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Abstract

This study discusses the convergence to a solution in simultaneous-
move games with unawareness. Since games with unawareness assume
players’ unawareness of actions, in some plays, players might revise their
subjective views when they observe opponents’ play, which they were un-
aware of. Recently, a model of discovery processes was proposed to analyze
the revision process of subjective views. Pioneering work in discovery pro-
cesses shows that the revision process that converges to subjective views
is not adopted by all players. However, previous studies do not show that
the players’ play converges to a particular solution. This paper intro-
duces the closedness under rational behavior (CURB) notion, that is, a
set-valued solution concept, to simultaneous-move games with unaware-
ness, and shows that the play of myopic players, who best respond to the
previous play, converges to the generalized CURB set. Moreover, we pro-
pose that CURB block games, which consist only of a realizable CURB
set, represent the economy of knowledge of games’ structures.
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1 Introduction

This study introduces closedness under rational behavior (CURB) notions to
simultaneous-move games with unawareness, models a myopic discovery process
in which every player best responds to the immediately preceding plays, and
shows that myopic best responses converge to realizable CURB sets in any
myopic discovery process. Games with an unawareness model lack conception
of the games’ situations, for example, the players’ set, the actions’ set, and state
spaces. This means that certain players may not be able to perceive parts of
the sets of players, actions, and states.1

Since players may be unaware of actions, some of them might revise their
view when they observe opponents’ play, which they were previously unaware of.
Schipper (2021) discusses such revision process, namely, the discovery process,
whereby players observe actions that they might have previously been unaware
of, and revise their subjective views by adding the new actions to their subjective
views.

A discovery process is different from a learning process. Learning is an
update process of probability distributions. However, as shown by Schipper
(2013), unawareness of an event is not the same as assigning the event to zero
probability. Any event that the agents are unaware of is not included in the
subjective state space. Hence, the agents cannot assign any probability to the
event. If such an event occurs, their subjective state space must be expanded.
In games with unawareness, the set of actions must also be increased when
actions that players were unaware of are played. Therefore, learning cannot be
applied to games with unawareness. Discovery processes are alternative models
of learning processes that were proposed to avoid this very issue.

Schipper (2021) shows that when all players implement rationalizable strate-
gies in each stage of the game, any rationalizable discovery process converges
to form larger subjective views that do not need further revision2. However,
he does not show that players’ play converges toward a particular solution, al-
though he does show that such subjective views possess the same rationalizable
self-confirming equilibrium, that is, such revision processes do not converge to
the equilibrium.

This paper tries to show that, through the discovery process in simultaneous-
move games with unawareness, all the players’ play converges to a particular
solution. Our model assumes that every player best responds to the opponents’
immediately preceding plays in each stage of the game. We shall call the play a
“myopic play. ’’A myopic play is a type of Markov play. Unlike rationalizable
plays, myopic plays may not be rationalizable. However, in the real world, most
people are not rational and do not mutually believe in each other’s rational-
ity. Therefore, they do not play based on rationalizable strategies. Hence, an
assumption of myopic play is suitable for real world analysis.

1Pioneering works about games with unawareness include Feinberg (2021), C̆opic̆ Galeotti
(2006), Ozbay (2007), Heifetz et al. (2013b), Halpern and Rêgo (2014), Rêgo and Halpern
(2012), and Grant and Quiggin (2013). For a historical survey, see Schipper (2014).

2Note that larger subjective games might not be common.
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We consider the solution concepts in games with unawareness before we ex-
amine a convergence to a solution concept in the myopic discovery processes.
There are two main notions of solution concepts in studies on games with un-
awareness. The first is the equilibrium notion, which has been used in Feinberg
(2021), C̆opic̆ Galeotti (2006), Ozbay (2007), Halpern and Rêgo (2014), Rêgo
and Halpern (2012), Grant and Quiggin (2013), and Meier and Schipper (2014).
An equilibrium is interpreted as an equilibrium in beliefs. However, unlike stan-
dard game models, games with unawareness assume unawareness of actions.
Therefore, some equilibria may not be steady state equilibria, which means that
no rational agent deviates from the equilibrium because every equilibrium in-
cludes some action that some player is unaware of. To avoid this issue, several
previous studies provide a steady state notion refined equilibrium, for example,
cognitive stability notion (Sasaki, 2017) and self-confirming notion (Schipper,
2021).

The second notion is the set-wise notion, more specifically, the rationaliz-
ability notion, used by Heifetz et al. (2013b, 2021), Perea (2018), and Guarino
(2020). This notion is appropriate for game situations where beliefs have not
yet been formed. In addition, since the rationalizable action set is supported by
all mixed-strategy equilibria, the difficulty of disproving the probability distri-
bution in mixed action equilibria can be eliminated.

However, both the steady state and rationalizability notions have issues.
Learning processes are not appropriate for games with unawareness because
there could be a growing awareness of actions in the subjective game of each
player in each stage of the game. Therefore, we cannot explain belief formation
for steady state equilibria. Moreover, if the equilibrium is a mixed strategy,
players might not be able to disconfirm the distribution of such a strategy. A
rationalizability notion avoids these issues. However, the set of rationalizable
actions is much larger than the support for any given equilibrium. Moreover,
although the notion might be appropriate for one-shot games or games that
players face at first, it is difficult to discuss the steady state using rationaliz-
ability notions.

To avoid these issues, this study introduces the notion of CURB to simultaneous-
move games with unawareness. The CURB notion, proposed by Basu and
Weibull (1991), is a refinement of the strict Nash equilibria and rationalizabil-
ity. A CURB notion can be interpreted as a steady state, as done by Myerson
and Weibull (2015), and is a set-wise notion. Furthermore, any CURB set is a
subset of the rationalizable action set. Hence, CURB notions seem appropriate
for games with unawareness.

Certain actions of certain players may not belong to a player’s available
choices, because the agent is unaware of the action. Hence, she or he cannot
play the action. In other words, there exist some actions that do not belong to
the subjective view. In such a scenario, a CURB set of the objective view is
not included in the subjective view. Therefore, we must generalize the CURB
notion to simultaneous-move games with unawareness. This paper proposes a
generalized CURB set, named a “realizable CURB set. ’’

By using a model of myopic discovery processes and realizable CURB no-
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tions, we can show that, in any myopic discovery process all the players’ play
converges to a realizable CURB set. More precisely, a subset of play supports
converges to a realizable CURB set. Our discovery process converges to both
larger subjective views and a particular solution. In some realizable CURB sets
that players’ play converges to, actions outside the CURB set are redundant
because rational players do not deviate from the CURB set. Therefore, delin-
eating such actions is not a problem. We can construct a game without such
actions, and name the game without the redundant actions as the “CURB block
game.’’A block is a Cartesian product of non-empty subsets of players’ actions,
and a block game is a game constructed by a block. In a simultaneous-move
game with unawareness, a myopic discovery process converging to the realizable
CURB set might not be a CURB in the objective game. Hence, in some CURB
sets, a player who can observe a CURB set of the objective game, might think
that the opponent is irrational. By contrast, in a CURB block game, the real-
izable CURB set must be CURB. Therefore, we can interpret constructing the
CURB block game as economy of knowledge of a game’s structure, and players’
cognitive costs for excluding cognitive dissonance. Moreover, we can say that a
myopic discovery process proposes a candidate for games in which each player
economizes knowledge about actions.

In constructing models of unawareness, we used type-based approaches.3

Although our type-based model seems similar to Harsanyi (1967), games with
unawareness differ from incomplete information games, specifically, standard
Bayesian games. In standard Bayesian models, a player’s unawareness of ac-
tions is represented with extremely low pay-offs. In formulation, the rational
participant does not perform the actions. However, if participants are irrational
in models with an assumption, they might perform the actions. It means that
our representation is a contradiction. In contrast to Bayesian games, unaware-
ness of actions in games with unawareness is represented by using a (semi-)
sub-lattice of game structures. The models with unawareness provide different
subjective games or views of the games to each player, and assume that each
player is unaware of opponents’ subjective games. Thus, they cannot perform
actions outside the action set in their own subjective games.

The rest of this paper is organized as follows. Section 2 provides prelimi-
naries. Section 3 develops a generalization of CURB, and Section 4 formulates
a discovery process, called the myopic discovery process. Section 5 shows the
relationships with a cognitively stable, generalized Nash equilibrium. Section
6 discusses a block game, and economy of knowledge of a game’s structure.
Finally, Section 7 provides the discussion and the conclusion.

3Type-based models were first introduced to games with unawareness by Meier and Schip-
per (2014). Another pioneering model was proposed by Perea (2018). However, both the
models have different definitions. Meier and Schipper (2014) assume that players’ types are
directly associated with views of the games, whereas Perea (2018) believes that although play-
ers’ types are associated with beliefs about views of the games, the types cannot be associated
with the views themselves. While our formulation is similar to Perea (2018), our assumptions
differ. Perea (2018) does not assume fixed belief hierarchies, but rather, probabilistic beliefs.
By contrast, we assume belief hierarchies. Our formulation is a simplified version of Kobayashi
et al. (2021) although their models are epistemic, and they assume probabilistic beliefs.
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2 Preliminaries

2.1 Simultaneous-Move Games with Unawareness

This section provides a definition of simultaneous-move games with unawareness
that are type-based models, a generalized Nash equilibrium, and rationalizabil-
ity. Let G = (I, A, u) be a standard finite simultaneous-move game. I is a finite
set of players, and I−i = I \ {i}. A = ×i∈IAi, where Ai is the non-empty finite
set of i’s actions, and each element on the set is ai ∈ Ai. Let A−i = ×j∈I−i

Aj .
u = (ui)i∈I , where ui : A → R is i’s utility function. Denote i’s mixed action on
Ai by mi ∈ M(Ai), where M(Ai) is the set of i’s mixed actions, and a mixed
action profile on A by m = (mi)i∈I ∈ M(A) = ×i∈IM(Ai). We denote i’s
expected utility for m ∈ M(A) by Eui(m).

First, we define simultaneous-move games with unawareness.4 For any stan-
dard simultaneous-move game G, let V = ×i∈I(2

Ai \ {∅}) be the set of possible
views of G. That is, the set of a Cartesian product of a non-empty action sub-
set. Like most previous works, this study assumes that the set of players is
commonly known, and that each player’s utility for each action profile is the
same among all the possible views. Let v ∈ V be a (possible) view or a block,5

and Av
i be the set of i’s actions in v = ×j∈IA

v
j . Let Av

−i = ×j∈I−i
Av

j . Here,
when a player i is given v, i is aware of a ∈ v, and unaware of a ∈ A \ v. For
any v, v′ ∈ V , v is contained in v′ if Av

i is a subset of Av′

i for any i ∈ I, that

is, Av
i ⊆ Av′

i . Let M(Av
i ) = {mi ∈ M(Ai)|Σai∈Av

i
mi(ai) = 1}. Given any

δ, δ′ ∈
∪

v∈V

∪
X∈2I\{∅} M(×i∈XAv

i ), δ ≡ δ′ means that δ and δ′ have the same

supports and probabilities. Therefore, we can say that δ and δ′ are equivalent.
Let Γ = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I) be a simultaneous-move game with un-

awareness as follows: for each i ∈ I,

• Ti is a finite and non-empty set of i’s type, one of which is their actual
type t∗i .

• vi : Ti → V is i’s view function.

• bi : Ti → T−i is i’s belief function, where T−i = ×j∈I\{i}Tj . If bi(ti) =
(tj)j∈I\{i}, then for each j ∈ I \ {i}, vj(tj) must be contained in vi(ti).
Simply put, we do not assume probabilistic beliefs.

Let us call G an objective game (in Γ). An objective game can be interpreted
as the “true game” in Γ.6 i’s type ti describes their view about the game, and

4Our definition is essentially the same as Kobayashi et al. (2021). Note that Kobayashi et
al. (2021) allow probabilistic beliefs, whereas our model assumes fixed beliefs. Our definitions
are similar to that of Perea (2018). Note that there are two major differences. First, the Perea’s
(2018) model does not fix belief hierarchies on views. We assume that the “actual type” of the
players is given. Second, Perea (2018) deals with probabilistic beliefs on awareness, whereas
our players always have point beliefs on their opponents’ awareness, as is often assumed in
the literature on games with unawareness.

5A block is a Cartesian product of non-empty subsets of actions.
6The term “objective game” was used by Halpern and Rêgo (2014). Feinberg (2021) refers
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belief about the opponents’ types. At ti, vi(ti) = v means that i is aware of
v, and unaware of A \ v, while bi(ti) = (tj)j∈I\{i} means that at ti, i believes
that the others’ types are (tj)j∈I\{i}, and that each j’s view is vj(tj). Given
(i, ti) ∈ I × Ti, we denote a sequence ti1 , ti2 , . . . , tih , . . . , where ti1 = ti, and
for any h ≥ 2, tih = bih−1

(tih−1
)(ih). We say that ti leads to tj if, and only if,

there exists a subsequence ti1 , . . . , tih such that ti1 = ti and tih = tj . Here, we
suppose

∪
i∈I Ti =

∪
i∈I{t∗ih}h≥1;t∗ih

=t∗i
.

The set of each player’s actual play A
vi(t

∗
i )

i may be a proper subset of i’s

full action set Ai. In such a scenario, they cannot play ai ∈ Ai \ A
vi(t

∗
i )

i . In
other words, a player’s realized actions exclude the non-realized actions. Let

×i∈IA
vi(t

∗
i )

i be the realizable action set. Some players may not perceive the
realizable action set.

2.2 Solution Concepts

In this subsection, we consider two solution concepts as equilibrium notions
(Feinberg, 2021; Rêgo and Halpern, 2012; Halpern and Rêgo, 2014; Grant and
Quiggin, 2013; Meier and Schipper, 2014) and set-wise notions (Heifetz et al.,
2013, 2021; Perea, 2018).

Let us define the generalized strategies. For any i ∈ I, let si : Ti →∪
ti∈Ti

M(A
vi(ti)
i ) with si(ti) ∈ M(A

vi(ti)
i ) for all ti ∈ Ti. Then, given ti,

si(ti) ∈ M(A
vi(ti)
i ) is i’s local action at ti. We denote i’s generalized strat-

egy by si = (si(ti))ti∈Ti
, and a generalized strategy profile by s = (si)i∈I . In

the generalized strategy profile s, each player i’s actual play is mi ∈ M(Ai)
with mi ≡ si(t

∗
i ), and the profile is called the objective outcome induced from

s. Let us define the belief system µ = (µi)i∈I , where for any (i, ti) ∈ I × Ti,

µi(ti) ∈ M(A
vi(ti)
−i ), and µi = (µi(ti))ti∈Ti

. This study allows correlated beliefs.

2.2.1 Equilibrium Notion

First, let us consider equilibrium notions. Halpern and Rêgo (2014) introduce an
equilibrium notion in games with unawareness as a generalized Nash equilibrium
– in a simultaneous-move game with unawareness Γ, s∗ is a generalized Nash
equilibrium if there exists belief system µ such that for any (i, ti) ∈ I × Ti,

1. s∗i (ti) ∈ argmax
x∈M(A

vi(ti)

i )
Eui(x, µi(ti)), and

2. µi(ti) ≡ (s∗j (bi(ti)(j)))j∈I−i
.

As they point out, a generalized Nash equilibrium is best interpreted as “an
equilibrium in beliefs” (Halpern and Rêgo, 2014: 50). However, as pointed
out by Schipper (2014), there exists some generalized Nash equilibrium, which
consists of wrong beliefs. In that case, each player would revise their own beliefs

to such a game as the “modeler’s normal-form game,” and Perea (2018) calls it the “base
game.” In this context, we follow the study by Halpern and Rêgo (2014).
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about a game’s structure and the opponents’ play, and may not play the same
generalized Nash equilibrium.

To avoid this scenario, previous literature has discussed two approaches:
equilibrium restricted by steady state notions and rationalizability. In this sub-
section, we focus only on steady state equilibrium notions.

First, let us consider the generalized Nash equilibrium with stable belief
hierarchies, and the cognitively-stable generalized Nash equilibrium proposed
by Sasaki (2017):

• The generalized Nash equilibrium s∗ has stable belief hierarchies if belief
system µ satisfies that for any (i, ti) ∈ I × Ti, µi(ti) ≡ (s∗j (t

∗
j ))j∈I−i .

• The generalized Nash equilibrium s∗ is cognitively stable if for any (i, ti) ∈
I × Ti, s

∗
i (ti) ≡ s∗i (t

∗
i ).

The former notion means that every player’s belief about the opponents’ plays
is correct, while the latter notion means that each player’s decision making
regarding their arbitrary type is equivalent to their actual play.

Sasaki (2017) expresses the following:

Remark 1. Generalized strategy profile s∗ is a generalized Nash equilibrium
with stable belief hierarchies if, and only if, s∗ is a cognitively-stable generalized
Nash equilibrium.

Such a generalized Nash equilibrium is called a cognitively-stable generalized
Nash equilibrium in this paper. A cognitively-stable generalized Nash equilib-
rium has the following property.

Remark 2. For any simultaneous-move game with unawareness Γ, let s∗ be a
cognitively-stable generalized Nash equilibrium. Then, the objective outcome
m∗ ≡ (s∗i (t

∗
i ))i∈I is a Nash equilibrium on the realizable action set.

Proof. Suppose that s∗ is a cognitively-stable generalized Nash equilibrium, that
is, for any (i, ti) ∈ I × Ti, s

∗
i (ti) ≡ m∗

i . Then, m∗ ≡ m ∈ M(vj(tj)) for any

(j, tj) ∈ I × Tj . Assume that m′ ∈ M(×i∈IA
vi(t

∗
i )

i ) with m′ ≡ m∗ is not a Nash
equilibrium on the realizable action set. In other words, there exists i ∈ I such
that

m∗
i ≡ m′

i ̸∈ arg max
x∈A

vi(t
∗
i
)

i

Eui(x,m
′
−i).

Then, for any (i, ti) ∈ I × Ti,

m∗
i ≡ m′

i ≡ m′′
i ̸∈ arg max

x∈A
vi(ti)

i

Eui(x, µi(ti)),

where µi ≡ m′
−i ≡ m∗

−i. However, since s∗ is a cognitively-stable generalized
Nash equilibrium, this is a contradiction. Therefore, m′ is a Nash equilibrium
on the realizable action set.
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Next, let us consider a self-confirming equilibrium proposed by Fudenberg
and Levine (1993). Schipper (2021) generalizes a rationalizable self-confirming
equilibrium to include extensive-form games with unawareness. Kobayashi et al.
(2021) focus on only simultaneous-move games with unawareness, and discuss a
rationalizable self-confirming equilibrium by using epistemic models. We discuss
the k-self-confirming equilibrium, which means that all the players in the k-th
order mutually believe that all the players’ beliefs are correct. The following
definition of self-confirming equilibria is based on Kobayashi et al. (2021). s∗ is
a k-self-confirming equilibrium if there exists belief system µ such that for any
h = 1, . . . , k + 1 and ih ∈ I, where ti1 = t∗i ,

1. s∗ih ∈ argmax
x∈M(A

vih
(tih

)

i )
Eui(x, µi(tih)), and

2. µih ≡ (s∗ih+1
(tih+1

))ih+1∈I−ih
.

2.2.2 Set-Wise Notion

Next, we consider the set-wise notions. Rationalizability is the only set-wise
notion discussed in previous literature on games with unawareness.

Hence, this subsection discusses only rationalizability.7 Rationalizability is
proposed by Bernheim (1984) and Pearce (1984). Heifetz et al. (2013) gener-
alize Pearce’s extensive-form rationalizability to games with unawareness. This
notion is one of the approaches to avoid the issue of equilibrium notions in gen-
eral. This study shows that rationalizability in simultaneous-move games with
unawareness, based on Kobayashi et al. (2021), is as follows: In a simultaneous-
move game with unawareness Γ, for any t ∈ ×i∈ITi, let

S0(t) =


for all i ∈ I :

α ∈
∪

v∈V ×i∈IM(Av
i ) (1)α−i ≡ α′

−i ∈ ×j∈I−i
M(A

vj(bi(ti)(j))
j ); and

(2)αi ≡ si(ti) argmax
x∈M(A

vi(ti)

i )
Eui(x, α

′
−i)


, and define Sn(t) for n = 1, 2, . . . inductively by

Sn(t) = Sn−1(t)
∩
i∈I

Sn−1(ti, bi(ti)).

Then, S(t) =
∩

n=0 S
n(t) is the rationalizable mixed action set at t. Here, let

us define the rationalizable pure action set as R(t) =
∪

α∈S(t) supp(α).

Kobayashi et al. (2021) propose a k-rationalizable self-confirming equilib-
rium as follows: In a simultaneous-move game with unawareness Γ, s∗ is a
k-rationalizable self-confirming equilibrium if it is a k-self-confirming equilib-
rium, and (s∗i (t

∗
i ))i∈I ≡ α ∈ S((ti)i∈I), where for any i ∈ I, there exist j ∈ I

and h = 1, . . . , k+1 such that ti = tjh , where tj1 = t∗j . As shown by Kobayashi
et al. (2021), in the k-rationalizable self-confirming equilibrium, the k-th order
mutual beliefs of rationality are correct. Thus, some player’s k + 1-th order
belief might not be correct.

7Section 3 proposes a CURB notion as another set-wise notion.
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3 Closedness under Rational Behavior

Before modeling a discovery process, we consider the strategy subsets closed
under rational behavior (CURB sets), as proposed by Basu and Weibull (1991).
In this section, we generalize a CURB notion for a simultaneous-move games
with unawareness. Previous literature provides two approaches to avoid the
steady state notion from not being applied to equilibrium notions, in general, in
games with unawareness: a steady state equilibrium notion and a rationalizable
notion. However, both notions have issues.

1. As pointed out by Schipper (2014, 2021) and Heifetz et al. (2021), we
cannot apply a learning process to formulate beliefs about the opponents’
plays in games with unawareness. Moreover, a steady state equilibrium
might have mixed actions. Thus, if such a steady state equilibrium is
unique and mixed, players might not be able to disconfirm a distribution
of mixed actions.

2. Since rationalizable actions are support every mixed equilibrium, the solu-
tion is too large. Although rationalizable notions might be appropriate for
one-shot games or games that players face at first, it is difficult to discuss
the steady state using rationalizability.

To avoid the above issues, we use the other notion, CURB, which has charac-
terizations of both steady state equilibrium notions and rationalizable notions.
A CURB notion refines a strict Nash equilibrium and rationalizability. This
notion avoids the difficulty of disconfirming mixed actions as rationalizability,
and has a steady state notion as a steady state equilibrium. Hence, the CURB
notion seems appropriate.

Although Basu and Weibull (1991) first define a CURB notion on a standard
game, this paper defines it on each view. Given any standard simultaneous-move
game G, any possible view v̂ ∈ V and mixed action profile m ∈ M(v̂). Let

βv̂
i (m−i) = {ai ∈ Ai|ai ∈ supp(mi) be such thatmi ∈ arg max

x∈M(Av̂
i )
Eui(x,m−i)}

be the set of i’s pure-action best responses to their belief about m−i ∈ M(Av̂
−i).

For any v ⊆ v̂, let

βv̂
i (A

v
−i) =

∪
m−i∈M(Av̂

−i):m−i≡m′
−i∈M(Av

−i)

βv̂
i (m−i)

be the set of i’s optimal actions under beliefs inM(v), and let βv̂(v) = ×i∈Iβ
v̂
i (A

v
−i).

Then, CURB is defined as follows.

Definition 1. Give a standard simultaneous-move game G and v̂ ∈ V . C ⊆ v̂
is a CURB set on v̂ if βv̂(C) ⊆ C. C is a minimal CURB set on v̂ if C is CURB
on v̂, and every proper subset of C is not CURB on v̂.
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Basu and Weibull (1991) show that every standard game has a minimal
CURB set.

Remark 3. Given any standard game, every possible view has a minimal CURB
set.

In standard games, only one CURB set is necessary for the full action set.
However, since a given possible view for each player may not be consistent
with the full action set in games with unawareness, realized CURB sets are
different for standard games, and games with unawareness. Hence, we must
distinguish CURB notions between the two models. Let us discuss the CURB
notion under unawareness. We define a CURB set on the realizable action set,
called a realizable CURB set.

Definition 2. Given a simultaneous-move game with unawareness Γ, let v∗ =

×i∈IA
vi(t

∗
i )

i be the realizable action set. C ∈ V is a realizable CURB set if
C ⊆ v∗ and βv∗

(C) ⊆ C. C is a minimal realizable CURB set if it is CURB on
v∗, and every proper subset of C is not CURB on v∗.

Realizable CURB notions have the following property.

Lemma 1. Every simultaneous-move game with unawareness Γ has a minimal
realizable CURB set; it is non-empty.

Proof. Let us construct a game G′ = (N,A′, u′) such that the following assump-
tions hold.

• N is common in Γ.

• A′ = ×i∈IA
vi(t

∗
i )

i .

• For any i ∈ I, u′
i : A

′ → R such that ui(a) = u′
i(a) for any a ∈ A′.

Following Basu and Weibull (1991), there must be a (minimal) CURB set C ⊆
A′ in G. In other words, there exists a set of each player’s pure-action best
response, β′(C), such that β′(C) ⊆ C in G. Since β′(C) is defined on A′ =

×i∈IA
vi(t

∗
i )

i , C is a minimal realizable CURB set.

Given Γ, some realizable CURB set C ∈ V may be C ⊆ vi(ti) for any
(i, ti) ∈ I × Ti. However, the set is not CURB in vi(ti) at some ti. Given
a realizable CURB set, we distinguish between a case wherein the realizable
CURB set is CURB in every vi(ti) for any (i, ti) ∈ I × Ti, and one where it is
not as follows.

Definition 3. In a simultaneous-move game with unawareness Γ, C ∈ V is
a common realizable CURB set if for any (i, ti) ∈ I × Ti, C is a (minimal)
realizable CURB set and C ⊆ vi(ti). C is a common (minimal) CURB set if it
is a common (minimal) realizable CURB set, and for any i, βv∗

i (AC
−i) ⊆ AC

i .
8

8In one of the previous versions of this paper, Tada (2020), notes that a common CURB
set means only a CURB set on the full action set. In contrast, this paper generalizes this
notion by focusing on a realizable action set.
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From the definition 3, it is obvious that for any (i, ti) ∈ I × Ti, ti is not i’s
actual type, and C is CURB on vi(ti).

Common CURB notions have the following property.

Proposition 1. Any simultaneous-move game with unawareness possessing a
common CURB set has a cognitively-stable generalized Nash equilibrium.

Proof. Assume that any simultaneous-move game with unawareness has a com-
mon CURB set C ∈ V . That is, for any (i, ti) ∈ I × Ti, C is CURB on vi(ti).
Then, following Basu and Weibull (1991), there exists a Nash equilibrium on
vi(ti), m

∗ ∈ M(vi(ti)), satisfying m∗ ≡ m′ ∈ M(C). Suppose that m′ is not a

Nash equilibrium on v. In other words, there exists (i, ai) ∈ I × A
vi(ti)
i , such

that Eui(ai,m
′
−i) > Eui(m

′). However, since C is a common CURB set, this
is a contradiction. Therefore, m′ is a Nash equilibrium on C. Thus, since
(i, ti) ∈ I × Ti is arbitrary, m∗ ≡ m′ is a Nash equilibrium on vi(ti). Thus, s∗

with s∗i (ti) ≡ m∗
i for any i ∈ I and ti ∈ Ti is a cognitively-stable generalized

Nash equilibrium.

Proposition 1 suggests one of the conditions for the existence of a cognitively-
stable generalized Nash equilibrium in any game with unawareness. The contra-
position is that if there does not exist any cognitively-stable generalized Nash
equilibrium, then there does not exist any common CURB set. This means
that if some players cannot perceive any CURB set in the realizable action set,
then the players are surprised about a realized play because the player’s belief
about the opponents’ plays is wrong. Our proposition suggests a condition for
all players’ stable plays, that is, rational players do not deviate from a specific
play.9

The following corollary is obvious from the above proof of proposition 1: .

Corollary 1. Given any simultaneous-move game with unawareness, a common
CURB set includes the support of some cognitively-stable generalized Nash
equilibrium.

Remark 4. Given any simultaneous-move game with unawareness Γ, any com-
mon realizable CURB set is a support for the objective outcome, induced from
a 0-rationalizable self-confirming equilibrium. Given the actual type profile,
every common CURB set is included in the rationalizable action set, and the
maximum CURB set is equal to the rationalizable action set.

Example 1. Let us consider that two players, Alice (A) and Bob (B), face the
following objective game:

vO =

A / B b1 b2 b3
a1 3, 3 0, 5 0, 0
a2 5, 0 1, 1 0, 0
a3 0, 0 0, 0 2, 2

.

9I thank Masakazu Fukuzumi for this suggestion.
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Here, if Alice is unaware of her own action a2, then, her view is as follows:

vA =

A / B b1 b2 b3
a1 3, 3 0, 5 0, 0
aa 0, 0 0, 0 2, 2

,

If Bob is unaware of his own action b2, then, his view is as follows:

vB =

A / B b1 b3
a1 3, 3 0, 0
a2 5, 0 0, 0
a3 0, 0 2, 2

.

Let us suppose that Alice believes that Bob’s view is the same as hers, that
is, they both believe that they hold the same view vA, while Bob believes that
Alice’s view is the same as his, that is, they both believe that they hold the
same view vB .

Here, we formulate this game (with unawareness) Γ = (vO, (TA, TB), (vA, vB), (bA, bB))
as follows:

TA = {t∗A, tA}, and TB = {t∗B , tB};
given t∗A, vA(t

∗
A) = vA, and bA(t

∗
A) = tB ;

given tA, vA(tA) = vA, and bA(tA) = t∗B ;
given t∗B , vB(t

∗
B) = vB , and bB(t

∗
B) = tA; and

given tB , vB(tB) = vB , and bB(tB) = t∗A.

Since Alice’s realizable actions are a1 and a3, and Bob’s realizable actions
are b1 and b3, the realizable action set is the following table:

vR =

A / B b1 b3
a1 3, 3 0, 0
a3 0, 0 2, 2

.

First, let us consider generalized (pure) Nash equilibria in the game. There
exist four generalized pure Nash equilibria:

s1 = ([sA(t
∗
A) = a1, sA(tA) = a2], [sB(t

∗
B) = b1, sB(tB) = b2]);

s2 = ([sA(t
∗
A) = a1, sA(tA) = a3], [sB(t

∗
B) = b3, sB(tB) = b2]);

s3 = ([sA(t
∗
A) = a3, sA(tA) = a2], [sB(t

∗
B) = b1, sB(tB) = b3]);, and

s4 = ([sA(t
∗
A) = a3, sA(tA) = a3], [sB(t

∗
B) = b3, sB(tB) = b3]).

Then, the cognitively-stable generalized Nash equilibrium is only s4.
Second, let us consider self-confirming (pure) equilibria in the game. There

exist a 0-self-confirming equilibrium, and ∞-self-confirming equilibrium. The
0-self-confirming equilibrium is only

s5 = ([sA(t
∗
A) = a1, sA(tA) = a1], [sB(t

∗
B) = b1, sB(tB) = b1]).
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Note that the 0-self-confirming equilibrium is not the k-self-confirming equilib-
rium (k > 1) because in k+1, Alice’s a1 does not respond best to Bob’s b1, and
Bob’s b1 does not respond best to Alice’s a1.

In contrast, the ∞-self-confirming equilibrium is only s4. When comparing
a cognitively-stable generalized Nash equilibrium and ∞-self-confirming equi-
librium, both the equilibria are the same.10

Third, let us consider rationalizability. Given three tuples t1 = (t∗A, t
∗
B),

t2 = (t∗A, tB), and t3 = (tA, tB), the pure rationalizable actions are as follows:

R(t1) = {a1, a3} × {b2, b3};
R(t2) = {a2, a3} × {b1, b3}; and
R(t3) = {a1, a3} × {b1, b3}.

Then, it is obvious that 0-self-confirming equilibrium s5 is a 0-rationalizable
self-confirming equilibrium, and that ∞-self-confirming equilibrium s4 is a ∞-
rationalizable self-confirming equilibrium. Kobayashi et al. (2021) show that the
∞-rationalizable self-confirming equilibrium is a cognitively-stable generalized
Nash equilibrium, and vice versa.

Finally, we consider a (realizable) CURB notion. There exist three CURB
sets on the realizable action set, that is, three realizable CURB sets:

C1 = {a1} × {b1};
C2 = {a3} × {b3}; and
C3 = {a1, a3} × {b1, b3}.

Here, C3 is a maximum CURB set. Since, C1, C2, C3 ⊆ vA and C1, C2, C3 ⊆
vB , every realizable CURB set is a common realizable CURB set. Moreover,
C2 is the only unique common CURB set because the common CURB set is
CURB on vA and vB .

Let us compare the CURB notion with the other notions. First, we compare
the CURB notion and equilibrium notion. By proposition 1, any common CURB
set includes a support for the objective outcome, induced from cognitively-stable
generalized Nash equilibrium. Since the ∞-rationalizable self-confirming equi-
librium and cognitively-stable generalized Nash equilibrium are the same, C2

includes a support for the objective outcome (a3, b3), induced from a cognitively-
stable generalized Nash equilibrium and ∞-rationalizable self-confirming equi-
librium, s4. In contrast, a common realizable CURB set C1, that is not a
common CURB set, is a support for the objective outcome (a1, b1), induced
from 0-rationalizable self-confirming equilibrium s5. In C1 or s5, each player is
rational but their 1st order belief is irrational play11. Moreover, they might be
certain about the opponent’s irrationality.

10This finding is similar to that of Kobayashi et al. (2021). Kobayashi et al. (2021) show
that any cognitively-stable generalized Nash equilibrium is a ∞-rationalizable self-confirming
equilibrium, and vice versa.

11Rational play means that players maximize their utilities.
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Next, let us consider a relationship with rationalizability. Given a type t1,
R(t1) = C3. As shown by Basu and Weibull (1991), a rationalizable action set
is equivalent to a maximum CURB set. In contrast, minimal CURB sets, C1

and C2, are subsets of the rationalizable action set, that is, any minimal CURB
set is a refined notion of rationalizability. □

As shown in the above example, a realizable CURB notion is related to other
solution concepts, that is, the CURB notion has similar characterizations as the
other notions.

4 Myopic Discovery Process

Standard game models study a convergence to a minimal CURB set by using a
learning model or an adaptation model, for example, Hurkens (1995) and Young
(1998). However, in games with unawareness, some players might not notice the
opponents’ actions. Since the players must revise their belief about the game
structure, and the opponents’ views, a learning model cannot be applied to
games with unawareness, as pointed out by Heifetz et al. (2021). To avoid this
issue between games with unawareness and learning models, Schipper (2021)
proposes a model of discovery processes.

A discovery process represents an update process by which each player revises
their own belief about the game’s structure, and the opponents’ play. Schipper
(2021) is the first to introduce a discovery process in extensive-form games
with unawareness, which is based on Heifetz et al. (2013). This study models a
discovery process in simultaneous-move games with unawareness based on Perea
(2018). Although our definition, at first glance, may seem different from that
of Schipper (2021), both are essentially the same.

Definition 4. Γ′ = (G, (T ′
i )i∈I , (v

′
i)i∈I , (b

′
i)i∈I) is a discovered game with s =

(si)i∈I in Γ = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I) if for any (i, ti) ∈ I × Ti, there exists
t′i ∈ T ′

i such that

1. v′i(t
′
i) = ×j∈I [A

vi(ti)
j ∪ supp(sj(t

∗
j ))], where t∗j is j’s actual type in Γ; and

2. for any (j, tj) ∈ I−i × Tj satisfying bi(ti)(j) = tj , there exists t′j such that

b′i(t
′
i)(j) = t′j and v′j(t

′
j) = ×k∈I [A

vj(tj)
k ∪ supp(sk(t

∗
k))], where t∗k is k’s

actual type in Γ.

Note that some Γ,Γ′ may be T ̸⊆ T ′ and T ′ ̸⊆ T , or T ∩ T ′ = ∅.

Example 2. Consider the following objective game played by Colin (C) and
David (D):

v0 =

C / D d1 d2 d3
c1 3, 3 0, 5 0, -1
c2 5, 0 1, 1 1, 0
c3 -1, 0 0, 1 2, 2

;
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and two possible views as follows:

v1 =

C / D d2 d3
c1 0, 5 0, -1
c3 0, 1 2, 2

and v2 =

C / D d1 d3
c1 3, 3 0, -1
c2 5, 0 1, 0

.

Let us formulate the game with unawareness Γ = (v0, (TC , TD), (vC , vD), (bC , bD))
as follows:

TC = {t∗C , tC}, and TD = {t∗D, tD};
given t∗C , vC(t

∗
C) = vC , and bC(t

∗
C) = tD;

given tC , vC(tC) = vC , and bC(tC) = t∗D;
given t∗D, vD(t∗D) = vD, and bD(t∗D) = tC ; and
given tD, vD(tD) = vD, and bD(tD) = t∗C .

Here, suppose that Colin and David play a generalized strategy profile:

s = ([sC(t
∗
C) = c1, sC(tC) = c2)], [sD(t∗D) = d2, sD(tD) = d3]).

The objective outcome is (c1, d2) induced by s.
Let Γ′ be the discovered game with s in Γ. Then, each player’s type set in

Γ′ is T ′
C = {t′∗C , t′C}, and T ′

D = {t′∗D, t′D}, where

b′C(t
′∗
C ) = t′D;

b′C(t
′
C) = t′∗D;

b′D(t′∗D) = t′C ;

b′D(t′D) = t′∗C ;

v̂1 = v′C(t
′∗
C ) = v′D(t′D) =

C / D d2 d3
c1 0, 5 0, -1
c3 0, 1 2, 2

;

and

v̂2 = v′C(t
′
C) = v′D(t′∗D) =

C / D d1 d2 d3
c1 3, 3 0, 5 0, -1
c2 5, 0 1, 1 1, 0

.

□

A discovery process is defined as follows.
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Definition 5. A discovery process P = (⟨Γ1, s0⟩, ⟨Γ2, s1⟩, . . . , ⟨Γλ, sλ−1⟩, . . . ),
is defined as follows:

• for any λ, Γλ = (G, (Tλ
i )i∈I , (v

λ
i )i∈I , (b

λ
i )i∈I),

• when λ = 0 and s0 = ϕ, while for any λ ≥ 1, sλ is a played generalized
strategy profile in Γλ, and

• for any λ ≥ 2, Γλ is a discovered game with sλ−1 in Γλ−1.

Let us call Γ1 the initial game with unawareness (in P ).

By definition 4, definition 5 implicitly assumes perfect recall. If we exclude
the assumption, some player may forget some action at λ even if they are aware
of the action at λ− 1.

This study assumes that every player implements a pure action. Meanwhile,
standard game models might assume that every player implements and observes
a mixed action. In contrast, in games with unawareness, it does not seem
appropriate that every player implements, and observes a mixed action because
under unawareness, players cannot observe the frequency of their opponents’
actions at each stage of the game during the course of any discovery process.12

Schipper (2021) models rationalizable discovery processes. We formulate
rationalizable discovery processes based on Perea (2018) as follows.

Definition 6. A discovery process P = (⟨Γ1, s0⟩, ⟨Γ2, s1⟩, . . . , ⟨Γλ, sλ−1⟩, . . . )
is a rationalizable discovery process if for any λ and t ∈ ×i∈ITi, (s

λ
i (ti))i∈I ∈

Sλ(t), where Sλ(t) is the rationalizable mixed action set on Γλ.

In a discovery process, cautious players might carefully revise their beliefs
about the game, the opponents’ plays and rationalities, and pay-off uncertainty.
However, in the real world, The agents must pay a higher cost for revising such
beliefs, and implementing rationalizable strategies. If players are myopic, they
do not pay a high cost for revising their beliefs. This section explains the myopic
discovery process in which every player responds best to the opponents’ previous
plays.

First, we define a strategy of myopic play in a discovered game as follows.

Definition 7. Let Γ′ be a discovered game from Γ. s′ is a myopic best response
in Γ if there exists the belief system, µ′ = (µ′

i)i∈I such that for any (i, t′i) ∈ I×T ′
i ,

1. s′i(t
′
i) ∈ argmax

x∈M(A
v′
i
(t′

i
)

i )
Eui(x, µ

′
i(t

′
i)); and

2. µ′
i(t

′
i) ≡ (s∗j (t

∗
j ))j∈I−i , where s

∗ is played in Γ, and for any j ∈ I−i, t
∗
j ∈ Tj

is j’s actual type in Γ.

Next, we provide a myopic discovery process.

12I thank an anonymous referee for pointing this out.
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Definition 8. Any discovery process P = (⟨Γ1, s0⟩, ⟨Γ2, s1⟩, . . . , ⟨Γλ, sλ−1⟩, . . . ),
is a myopic discovery process if for any λ ≥ 2, sλ is a myopic best response at
λ.

Some important questions arise here. Does any myopic discovery process
converge to a discovered game in which the players cannot revise each other’s
views? What solution concept does the discovered game have? The following
theorem answers the above questions.

Theorem 1. Given any simultaneous-move game with unawareness Γ, every
myopic discovery process, P , converges to a discovered game, possessing a com-
mon realizable CURB set. Thus, a subset of the supports of all the agents’
myopic best responses converges to common realizable CURB set.

Proof. Since we consider a myopic discovery process, it is necessary to focus
only on the realizable action set. For any objective outcome in the initial

game m ∈ M(×i∈IA
vi(t

∗
i )

i ), let βλ(m) be an objective outcome induced by
a myopic best response on the realizable action set, and it is defined as fol-
lows: β0(m) = supp(m), β1(m) = β′ ◦ β0(m), β2(m) = β′ ◦ β1(m), . . . ,
βλ(m) = β′ ◦ βλ−1(m), . . . . Suppose that for any CURB set on the realizable

action set C ⊆ ×i∈IA
vi(t

∗
i )

i , and natural number λ, βλ(m) ̸⊆ C. As pointed out
by Basu and Weibull (1991), since the set of the rationalizable strategy profile

on ×i∈IA
vi(t

∗
i )

i , R ⊆ ×i∈IA
vi(t

∗
i )

i , is CURB,13 βλ(m) ̸⊆ R for any λ, this is a
contradiction. Therefore, there exists a realizable CURB set, C, and natural
number, n, such that βn(m) ⊆ C. Suppose that there exists λ ≥ n, satisfying
βλ(m) ̸⊆ C. In other words, β′◦· · ·◦β′◦βn(m) ̸⊆ C. However, since C is CURB,
that is, β(v′) ⊆ C for any v′ ⊆ C with ∅ ̸= Av′

i ⊆ AC
i , this is a contradiction.

Therefore, βλ(m) ⊆ C for any λ ≥ n. Since, βλ(m) supports an objective out-
come induced by a myopic best response at λ, and C is a realizable CURB set,
the support for the objective outcome is included in the realizable CURB set.
By definition 4, since CURB, C, is common, C is a common realizable CURB
set.

It is known that many intuitively appealing adjustment processes eventually
settle down in a minimal CURB set (cf., Hurkens, 1995; Young, 1998). Theorem
1 adds to the previous literature, highlighting the importance of the CURB
set. However, the process therein converges to a general CURB set, And, not
necessarily, a “minimal” one, such as in Hurkens (1995) and Young (1998).

Example 2 (Continued.) Let Γ be an initial game, that is, a game at λ = 1.
Then, the realizable action set is as follows:

vR =

C / D d1 d3
c1 3, 3 0, -1
c3 -1, 0 2, 2

.

13Specifically, R is a maximum tight CURB set. An action profile set, C ∈ V , is a tight
CURB set if β(C) = C.

17



vR has three CURB sets, C1 = {c1} × {d1}, C2 = {c3} × {d3}, and C3 =
{c1, c3} × {d1, d3}. Here, C2 is a mutual CURB set.

In Γ, there exist two generalized Nash equilibria:

s1 = ([sC(t
∗
C) = c1, sC(tC) = c2], [sD(t∗D) = d1, sD(tD) = d2]); and

s2 = ([sC(t
∗
C) = c3, sC(tC) = c2], [sD(t∗D) = d3, sD(tD) = d3]).

Obviously, both equilibria are cognitively unstable.
First, let us focus on the former equilibrium, s1. The objective outcome is

(c1, d1). Since Colin is unaware of d1, he is surprised and revises his view as
follows:

v1
′
=

C / D d1 d2 d3
c1 3, 3 0, 5 0, -1
c3 -1, 0 0, 1 2, 2

.

Then, at λ = 2, the discovered game Γ′ = (G, (T ′
C , T

′
D), (v′C , v

′
D), (b′C , b

′
D)),

where

T ′
C = {t2∗C , t2C}, and T ′

D = {t2∗D , t2D};

v′C(t
2∗
C ) = v1

′
, and b′C(t

2∗
C ) = t2D;

v′C(t
2
C) = v2, and b′C(t

2
C) = t2∗D ;

v′D(t2∗D ) = v2, and b′D(t2∗D ) = t2C ; and

v′D(t2D) = v1
′
, and b′D(t2D) = t2∗C .

At λ = 2, when they play myopic best response, the generalized strategy profile
is

s21 = ([s2C(t
2∗
C ) = c1, s

2
C(t

2
C) = c1], [s

2
D(t2∗D ) = d1, s

2
D(t2D) = d1]).

Both players do not discover the opponents’ actual plays. Hence, the next
stage game, at λ = 3, is the same as Γ′. In Γ′, the play s21 is not a generalized
Nash equilibrium, and the objective outcome is (c1, d1). The support of the
objective outcome, {c1} × {d1}, is a subset of a realizable CURB set, C1.

Next, let us focus on the latter generalized Nash equilibrium s2. The ob-
jective outcome is (c3, d3). Since David is unaware of c3, he is surprised and
revises his view as follows:

v2
′
=

C / D d1 d3
c1 3, 3 0, -1
c2 5, 0 1, 0
c3 -1, 0 2, 2

.
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Then, at λ = 2′, Γ′′ = (G, (T ′′
C , T

′′
D), (v′′C , v

′′
D), (b′′C , b

′′
D)), where

T ′′
C = {t2′∗C , t2

′

C}, and T ′′
D = {t2′∗D , t2

′

D};

v′′C(t
2′∗
C ) = v1, and b′′C(t

2′∗
C ) = t2

′

D;

v′′C(t
2′

C ) = v2
′
, and b′′C(t

2′

C ) = t2
′∗

D ;

v′′D(t2
′∗

D ) = v2
′
, and b′′D(t2

′∗
D ) = t2

′

C ; and

v′′D(t2
′

D) = v1, and b′′D(t2
′

D) = t2
′∗

C .

At λ = 2′, when they play myopic best response, the generalized strategy profile
is

s2
′

2 = ([s2
′

C (t2
′∗

C ) = c3, s
2′

C (t2
′

C ) = c3], [s
2′

D(t2
′∗

D ) = d3, s
2′

D(t2
′

D) = d3]).

Both players do not discover the opponents’ actual play. Hence, the next
stage game, at λ = 3′, is the same as Γ′′. In Γ′′, the play, the generalized strategy
profile is a cognitively-stable generalized Nash equilibrium, and a support of the
objective outcome, {c3} × {d3}, is a subset of a common CURB set, C2 in Γ′′.
□

5 Relationships with Cognitively-Stable Gener-
alized Nash Equilibria

The previous section focused only on CURB notions. However, steady state
notions are not only CURB notions, but also equilibrium notions.14 Below, we
consider the convergence to discovered games in a discovery process, possessing
a steady state equilibrium, by associating it with CURB notions.

First, we provide a mutual CURB notion that each player’s actual view has
the same CURB set.

Definition 9. In any simultaneous-move game with unawareness Γ, C ∈ V is
a mutual CURB set if for any i ∈ I, C is a non-empty CURB set in vi(t

∗
i ).

A mutual CURB notion has the following property.

Lemma 2. Every mutual CURB set is a realizable CURB set.

Proof. Given any mutual CURB set, C ∈ V , C ⊆ vi(t
∗
i ) for any i ∈ I. Suppose

that C is not a realizable CURB set, that is, there exists some i, such that

14Kobayashi et al. (2021) consider a rationalizable self-confirming equilibrium. They try to
apply steady state notions to rationalizability by associating it with equilibrium notions.
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β∗
i (A

C
−i) ̸⊆ AC

i in the realizable action set. Since the realizable action set is

defined by ×i∈IA
vi(t

∗
i )

i , β
vi(t

∗
i )

i (AC
−i) ̸⊆ AC

i . This contradicts that C is a mutual
CURB set. Hence, C is a realizable CURB set.

Lemma 3. In a simultaneous-move game with unawareness, if a mutual CURB
set is present in every view, then there exists a common CURB set.

Proof. Suppose that a mutual CURB set, C, is present in every view in a
simultaneous-move game with unawareness. Suppose that for some (i, ti) ∈
I×Ti, C is not CURB in vi(ti). Since for some j ∈ I vi(ti) ⊆ vj(t

∗
j ), where t

∗
j is

j’s actual type and t∗j leads to ti, C is not CURB in vi(t
∗
i ). This is a contradic-

tion. Therefore, the mutual CURB set is the CURB in every view in the game.
Then, by lemma ??, since the mutual CURB set is a realizable CURB set, the
set is a common CURB set.

When relating mutual CURB notions with steady state equilibrium notions,
we can show the condition for converging a discovered game possessing some
steady state equilibrium. Moreover, we can show the condition for converging a
game, such that every equilibrium is a steady state equilibrium. This is proved
in the following theorems.

Proposition 2. In any simultaneous-move game with unawareness, if there
exists a mutual CURB set, such that the CURB set is CURB in every view in
the game with unawareness, then there exists a cognitively-stable generalized
Nash equilibrium.

Proof. Suppose that some mutual CURB set is present in every view in a
simultaneous-move game with unawareness. By lemma 3, the mutual CURB
set is a common CURB set. Then, by proposition 1, there exists a cognitively-
stable generalized Nash equilibrium.

Theorem 2. Suppose a simultaneous-move game with unawareness, Γ, has a
mutual CURB set. Then, there exists a myopic discovery process converging to
a discovered game possessing a cognitively-stable generalized Nash equilibrium.

Proof. Suppose that there exists a mutual CURB set, C, in Γ. By lemma 2,
C is a realizable CURB set. By theorem 1, there exists a myopic discovery
process, P , converging to C. Since the C is a common realizable CURB set by
lemma 3, by proposition 2, there exists a cognitively-stable generalized Nash
equilibrium.

Corollary 2. Suppose that every realizable CURB set is a mutual CURB set
in Γ. Then, every myopic discovery process converges to a discovered game
possessing a cognitively-stable generalized Nash equilibrium.
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Note that the process considered in the present study starts from an arbitrary
generalized strategy profile. Our convergence result holds even if the starting
point is not, necessarily, a generalized Nash equilibrium.15

Next, let us consider a relationship with a Nash equilibrium in an objective
game. Sasaki (2017) discusses relationships between a cognitively-stable gen-
eralized Nash equilibrium and a Nash equilibrium in an objective game in any
simultaneous-move game with unawareness. The researcher shows the following
proposition.

Proposition 3. Given any simultaneous-move game with unawareness Γ, for

any i ∈ I, if A
vi(t

∗
i )

i = Ai, where t∗i is i’s actual type, then every cognitively-
stable generalized Nash equilibrium induces an objective outcome to be a Nash
equilibrium in an objective game G.

Proof. Given any simultaneous-move game with unawareness Γ, suppose that

for any i ∈ I, A
vi(t

∗
i )

i = Ai, where t
∗
i is i’s actual type. Suppose that generalized

strategy profile, s∗, is a cognitively-stable generalized Nash equilibrium. By
remark 2, the objective outcome induced from a cognitively-stable generalized
Nash equilibrium is a Nash equilibrium of the realizable action set. Since every
player is aware of their own actions in the objective game, the realizable action
set is equivalent to the action set of the objective game. Hence, since every Nash
equilibrium of the realizable action set is a Nash equilibrium in the objective
game, the support of the objective outcome, induced by a cognitively-stable
generalized Nash equilibrium, is a Nash equilibrium in the objective game.

By theorem 1 and proposition 3, we show the following theorem.

Theorem 3. In any simultaneous-move game with unawareness Γ, for any i ∈ I,

if A
vi(t

∗
i )

i = Ai, where t∗i is i’s actual type, then any myopic discovery process
converges to a discovered game, such that any cognitively-stable generalized
Nash equilibrium induces an objective outcome to be a Nash equilibrium in an
objective game G.

6 A CURB Block Game and Economy of Cog-
nitive Costs

Discovery processes represent convergence of all the agents’ subjective game,
where players need not revise their subjective game. In other words, these
processes are aimed toward at searching for a game’s true structure. Schip-
per (2021) states that a rationalizable discovery process is a process where each

15Tada (2018) discusses a revision process in which players play a generalized Nash equi-
librium in each round, and conjectures that the process converges to a cognitively-stable
generalized Nash equilibrium, if there is any. However, the conjecture is wrong in assuming
that players play a generalized Nash equilibrium in each round. This study yields a result in
the same spirit as that, under another condition, in which players play myopic best responses.
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player searches for their larger subjective game, and shows that every rationaliz-
able discovery process converges to a discovered game possessing a rationalizable
self-confirming equilibrium. Our myopic discovery process converges to a dis-
covered game possessing a common realizable CURB set, and in the myopic
discovery process, supports of plays converge to the common realizable CURB
set.

In our model, as shown in Section 3, some myopic discovery processes do not
converge to a discovered game possessing a common CURB set. Some players
may be certain of the opponents’ irrationality. However, by using the block game
notion (e.g., Myerson and Weibull, 2015) of a smaller game than each player’s
subjective game, players can reconstruct a block game possessing a common
CURB set from a discovered game that a myopic discovery process converges
to, and they can be certain about each other’s rationality.

Let us consider a case where a discovered game possesses a realizable CURB
set. When all the players implement a generalized strategy profile so that the
objective outcome is in the realizable CURB set, if they are rational, they do
not perform actions outside the realizable CURB set. Thus, all the actions
in the complement set of the realizable CURB set are redundant for them.
Therefore, each player excludes the actions in the complement set to economize
cognitive costs of the true structure of the game. If they economize the cognitive
costs, their subjective games are the smallest games in which the action set is a
common realizable CURB set. The following definition represents the “economy
of knowledge” about a game’s structure.

Definition 10. Given any game with unawareness, Γ = (G, (Ti)i∈I , (vi)i∈I , (bi)i∈I),
and any common realizable CURB set, C ∈ V in Γ, Γ′ = (G, (T ′

i )i∈I , (v
′
i)i∈I , (b

′
i)i∈I)

is an economized game by C in Γ, if for any (i, ti) ∈ I × Ti, there exists t′i ∈ T ′
i

so that

• v′i(t
′
i) = C; and

• for any (j, tj) ∈ I−i × Tj with bj(tj)(j) = tj , there exists t′j ∈ T ′
j so that

b′j(t
′
j)(j) = t′j , and v′j(t

′
j) = C.

Then, GC = (I, C, uC) is called a realizable CURB block game with C, where
uC = (ui)

C
I∈I , and uC

i : C → R so that for any a ∈ C, uC
i (a) = ui(a).

In the example 2, when Colin and David play s1 in the initial game, and
s21 in the next stage of the game, since the objective outcome induced by s21 is

(c1, d1), the realizable CURB block game with C1 is GC1

= (I, C1, (uC1

C , uC1

D )).

Thus, in the economized game, ΓC1

, all subjective games are GC1

.
The following remark is obvious.

Remark 5. Every economized game, Γ′ by C, in Γ has a cognitively-stable
generalized Nash equilibrium.

In ΓC1

in the example 2, there exists a unique generalized Nash equilibrium
such that Colin and David play c1 and d1 in each subjective game, respectively.
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Thus, by the definition of cognitive stability, the generalized Nash equilibrium
is cognitively stable.

When Γ is a discovered game that a myopic discovery process converges
to, every subjective game is a realizable CURB block game with a CURB set
such that supports of players’ actual actions converge in the process. Hence, a
rationalizable discovery process is a search process for larger subjective games,
whereas our myopic discovery process is a search process for common, smaller
subjective games, that is, realizable CURB block games.

7 Discussion

7.1 Adaptive Play

This study considers myopic agents and myopic play. In the model, each player
responds best to the opponents’ strategies in the previous stage of the game.
However, a bounded agent may not be able to provide their best response to the
opponents’ strategies. Young (1993) provides adaptive play models that allow
participants to not provide best responses to previous plays. This subsection
discusses a generalization of the adaptive plays to simultaneous-move games
with unawareness.

First, we provide a definition of adaptive plays in a discovered game.

Definition 11. Let Γ′ be a discovered game from Γ, and let ε > 0 be an
error rate such that ε is sufficiently small. Generalized strategy profile, s′, is
an adaptive play in Γ′, if for any (i, t′i) ∈ I × Ti, with probability 1− ε, player
i chooses a best response to i’s beliefs µ′

i(t
′
i) ≡ (s∗j (t

∗
j ))j∈I−i

such that s∗ is a
generalized strategy profile played in Γ, and t∗j is j’s actual type in Γ; further,

with probability ε, i chooses an action in A
v′
i(t

′
i)

i at random.

We propose a discovery process with an adaptive play as follows, based on
the definition 11.

Definition 12. Any discovery process, P = (⟨Γ1, s0⟩, ⟨Γ2, s1⟩, . . . , ⟨Γλ, sλ−1⟩, . . . ),
is an adaptive discovery process, if for any λ ≥ 2, sλ is an adaptive play profile
at λ.

In a game without unawareness, Hurkens (1995) and Young (1998) use an
adaptive play notion, and show a convergence to a minimal CURB set. Our
proof of the theorem 1 focuses on only the realizable action set. Additionally,
we can conjecture the following.

Conjecture 1. Given any simultaneous-move game with unawareness, in any
adaptive play, supports of the objective outcome, induced by adaptive plays,
converge to a common minimal realizable CURB set.

Although we omit a proof of this conjecture, we show an informal proof as
follows.
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The informal proof. Given any simultaneous-move game with unawareness, and
any adaptive discovery process.

1. It is necessary to focus on only the realizable action set as per the theorem
1.

2. Based on Hurkens (1995) and Young (1998), adaptive plays converge to a
minimal CURB set of the realizable action set.

3. Then, the set is a common minimal realizable CURB set. □

7.2 Growing Awareness

A study of discovery processes entails an analysis of growing awareness or up-
dating awareness. Karni and Vierø(2013, 2017) discuss decision-making under
unawareness, and propose a reverse Bayesian model. As pointed out by Schip-
per (2013), an agent who is unaware of an event is different from an agent who
assigns probability zero to the event. This means that an unaware agent can-
not assign a probability to an event that they are unaware of. Given such an
event, Karni and Vierø’s (2013, 2017) model discusses the methods to revise
such agents’ beliefs.

Galanis and Kotoronis (2021) provide generalizations of the results of Genako-
plos and Polemarchakis (1982) and Ostrovsky (2012). They suppose that updat-
ing awareness is minimal, and a true state is never excluded. Traders eventually
agree on the price of the security. Moreover, if the security is separable, traders
agree on the correct price and there is information aggregation.

7.3 Limitations

Our research has the following limitations.

1. In a game with unawareness, in a generalized Nash equilibrium or under a
rationalizable strategy, each player may be convinced that they are playing
a higher-order subjective game, or that the opponents are unaware of cer-
tain actions. However, in certain plays, each player may discover actions
that they were unaware of, which may confirm that the players’ subjective
game was wrong. Here, the question arises, why was the player convinced
that their higher-order subjective game was correct in the initial game
with unawareness? In the example 2, there exist two cognitively-unstable
generalized Nash equilibria, s1 and s2, in the initial game. This study
does not yield any appropriate answer to the question as to which equilib-
rium Colin and David play when they both implement a generalized Nash
equilibrium play.

Our discovery process, and that of the previous works, explain how to
build each player’s subjective game under unawareness, however, they do
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not explain how to do so in an initial game with unawareness. This issue
is an subject for future research on games with unawareness.

2. Each player pays attention to the opponents’ subjective games in the initial
game with unawareness, however, they do not pay attention to them in
a discovered game. We do not have any appropriate answer to why each
player ceases to pay attention.

3. Models of discovery processes suppose that each player recognizes the op-
ponents’ plays and actions that they were previously unaware of. However,
the assumptions may be too strict. For example, most children of pre-
school age would not be able to understand conversations among adults,
or, at least, cannot have the same conversations. In further research, we
aim to relax this assumption, and reconstruct the models of discovery
processes.

7.4 Related Literature

Unawareness in General

The first motivation of studies on unawareness is overcoming the No-Trade The-
orem presented by Milgrom and Stokey (1982). Previous works about unaware-
ness, that address this issue, had two approaches. One was a non-partitional
state space model, for example, Geankoplos (2021); and the other was an un-
awareness structure model, for example, Heifetz et al. (2006, 2013a), and Gala-
nis (2013, 2018).

Interpretations about unawareness under the two approaches are different.
The former corresponds to a lack of knowledge, that is, an agent does not know
an event, and does not know that he or she does not have that knowledge.
The other literature on this approach includes Samet (1990), Shin (1993), and
Ewerhart (2001). However, in (non-)partitional models, several assumptions
lead to trivial unawareness, that is, an agent cannot be unaware of any event; see
Modica and Rustichini (1994, 1999), Dekel et al. (1998), and Chen et al. (2012).
The latter model is proposed to avoid this issue. Unawareness structures first
formulate the family of state spaces, and give different state spaces to different
agents. Players’ unawareness is represented by different subjective games. Other
literature on unawareness structures or similar structures includes Li (2009) and
Heinsalu (2012). In a recent study, Fukuda (2021) compared the two approaches.

CURB Notions

Basu and Weibull (1991) first introduce CURB notions to standard game mod-
els. CURB notions in dynamic models are discussed by Hurkens (1995), Young
(1998), and Grandjean et al. (2017). Voorneveld et al. (2005) discuss the ax-
iom and properties of minimal CURB sets. Pruzhansky (2003) shows that in
extensive games with perfect information and finite horizon, there exists only
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one minimal CURB set. Benisch et al. (2010) provide algorithms for comput-
ing CURB sets. Asheim et al. (2016) discuss epistemic robustness of CURB in
epistemic models.
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