness and any
adaptive discovery process, it is necessary to focus on only the realizable action
set, as per Theorem 1. Based on Hurkens (1995) and Young (1998), adaptive
plays converge to a minimal CURB set of the realizable action set. Then, the
set is a common minimal realizable CURB set.20

5.3 Limitations

Our research has the following limitations:

1. In a game with unawareness, in a generalized Nash equilibrium or under a
rationalizable strategy, each player may be convinced that they are playing
a higher-order subjective game or that the opponents are unaware of cer-
tain actions. However, in certain plays, each player may discover actions
that they were unaware of, which may confirm that the players’ subjective
game was wrong. Here, the question arises, why was the player convinced
that their higher-order subjective game was correct in the initial game
with unawareness? In Example 2, two cognitively unstable generalized
Nash equilibria, s1 and s2, exist in the initial game. This study does not
yield any appropriate answer to the question as to which equilibrium Colin
and David play when they both implement a generalized Nash equilibrium
play.

Our discovery process, and that of previous works, explains how to build
each player’s subjective game under unawareness; however, it does not
explain how to do so in an initial game with unawareness. This issue is a
subject for future research on games with unawareness.

2. Each player pays attention to the opponents’ subjective games in the initial
game with unawareness; however, they do not pay attention to them in
a discovered game. We do not have any appropriate answer to why each
player ceases to pay attention.

20The exact proofs are beyond the capabilities of the author and are omitted.
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3. Models of discovery processes suppose that each player recognizes the op-
ponents’ plays and actions that they were previously unaware of. However,
the assumptions may be too strict. For example, most children of pre-
school age would not be able to understand conversations among adults,
or, at least, cannot have the same conversations. In further research,
we aim to relax this assumption and reconstruct the models of discovery
processes.

4. In Section 4, we showed that Schipper’s (2021) result might not hold in
our framework. Specifically, in our model, some rationalizable discovery
process might not converge to any (simultaneous-move) game with un-
awareness possessing a self-confirming equilibrium. This paper proposes
an open question as follows: what are the conditions for satisfying the
result of Schipper (2021) in our framework?

5.4 Related Literature

Games with Unawareness

Pioneering works about games with unawareness include Feinberg (2021), C̆opic̆
Galeotti (2006), Ozbay (2007), Heifetz et al. (2013b), Halpern and Rêgo (2014),
Rêgo and Halpern (2012), and Grant and Quiggin (2013). The majority of
the literature has modeled extensive-form games with unawareness. Studies of
normal-form models (or, more strictly, simultaneous-move models) are C̆opic̆
Galeotti (2006), Sasaki (2017), Perea (2018), and Kobayashi and Sasaki (2021).
Meier and Schipper (2014) modeled Bayesian games with unawareness and dis-
cussed relationships with standard Bayesian games.

As mentioned in the text, there are two main solution concepts; one is equi-
librium notions (Feinberg 2021, C̆opic̆ Galeotti 2006, Ozbay 2007, Halpern and
Rêgo 2014, Rêgo and Halpern 2012, Grant and Quiggin 2013, and Meier and
Schipper 2014). Halpern and Rêgo (2014) generalized a Nash equilibrium. Rêgo
and Halpern (2012) and Grant and Quiggin (2013) discussed a sequential equi-
librium in extensive-form games. Meier and Schipper (2014) proposed an un-
awareness perfect equilibrium. Sasaki 2017, Schipper 2021, and Kobayashi and
Sasaki (2021) discussed refinements of equilibria notions and corrected beliefs
on an equilibrium.

The other notion is the set-wise notion, more specifically, the rationalizability
notion, used by Heifetz et al. (2013b, 2021), Perea (2018), and Guarino (2020).
This notion is appropriate for game situations where beliefs have not yet been
formed. In addition, since the rationalizable action set is supported by all mixed-
strategy equilibria, the difficulty of disproving the probability distribution in
mixed action equilibria can be eliminated.

Growing Awareness

A study of discovery processes entails an analysis of growing awareness or up-
dating awareness. Karni and Vierø(2013, 2017) discussed decision-making under
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unawareness and proposed a reverse Bayesian model. As pointed out by Schip-
per (2013), an agent who is unaware of an event is different from an agent who
assigns probability 0 to the event. This means that an unaware agent can-
not assign a probability to an event that they are unaware of. Given such an
event, Karni and Vierø’s (2013, 2017) model discusses the methods to revise
such agents’ beliefs.

Galanis and Kotoronis (2021) modeled that all agents announce prices to
each other and provided generalizations of the results of Genakoplos and Pole-
marchakis (1982) and Ostrovsky (2012). They supposed that updating aware-
ness is minimal and a true state is never excluded. Traders eventually agree on
the price of the security. Moreover, if the security is separable, traders agree on
the correct price and aggregate information.

Unawareness in General

The first motivation of studies of unawareness is overcoming the No-Trade The-
orem presented by Milgrom and Stokey (1982). Previous works of unawareness
that address this issue have adopted two approaches. One was a non-partitional
state space model, for example, Geankoplos (2021); and the other was an un-
awareness structure model, for example, Heifetz et al. (2006, 2013a), and Gala-
nis (2013, 2018).

Interpretations of unawareness under the two approaches are different. The
former corresponds to a lack of knowledge, that is, an agent does not know
an event and does not know that they do not have that knowledge. The other
strand of the literature on this approach includes Samet (1990) and Shin (1993).
However, in (non-)partitional models, several assumptions lead to trivial un-
awareness, that is, an agent cannot be unaware of any event; see Modica and
Rustichini (1994, 1999), Dekel et al. (1998), and Chen et al. (2012). The latter
model is proposed to avoid this issue. Unawareness structures first formulate the
family of state spaces and give different state spaces to different agents. Players’
unawareness is represented by different subjective games. Other literature on
unawareness structures or similar structures includes Li (2009) and Heinsalu
(2012). In a recent study, Fukuda (2021) compared the two approaches.

CURB Notions

Basu and Weibull (1991) first introduced CURB notions to standard game mod-
els. CURB notions in dynamic models are discussed by Hurkens (1995), Young
(1998), and Grandjean et al. (2017). Voorneveld et al. (2005) discussed the
axiom and properties of minimal CURB sets. Pruzhansky (2003) showed that
in extensive games with perfect information and finite horizons, there exists
only one minimal CURB set. Benisch et al. (2010) provided algorithms for
computing CURB sets. Asheim et al. (2016) discussed the epistemic robustness
of CURB in epistemic models.
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Appendix A

To discuss the ignorance, as a lack of conception, of a structure of a game,
this paper uses a model of games with unawareness, but not Bayesian games.
Bayesian games represent ignorance of actions as extremely low payoffs assigned
to the actions that a player does not know (Harsanyi). In this formulation,
rational players do not choose such actions. However, irrational players might
choose those actions. Moreover, since each player’s belief about the opponents’
actions is a probability distribution on all the actions in the game, each player
assigns some probability to all the actions even if modelers suppose that the
player does not know some of the actions. As pointed out by Schipper (2013),
since the unawareness of an event is different from a probability of 0 being
assigned to the event, we cannot consider ignorance as a lack of conception.
Hence, games with unawareness are appropriate for discussing the ignorance of
actions as a lack of conception.

This paper uses a non-probabilistic type-based approach and models simultaneous-
move games with unawareness. In simultaneous-move games with unawareness,
type-based approaches are adapted by Meier and Schipper (2014) and Perea
(2018). Meier and Schipper (2014) modeled Bayesian games with unawareness
based on Heifetz et al.’s (2013a) probabilistic unawareness structures. By con-
trast, Perea’s (2018) type spaces are similar to Harsanyi’s (1967) type spaces.
Note that crucial differences between Meier and Schipper (2014) and Perea
(2018) exist. The former assumed that players’ types are directly associated
with views of the games, whereas the latter believed that although players’
types associated with beliefs about views of the games, the types cannot be
associated with the views themselves.

However, Perea (2018) had a problem similar to that encountered by Harsanyi
(1967). He assumed probabilistic beliefs in his type-based approach. Thus, his
probability distribution about the opponents’ types, that is, the opponents’
type spaces, is mutually known. Specifically, his framework cannot distinguish
between unawareness and assigning some probability. This study uses Perea’s
(2018) style. Although we ignore this issue, we do not solve it. Can we model
games with unawareness by using similar models to the Harsanyi–Perea style?
This study’s answer is that we can represent Harsanyi–Perea-style’s games with
unawareness by making an additional assumption.

Given standard game G, let V be the set of possible views. Then, a prob-
abilistic version of simultaneous-move games with unawareness is defined as
follows:

Definition 13. Given any standard game G, let Γ = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I)
be a probabilistic version of a simultaneous-move game with unawareness as
follows: for each i ∈ I,

• Ti is a finite and non-empty set of i’s type. This study assumes that one
of the types is i’s actual type, denoted by t∗i .

• vi : Ti → V is i’s view function.
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• bi : Ti →
⋃

T ′
−i∈×j∈I−i

(2Tj \{∅}) ∆(T ′
−i) is i’s belief function, where for all

ti ∈ Ti, T
′
−i ∈ ×j∈I−i(2

Tj \ {∅}) exists such that bi(ti) ∈ ∆T ′
−i. Here,

∆(T ′
−i) is the set of probability measures over T ′

−i, that is, bi(ti) is a
probability measure over some subset of T−i. For each ti ∈ Ti and t−i =
(tj)j∈I−i

∈ T−i, bi(t−i|ti) ≥ 0 implies that vj(tj) ⊆ vi(ti) for all j ∈ I−i,
where bi(t−i|ti) is the probability that bi(ti) assigns to t−i. Given any
ti ∈ Ti and tj ∈ Tj , denote by bi(tj |ti) to be the probability that bi(ti)
assigns to tj .

A player is aware of a subset of the opponents’ types if and only if for any
opponents’ type in the subset, the player assigns some probability to the type.

This definition is different from Perea’s (2018). His model assigned some
probability to every type on the type set. By contrast, any probability might not
be assigned to some type. Simply, in our model, we can represent the unaware-
ness of types. However, under this definition, we cannot distinguish between
the unawareness of the opponents’ types and probability 0 assigned to the types
because we do not define relationships among types. To distinguish unawareness
from probability 0, we need an additional assumption. Given (i, ti) ∈ I × Ti,
let ti1 , ti2 , . . . , tih , . . . be a sequence of types, where ti1 = ti and for any h ≥ 2,
tih = tj , where (j, tj) ∈ I × Tj and bi(tj |tih−1

) ≥ 0.

Assumption 1. Given Γ, for any (i, ti) ∈ I × Ti, any tih and tik (h ≤ k),
where i1 = ih = ik = i, and the two opponents’ type subsets T−ih , T−ik ⊆ T−i,
if bih(tih) ∈ ∆(T−ih) and bik(tik) ∈ ∆(T−ik), then T−ik ⊆ T−ih and for any
t−i ∈ T−ih \ T−ik , any probability must not be assigned to t−i.

This assumption specifies the relationships among the types. When player i
is given two types, if one ti leads to the other t′i, then the opponents’ type set
T−i at ti is a superset of the set T ′

−i at t
′
i. Then, when T ′

−i is a proper subset of
T−i, any probability is assigned to every type t′′i ∈ T−i \T ′

−i at t
′
i. Hence, under

this assumption, we can distinguish between unawareness and probability 0.
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