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Abstract 

 

      This paper models Aumann structures with complete lattices, and discusses 

unawareness. In multi-attribute state space models, although previous studies 

discussing unawareness assume that the family of spaces with a complete lattice, e.g., 

Heifetz et al. (2006) and Li (2009), there is no model that a standard state space is a 

complete lattice. Without formulating the family of spaces, this paper models a state 

space with a complete lattice by a set-theoretical and a constructive approach. However, 

in our models, although almost properties of the unawareness operator hold as previous 

studies, interestingly, Symmetry with non-trivial unawareness does not hold. This paper 

proposes a novel property, Reverse Symmetry, shows that non-trivial unawareness 

holds if and only if Reverse symmetry holds in our model, and suggests the implications.  
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I Introduction 

 

Unawareness was proposed by Fagin and Halpern (1988) as a higher-order unknown. 

However, in partitional standard state space models (or standard Aumann structure 

models), if the knowledge operator satisfies Necessitation ( 𝐾(Ω) = Ω ), and the 

unawareness operator satisfies Plausibility ( 𝑈(𝐸) = ¬𝐾(𝐸) ∩ ¬𝐾¬𝐾(𝐸) ), KU 

Introspection ( 𝐾𝑈(𝐸) = ∅ )and AU Introspection ( 𝑈(𝐸) = 𝑈𝑈(𝐸) ), non-trivial 

unawareness (𝑈(𝐸) ≠ ∅) cannot be modeled (Dekel et al. 1998).  

      To avoid this issue, there are two approaches discussing unawareness: one is 

unawareness structures proposed by Heifetz et al. (2006) and Li (2009). In their models, 

unawareness indicates the lack of conception. The other indicates non-partitional 

standard state space models (e.g., Modica and Rustichini 1994; 1999, Geanakoplos 

1989). State spaces in unawareness structures are complete lattices, while those in the 

standard state space models are not. Roughly, a standard state space is flat, while a state 

space with unawareness is non-flat.1 2  

      In Heifetz et al. (2006) and Li (2009), the family of disjoint state spaces is a 

 

1 Recently, Fukuda (2020) provides generalized state space models which nests both 

unawareness structures and non-partitional standard state space models.  
2 Schipper (2014) provides a historical survey about unawareness. Schipper (2015) 

provides a mathematical survey about it in modal logics.  
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complete lattice. However, there is no model that a standard state space itself is a 

complete lattice. This paper models the state spaces, called constructive state spaces, 

by a set-theoretical and constructive approach. Our state space is equivalent to the space 

in Heifetz et al. (2006) and Li (2009).  

      In our approach, a standard operator is not convenient, because the operator 

cannot define a state related with 𝜙 in the state space of Heifetz et al. (2006) or Li 

(2009). To avoid this issue, we must formulate the overloaded operator. Our operator 

has multiple arities. Although our state space is similar to that of Heifetz et al. (2008), 

discussions and assumptions about unawareness are different between us and them.  

      In our state space, any (subjective) state space is the subset of the constructive 

state space. The meaning of some state that belongs to some state space is not same as 

the meaning of the state that belongs to the different space, as some attribute is included 

in the former, which may not be included in the latter. The meaning of a state depends 

on the state that state space belongs to. Thus, the meaning of state is decided in relation 

to the other states on a given state space.  

      This paper models constructive Aumann structures with constructive state 

spaces and defines the possibility correspondence, knowledge operator, and 

awareness/unawareness operator on the state space. Almost the same properties of the 

knowledge and awareness/unawareness operators were employed in previous studies.  

      However, interestingly, Symmetry ( 𝑈(𝐸) = 𝑈(¬𝐸) ) crashes non-trivial 

unawareness, although previous studies prove the property (e.g., Heifetz et al 2006; 
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2013a, Li 2009, and Fukuda 2020) or assume it (e.g., Modica and Rustichini 1994; 1999, 

Halpern 2001, Heifetz et al. 2008, and Sadzik 2021). We call the property that 

Symmetry does not hold Reverse Symmetry. Reverse Symmetry has two implications. 

One is that we must not discuss the event that the agent can perceive and the negation 

that she cannot perceive using the same approach. The other is that S5 in modal logics 

may not be necessary in discussing unawareness. Modica and Rustichini (1994) assume 

Symmetry and show that S4 with Symmetry equals to S5. In contrast, because this paper 

shows Reverse Symmetry in our model, we must consider S4 with Reverse Symmetry.  

      A constructive Aumann structure induces generalization of the main theorems 

in Dekel et al. (1998) and Chen et al. (2012). Because several properties of the 

knowledge and the awareness/unawareness operators are the same in previous studies, 

our models are intermediate between the standard state space and unawareness structure.  

      This paper is organized as follows. The following section models state spaces 

in Heifetz et al. (2006) and Li (2009). Section Ⅲ models a constructive state space and 

compares the state space with the one in Heifetz et al. and Li. In Section Ⅳ, we model 

a constructive Aumann structure, and define and discuss the possibility correspondence, 

the knowledge operator, and awareness/unawareness operator. The last section presents 

the concluding remarks.  

 

II State Space in Previous Studies about Unawareness 
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This section formulates state spaces defined by Heifetz et al. (2006) and Li (2009).3  

 

2-1 State Space in Heifetz et al. (2006) 

 

First, we formulate state spaces proposed by Heifetz et al. (2006), and call the state 

spaces HMS-state spaces. Let 𝒮 = {𝑆𝜆}𝜆∈Λ  be a complete lattice of disjoint state 

spaces, and let ≼ be a partial order on 𝒮. For any 𝑆, 𝑆′ ∈ 𝒮, 𝑆 ≽ 𝑆′ is interpreted as 

“𝑆 is more expressive that 𝑆′.” Then, there exists a surjective projection 𝑅𝑆′
𝑆 : 𝑆 ⟶ 𝑆′, 

that is, for any 𝜔 ∈ 𝑆, 𝑅𝑆′
𝑆 (𝜔) ∈ 𝑆′. An HMS-state space is denoted by Σ = ⋃𝜆∈Λ𝑆𝜆. 

A standard state space is not Σ, but each state spate on 𝒮. Hence, an HMS-state space 

is the union of disjoint standard state spaces.  

 

Example 1  Suppose that 𝒮 = {𝑆{𝑥,𝑦} , 𝑆{𝑥} , 𝑆{𝑦} , 𝑆{𝜙}}  is a complete lattice of 

disjoint spaces, and let 𝑆{𝑥,𝑦} = {𝑥𝑦 , 𝑥¬𝑦 , ¬𝑥𝑦 , ¬𝑥¬𝑦} , 𝑆{𝑥} = {𝑥 , ¬𝑥} , 𝑆{𝑦} =

{𝑦 , ¬𝑦} and 𝑆{𝜙} = {𝜙}. For example, 𝑥 indicates that 𝑥 is true, while ¬𝑥 means 

that 𝑥 is false. Given two different spaces 𝑆{𝑥,𝑦} , 𝑆{𝑥}, 𝑅𝑆{𝑥}

𝑆{𝑥,𝑦}(𝑥𝑦) = 𝑅𝑆{𝑥}

𝑆{𝑥,𝑦}(𝑥¬𝑦) =

𝑥, and 𝑅𝑆{𝑥}

𝑆{𝑥,𝑦}(¬𝑥𝑦) = 𝑅𝑆{𝑥}

𝑆{𝑥,𝑦}(¬𝑥¬𝑦) = ¬𝑥. Then, an agent who can perceive only 

𝑆{𝑥} cannot perceive 𝑦. The agent perceives 𝑥 for 𝑥𝑦 or 𝑥¬𝑦, while she perceives 

 
3 This paper does not discuss unawareness structures. Related literatures discussing 

their models are Heifetz et al. (2006; 2008; 2013a), Li (2009), Heinsalu (2012), 

Galanis (2013; 2018), Schipper (2014; 2015) and Fukuda (2020).  
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¬𝑥 for ¬𝑥𝑦 or ¬𝑥¬𝑦. In the example, the HMS-state space is Σ = 𝑆{𝑥,𝑦} ∪ 𝑆{𝑥} ∪

𝑆{𝑦} ∪ 𝑆{𝜙} , while the standard state space is each element of 𝒮 , that is, 

𝑆{𝑥,𝑦} , 𝑆{𝑥} , 𝑆{𝑦}, and 𝑆{𝜙}. The example is depicted in Figure 1. ∎ 

 

 

 

Fig. 1: HMS-state space.  

 

2-2 State Space in Li (2009) 

 

Subsequently, we formulate state spaces proposed by Li (2009) and call the spaces Li-

state spaces. Let 𝑄∗  be the set of questions. 𝐴𝑞 = {𝑎𝑞 , ¬𝑎𝑞}  is the set of answers 

about 𝑞 ∈ 𝑄∗. Here, a Cartesian product ∏𝑞∈𝑄∗𝐴𝑞 is the objective state space, and 

∏𝑞∈𝑄𝐴𝑞 is a subjective state space, where 𝑄 ⊆ 𝑄∗. If 𝑄 = ∅, let ∏𝑞∈𝑄𝐴𝑞 = {𝜙}. It 
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is evident that two different spaces 𝐴, 𝐴′ ∈ {∏𝑞∈𝑄𝐴𝑞|𝑄 ⊆ 𝑄∗} are disjoint. For any 

𝑄, 𝑄′ ∈ 2𝑄∗
∖ {∅} , such that 𝑄′ ⊆ 𝑄 ⊆ 𝑄∗ , there is a surjective projection 

𝜋
𝑄′
𝑄

: ∏𝑞∈𝑄𝐴𝑞 ⟶ ∏𝑞∈𝑄′𝐴𝑞. Hence, for any 𝜔 ∈ ∏𝑞∈𝑄𝐴𝑞, 𝜋
𝑄′
𝑄 (𝜔) ∈ ∏𝑞∈𝑄′𝐴𝑞. Denote 

by 𝒜 = ⋃ ∏𝑞∈𝑄𝐴𝑞𝑄⊆𝑄∗  a Li-state space. A standard state space is not 𝒜, but each 

element on 𝒜. Thus, a Li-state space is the union all disjoint spaces on 𝒜.  

 

Example 2 Suppose that 𝑄∗ = {𝑞(𝑥) , 𝑞(𝑦)} is the set of questions. Here, 𝑞(𝑥) is 

a question about an attribute 𝑥, and 𝑞(𝑦) is a question about an attribute 𝑦. Then, the 

sets of answers for each question are 𝐴𝑞(𝑥) = {𝑎𝑞(𝑥), ¬𝑎𝑞(𝑥)}  and 𝐴𝑞(𝑦) =

{𝑎𝑞(𝑦), ¬𝑎𝑞(𝑦)}. Given 𝑥, 𝑎𝑞(𝑥) is interpreted as “the answer for 𝑞(𝑥) is yes,” while 

¬𝑎𝑞(𝑥)  is interpreted as “the answer for 𝑞(𝑥)  is no.” The objective state space is 

𝐴𝑞(𝑥) × 𝐴𝑞(𝑦) , while subjective state spaces are 𝐴𝑞(𝑥) , 𝐴𝑞(𝑦) , and 𝐴𝑞(𝜙) . Given 

{𝑞(𝑥)} ⊆ 𝑄∗ , there is a surjective projection 𝜋{𝑞(𝑥)}
𝑄∗

: 𝐴𝑞(𝑥) × 𝐴𝑞(𝑦) ⟶ 𝐴𝑞(𝑥) . Then, 

𝜋{𝑞(𝑥)}
𝑄∗

(𝑎𝑞(𝑥) , 𝑎𝑞(𝑦)) = 𝜋{𝑞(𝑥)}
𝑄∗

(𝑎𝑞(𝑥) , ¬𝑎𝑞(𝑦)) = 𝑎𝑞(𝑥)  and 𝜋{𝑞(𝑥)}
𝑄∗

(¬𝑎𝑞(𝑥) , 𝑎𝑞(𝑦)) =

𝜋{𝑞(𝑥)}
𝑄∗

(¬𝑎𝑞(𝑥) , ¬𝑎𝑞(𝑦)) = ¬𝑎𝑞(𝑥) . An agent who can perceive only an attribute 𝑥 

perceives a state 𝑎𝑞(𝑥) for (𝑎𝑞(𝑥) , 𝑎𝑞(𝑦)) and (𝑎𝑞(𝑥) , ¬𝑎𝑞(𝑦)), the agent perceives a 

state ¬𝑎𝑞(𝑥)  for (¬𝑎𝑞(𝑥) , 𝑎𝑞(𝑦))  or (¬𝑎𝑞(𝑥) , ¬𝑎𝑞(𝑦)) . Then, a Li-state space is 

𝒜 = 𝐴𝑞(𝑥) × 𝐴𝑞(𝑦) ∪ 𝐴𝑞(𝑥) ∪ 𝐴𝑞(𝑦) ∪ 𝐴𝑞(𝜙), while standard state spaces are 𝐴𝑞(𝑥) ×

𝐴𝑞(𝑦), 𝐴𝑞(𝑥), 𝐴𝑞(𝑦), and 𝐴𝑞(𝜙). The example is shown in Figure 2. ∎ 
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Fig. 2: Li-state space. 

 

Ⅲ Constructive State Space 

 

Standard state space models do not assume that they are semi-lattices, even if the spaces 

have multi-attribute properties, e.g., dice.4  In contrast, state spaces in unawareness 

structures are complete lattices. However, because each element of the family of spaces 

in their models is a standard state space, each state space is not a semi-lattice. This 

section shows that standard state space is a semi-lattice (or a complete lattice). Because 

our formulating approach is similar to those of Heifetz et al. (2008) and Li (2009), as a 

constructive approach, we call the space a constructive state space.  

 
4 We can represent multi-attribute for dices. For example, for “1,” we represent “1, 

but not 2, not 3, not 4, not 5, and not 6.”  
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3-1 Overloaded Function 

 

First, we define functions overloading. Given two sets 𝑋  and 𝑌  and for any 𝑘 =

0, 1, ⋯ , 𝑛, 𝑋𝑘 is defined as follows:  

 

𝑋𝑘 = {
∅         if 𝑘 = 0; 

×𝑘 𝑋    otherwise.
 

 

Definition of overloaded functions: A function 𝑓  is overloaded by 𝑛 + 1 -tuple 

arities (0, 1, ⋯ , 𝑛) if 𝑓 is 𝑛 + 1 mappings as follows:  

 

𝑓: ⋃ 𝑋𝑘

𝑛

𝑘=0
→ 𝑌. 

 

      This paper assumes that overloading is applicable to operators.  

 

3-2 Overloaded Operator and Constructive State Space 

 

This section models state spaces by using a constructive approach. Let 𝑃 be the set of 

basic propositions or conceptions. Given an overloaded operator with 3-tuple arities 

(0, 1, 2), ∨, and the following conditions satisfied by the operator:  
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C1 For any 𝑝 ∈ 𝑃, 𝑝 ∨  =  ∨ 𝑝 = 𝑝 ∨ 𝑝 = 𝑝.  

C2  ∨  = 𝜙.  

C3 For any 𝑝, 𝑝′ ∈ 𝑃,  𝑝 ∨ 𝑝′ = 𝑝′ ∨ 𝑝.  

C4 For any 𝑝, 𝑝′, 𝑝′′ ∈ 𝑃, 𝑝 ∨ (𝑝′ ∨ 𝑝′′) = (𝑝 ∨ 𝑝′) ∨ 𝑝′′.  

 

C1 means that 𝑝 can be led by itself when the arity of ∨ is not only 2 but also 1. C2 

is a technical condition. When the arity is 0, ∨  leads 𝜙 . The 𝜙  is interpreted as 

“every proposition is not true.” C3 means that ∨ satisfies a commutative law, and C4 

means that ∨ satisfies an absorption law.  

      Here, for any subset of basic propositions 𝑋 ⊆ 𝑃, where P may be an empty 

set, ⋁ 𝑝𝑝∈𝑋  is a state. Let Ω = {⋁ 𝑝𝑝∈𝑋 |𝑋 ⊆ 𝑃} be the objective state space. Further, 

for any 𝑋 ⊆ 𝑃 , let Ω𝑋 = {⋁ 𝑝𝑝∈𝑌 |𝑌 ⊆ 𝑋}  be a subjective state space. For any 

𝑋, 𝑌 ∈  2𝑃 ∖ {∅}  such that 𝑌 ⊆ 𝑋 ⊊ 𝑃 , ⋁ 𝑝𝑝∈𝑌 ∈ Ω  and ⋁ 𝑝𝑝∈𝑌 ∈ Ω𝑋  hold 

evidently. However, attributes between ⋁ 𝑝𝑝∈𝑌   in Ω  and ⋁ 𝑝𝑝∈𝑌   in Ω𝑋  are 

different. In Ω , ⋁ 𝑝𝑝∈𝑌   includes that any attribute 𝑝′ ∈ 𝑃 ∖ 𝑌  does not hold. In 

contrast, in Ω𝑋, ⋁ 𝑝𝑝∈𝑌  includes hat any 𝑝′ ∈ 𝑃 ∖ 𝑌  does not hold, but it does not 

include a means that any 𝑝′′ ∈ 𝑃 ∖ 𝑋 holds or not. ⋁ 𝑝𝑝∈𝑌  in Ω𝑋 is related with any 

element in the Ω𝑋 , but it is not related with every element in Ω ∖ Ω𝑋 . Then, every 

⋁ 𝑝𝑝∈𝑌  in Ω𝑋 does not have any attribute 𝑝′′ ∈ 𝑃 ∖ 𝑋.  

      Let us define projections. For any basic proposition sets 𝑋, 𝑌 ⊆ 𝑃, there is a 

projection 𝑟𝑌
𝑋: Ω𝑋 ⟶ Ω𝑌. This may not be surjective. Hence, for any ⋁ 𝑝𝑝∈𝑍: 𝑍⊆𝑋 ∈
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Ω𝑋 , 𝑟𝑌
𝑋(⋁ 𝑝𝑝∈𝑍: 𝑍⊆𝑋 ) = ⋁ 𝑝𝑝∈𝑍∩𝑌: 𝑍⊆𝑋 ∈ Ω𝑌 . If 𝑌 ⊆ 𝑋 ⊆ 𝑃 , then 𝑟𝑌

𝑋 ∘ 𝑟𝑋
𝑃 = 𝑟𝑌

𝑃 . 

Below, let ⋁ 𝑝𝑝∈𝑍: 𝑍⊆𝑃 = 𝜔  and for any 𝜔 ∈ Ω  and 𝑋 ⊆ 𝑃 , let 𝑟𝑋
𝑃(𝜔) = 𝜔𝑋 . For 

any 𝑋 ⊆ 𝑃, 𝑟𝑋
𝑋 is the identity, that is, for any 𝜔 ∈ Ω𝑋, 𝑟𝑋

𝑋(𝜔) = 𝜔.  

      The objective state space Ω is a complete lattice. Although it is a standard state 

space with a complete lattice, let us call Ω the constructive state space.  

 

Remark 1 For any subsets 𝑋, 𝑌 such that 𝑌 ⊆ 𝑋 ⊆ 𝑃, Ω𝑌 ⊆ Ω𝑋.  

 

Remark 1 means that our (subjective) state spaces are subsets on the objective state 

space, unlike in Heifetz et al. (2006) and Li (2009). The feature differs from 

unawareness structures, and the feature is the same to (non-partitional) standard state 

space models. Moreover, different state spaces have an intersection, and all 

intersections must have 𝜙.  

      Our formulation is similar to that of Heifetz et al. (2008). Our formulations are 

set-theoretical approaches, while their formulations are logics approaches. However, 

there is a crucial difference between our discussion and their discussion about 

unawareness. Heifetz et al. assume that the awareness/unawareness operator satisfies 

Symmetry. In contrast, we show that the operator does not satisfy Symmetry with Non-

triviality. Because results between this paper and Heifetz et al. are different even if both 

state spaces are same formulations, we assert that our framework is different to theirs.  

 



 

 12 

Example 3  Let 𝑃 = {𝑥 , 𝑦}  be the set of basic propositions, and let Ω =

{𝑥 ∨ 𝑦 , 𝑥 , 𝑦 , 𝜙} , Ω{𝑥} = {𝑥 , 𝜙} , Ω{𝑦} = {𝑦 , 𝜙} , and Ω{𝜙} = {𝜙}  be state spaces. 

Each state space is a subset of Ω. Because the projection must not be surjective, given 

two sets {𝑥} and {𝑦}, 𝑟{𝑦}
{𝑥}(𝑥) = 𝑟{𝑦}

{𝑥}(𝜙) =  𝜙. It is evident that the intersection has 

𝜙. Then, Ω is a constructive state space. The example is depicted in Figure 3.  

      Here, let us focus on 𝜙. If 𝜙 ∈ Ω, a state 𝜙 indicates that it does not represent 

𝑥 ∨ 𝑦, 𝑥 or 𝑦. In contrast, if 𝜙 ∈ Ω𝑋, 𝜙 means only that it does not represent 𝑥, but 

it does not mean that it represents or not 𝑥 ∨ 𝑦 and 𝑦. 𝜙 does not imply a conception 

𝑦. That is, if any two state spaces are different, then same state does not have same 

attribute between them. ∎ 

 

 

 

Fig. 3: Constructive Aumann-state space. 

 

3-3 Relationships with Other State Spaces 
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      Our constructive state spaces are related with HMS-state spaces and Li-state 

spaces by the following lemmas.  

 

Lemma 1 The following are equivalent:  

1. A constructive state space can be constructed.  

2. An HMS-state space can be constructed.  

 

Proof. (1⟹2) Any constructive state space Ω has the set of basic propositions 𝑃 and 

for any subset 𝑋 ⊆ 𝑃, there is Ω𝑋 = {⋁ 𝑝𝑝∈𝑌 |𝑌 ⊆ 𝑋}. Here, let us define the family 

of disjoint sets 𝒮 and bijective mapping 𝑓: {Ω𝑋|𝑋 ⊆ 𝑃} ⟶ 𝒮. Then, for any 𝑋, 𝑌 ⊆

𝑃, if 𝑋 ≠ 𝑌, then 𝑓(Ω𝑋) ∩ 𝑓(Ω𝑌) = ∅. Let ≼ be a partial order on 𝒮 and be defined 

as follows: if 𝑋 ⊆ 𝑌, then 𝑓(Ω𝑋) ≼ 𝑓(Ω𝑌). Then, suppose that there exists a surjective 

projection 𝑟Ω𝑋

Ω𝑌: Ω𝑌 ⟶ Ω𝑋. Then, 𝒮 = {𝑓(Ω𝑋)|𝑋 ⊆ 𝑃} is a complete lattice, and Σ =

⋃𝑋⊆𝑃𝑓(Ω𝑋) is an HMS-state space.  

 (2⟹ 1) Any HMS-state space Σ  has a complete lattice with disjoint spaces 𝒮 =

{𝑆𝜆}𝜆∈Λ. Here, let us define 𝒮𝑚𝑖𝑛 = {𝑆 ∈ 𝒮|𝑆 𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑛 𝒮 ∖ {∅}}, let 𝑃 

be some set and be given a bijective mapping 𝑓: 𝒮𝑚𝑖𝑛 ⟶ 𝑃. Then, overloaded operator 

with 3-tuple arities (0, 1, 2), ∨, satisfies the following.  

⚫ For any 𝑆 ∈ 𝒮𝑚𝑖𝑛, 𝑓(𝑆) ∨ =  ∨ 𝑓(𝑆) = 𝑓(𝑆) ∨ 𝑓(𝑆) = 𝑓(𝑆).  

⚫   ∨  = ∅.  
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⚫ For any 𝑆, 𝑆′ ∈ 𝒮𝑚𝑖𝑛, 𝑓(𝑆) ∨ 𝑓(𝑆′) = 𝑓(𝑆′) ∨ 𝑓(𝑆).  

⚫ For any 𝑆, 𝑆′, 𝑆′′ ∈ 𝒮𝑚𝑖𝑛, 𝑓(𝑆) ∨ (𝑓(𝑆′) ∨ 𝑓(𝑆′′)) = (𝑓(𝑆) ∨ 𝑓(𝑆′)) ∨ 𝑓(𝑆′′).  

Then, for any 𝒳 ⊆ 𝒮𝑚𝑖𝑛, Ω𝒳 = {⋁ 𝑓(𝑆)𝑆∈𝒳 |𝒳 ⊆ 𝒮𝑚𝑖𝑛}. Let us define that for any 

𝒳, 𝒴 ⊆ 𝒮𝑚𝑖𝑛 , if we define a projection 𝑟𝒴
𝒳: Ω𝒳 ⟶ Ω𝒴 , then for any ⋁ 𝑆𝑆∈𝒵: 𝒵⊆𝒳  , 

𝑟𝒴
𝒳(⋁ 𝑆𝑆∈𝒵: 𝒵⊆𝒳 ) = ⋁ 𝑆𝑆∈𝒵∩ 𝒴: 𝒵⊆𝒳  . Then, {𝑓(𝑆)|𝑆 ∈ 𝒮𝑚𝑖𝑛}  is the set of basic 

propositions, and Ω = {⋁ 𝑓(𝑆)𝑆∈𝒳 |𝒳 ⊆ 𝒮𝑚𝑖𝑛} is a constructive state space. ∎ 

 

Lemma 2 The following are equivalent:  

1. A constructive state space can be constructed.  

2. A Li-state space can be constructed.  

 

Proof. (1⟹2) Any constructive state space Ω has the set of basic propositions 𝑃, and 

for any 𝑋 ⊆ 𝑃 , there is Ω𝑋 = {⋁ 𝑝𝑝∈𝑌 |𝑌 ⊆ 𝑋} . Here, given some set 𝑄∗  and a 

bijection mapping 𝑔: 𝑃 ⟶ 𝑄∗. Then, for any 𝑝, 𝑝′ ∈ 𝑃, 𝑔(𝑝) ≠ 𝑔(𝑝′). Moreover, for 

any 𝑝 ∈ 𝑃 , let us define 𝐴𝑔(𝑝) = {𝑎𝑔(𝑝) , ¬𝑎𝑔(𝑝)}  and for any 𝑋 ⊆ 𝑃 , given 

∏𝑝∈𝑋𝐴𝑔(𝑝) . Note that, if 𝑋 = ∅ , we denote by ∏𝑝∈𝑋𝐴𝑔(𝑝) = {𝜙} . Here, for any 

𝑋, 𝑌 ⊆ 𝑃 , such that 𝑋 ≠ 𝑌 , ∏𝑝∈𝑋𝐴𝑔(𝑝) ≠ ∏𝑝∈𝑌𝐴𝑔(𝑝)  is obvious. When 𝑌 ⊆ 𝑋 , 

suppose that there is a surjective projection 𝑟Y
X: ∏𝑝∈𝑋𝐴𝑔(𝑝) ⟶ ∏𝑝∈𝑌𝐴𝑔(𝑝) . Then, 

{𝑔(𝑝)|𝑝 ∈ 𝑃} is the set of questions, and 𝒜 = ⋃ ∏𝑝∈𝑋𝐴𝑔(𝑝)𝑋⊆𝑃  is a Li-state space.  

 (2⟹1) Any Li-state space 𝒜 has the set of questions 𝑄∗. Here, given some set 𝑃 

a bijection mapping 𝑔̂: 𝑄∗ ⟶ 𝑃, then, for any 𝑞 , 𝑞′ ∈ 𝑄∗, if 𝑞 ≠ 𝑞′, 𝑔̂(𝑞) ≠ 𝑔̂(𝑞′). 
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Let us define an overloaded operator ∨ as follows.  

⚫ For any 𝑞 ∈ 𝑄∗, 𝑔̂(𝑞) ∨ =  ∨ 𝑔̂(𝑞) = 𝑔̂(𝑞) ∨ 𝑔̂(𝑞) = 𝑔̂(𝑞).  

⚫   ∨  = 𝜙.  

⚫ For any 𝑞, 𝑞′ ∈ 𝑄∗, 𝑔̂(𝑞) ∨ 𝑔̂(𝑞′) = 𝑔̂(𝑞′) ∨ 𝑔̂(𝑞).  

⚫ For any 𝑞, 𝑞′, 𝑞′′ ∈ 𝑄∗, 𝑔̂(𝑞) ∨ (𝑔̂(𝑞′) ∨ 𝑔̂(𝑞′′)) = (𝑔̂(𝑞) ∨ 𝑔̂(𝑞′)) ∨ 𝑔̂(𝑞′′).  

Then, for any 𝑄 ⊆ 𝑄∗, let Ω𝑄 = {⋁ 𝑔̂(𝑞)𝑞∈𝑄 |𝑄 ⊆ 𝑄∗}. For any 𝑄, 𝑄′ ⊆ 𝑄∗, given a 

projection 𝑟
𝑄′
𝑄

: Ω𝑄 ⟶ Ω𝑄′  and for any ⋁ 𝑔̂(𝑞)𝑞∈𝑄′′: 𝑄′′⊆𝑄 ∈ Ω𝑄 , let us define 

𝑟
𝑄′
𝑄

(⋁ 𝑔̂(𝑞)𝑞∈𝑄′′: 𝑄′′⊆𝑄 ) = ⋁ 𝑔̂(𝑞)𝑞∈𝑄′′∩𝑄′: 𝑄′′⊆𝑄  . Then, {𝑔̂(𝑞)|𝑞 ∈ 𝑄∗}  is the set of 

basic propositions and, Ω = {⋁ 𝑔̂(𝑞)𝑞∈𝑄 |𝑄 ⊆ 𝑄∗} is a constructive state space. ∎ 

 

      The lemmas indicate that any constructive state space can construct HMS-state 

space and Li-state space, and vice versa.  

 

Proposition 1 The following are equivalent.  

1. A constructive state space can be constructed.  

2. HMS-state space can be constructed.  

3. Li-state space can be constructed.  

 

      Let us consider constructive state spaces related with HMS-state spaces. We 

compare Example 2 with 3. Their relations are the following:  

𝑆{𝑥,𝑦}   ⟺   Ω 
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𝑆{𝑥}   ⟺   Ω{𝑥} 

𝑆{𝑦}   ⟺   Ω{𝑦} 

𝑆{𝜙}   ⟺   Ω{𝜙} 

When 𝑆{𝑥,𝑦} is compared with Ω, states between the spaces are represented as follows:  

𝑥𝑦  ⟺    𝑥 ∨ 𝑦 

𝑥¬𝑦  ⟺   𝑥 

¬𝑥𝑦  ⟺   𝑦 

¬𝑥¬𝑦  ⟺   𝜙 

In contrast, when 𝑆{𝑥}  is compared with Ω{𝑥} , states between the spaces are 

represented as follows:  

𝑥  ⟺   𝑥 

¬𝑥  ⟺   𝜙 

By these comparisons, 𝑥 in Ω and 𝑥 in Ω{𝑥} have different implication and 𝜙 in 

Ω and 𝜙 in Ω{𝑥} are different as well. Ω{𝑥} is the lack of 𝑦.  

      Moreover, the following are a relationship between Ω and Σ:  

𝑥𝑦  ⟺    𝑥 ∨ 𝑦 

𝑥  ⟺   𝑥 

𝑦  ⟺   𝑦 

𝜙  ⟺   𝜙 

This means that each element of Ω is related with each element without negations of 

Σ . That is, not only Ω  is related with 𝑆{𝑥,𝑦} ⊆ Σ , but also Ω  is related with 
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{𝑥𝑦, 𝑥, 𝑦, 𝜙} ⊆ Σ. Hence, Ω has a dual structure for Σ.  

 

Ⅳ Constructive Aumann Structure 

 

This section models constructive Aumann structures based on constructive state spaces. 

We focus on only a single agent, formulate possibility correspondences on constructive 

state spaces, and knowledge operators and awareness/unawareness operators on 

constructive Aumann structures, and discuss their properties. Finally, we provide 

generalization of main theorems proposed by Dekel et al. (1998) and Chen et al. (2012).  

 

4-1 Possibility Correspondence 

 

Possibility correspondences in standard Aumann structures are only defined in state 

spaces. In contrast, because our state spaces are semi lattices, a domain of possibility 

correspondences is not only the state space, but also the power set of basic propositions. 

Let 〈𝑃 , Ω , Π〉 be the constructive Aumann structure, where Ω is constructed by 𝑃. 

Then, Π: Ω × 2P ⟶ 2Ω ∖ {∅} is the possibility correspondence. Suppose that an agent 

can perceive every basic proposition in the subset of basic propositions 𝑋 ⊆ 𝑃, but not 

in 𝑌 ⊆ 𝑃 ∖ 𝑋. Then, for any 𝜔 ∈ Ω, Π(𝜔 , 𝑋) ⊆ Ω𝑋. Let us assume that the possibility 

correspondence satisfies the following properties.  
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1. Subjective Nondelusion: For any 𝜔 ∈ Ω, and any 𝑋 ⊆ 𝑃, 𝜔𝑋 ∈ Π(𝜔 , 𝑋).  

2. Stationarity: For any 𝜔, 𝜔′ ∈ Ω  and any 𝑋 ⊆ 𝑃 , if 𝜔′ ∈ Π(𝜔 , 𝑋) , then 

Π(𝜔′ , 𝑋) = Π(𝜔 , 𝑋).  

 

Example 3 (Continued.) Let 𝜔1 = 𝑥 ∨ 𝑦, 𝜔2 = 𝑥, 𝜔3 = 𝑦 and 𝜔4 = 𝜙. Suppose 

that an agent can perceive the basic proposition set 𝑋 = {𝑥} . By Subjective 

Nondelusion, 𝜔2 ∈ Π(𝜔1 , 𝑋) , 𝜔2 ∈ Π(𝜔2 , 𝑋) , 𝜔4 ∈ Π(𝜔3 , 𝑋) , and 𝜔4 ∈

Π(𝜔4 , 𝑋). By Stationarity, Π(𝜔1 , 𝑋) = Π(𝜔2 , 𝑋) and Π(𝜔3 , 𝑋) = Π(𝜔4 , 𝑋). Note 

that whether Π(𝜔1 , 𝑋) = Π(𝜔3 , 𝑋) or not may depend on how Π is formulated. ∎ 

 

      Subjective Nondelusion and Stationarity are the analogues of the partitional 

information function in a standard Aumann structure. When 𝑋 is a proper subset of 𝑃, 

Π is evidently not partitional on Ω. However, it may be partitional on Ω𝑋.  

 

Definition 1 (Partial Partition) Given any 𝑋 ⊆ 𝑃. Π: Ω × 2P ⟶ 2Ω ∖ {∅} is partially 

partitional on Ω𝑋 if there exists 𝒫 = {𝑃𝜆}𝜆∈Λ such that:  

1. ⋃ 𝑃𝜆𝜆∈Λ = Ω𝑋;  

2. For any 𝜔 ∈ Ω, there exists 𝑃𝜆 such that 𝜔𝑋 ∈ 𝑃𝜆 and Π(𝜔 , 𝑋) = 𝑃𝜆; and   

3. For any 𝑃𝜆, 𝑃𝜆′ ∈ 𝒫, if 𝑃𝜆 ≠ 𝑃𝜆′, then 𝑃𝜆 ∩ 𝑃𝜆′ = ∅.  

 

A partial partition is the analog of the partition in a standard Aumann structure.  
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      We can induce the following proposition.  

 

Proposition 2 Given any 𝑋 ⊆ 𝑃. Π is partially partitional on Ω𝑋 if and only if  Π 

satisfies Subjective Nondelusion and Stationarity.  

 

Proof. (⟹) Suppose that the possibility correspondence Π is partially partitional on 

Ω𝑋 . Then, by Condition 1 in Definition 1, ⋃ 𝑃𝜆𝜆∈Λ = Ω𝑋  and by Condition 2 in 

Definition 1, for any 𝜔 ∈ Ω , because there exists 𝑃𝜆  with 𝜔𝑋 ∈ 𝑃𝜆  such that 

Π(𝜔 , 𝑋) = 𝑃𝜆 , 𝜔𝑋 ∈ Π(𝜔 , 𝑋) . That is, Π  satisfies Subjective Nondelusion. 

Moreover, by Condition 3 in Definition 1, for any 𝑃𝜆, 𝑃𝜆′ ∈ 𝒫, if 𝑃𝜆 ≠ 𝑃𝜆′, then 𝑃𝜆 ∩

𝑃𝜆′ = ∅ . This satisfies that for any 𝜔, 𝜔′ ∈ Ω  if Π(𝜔 , 𝑋) ≠ Π(𝜔′ , 𝑋) , then 

Π(𝜔 , 𝑋) ∩ Π(𝜔′ , 𝑋) = ∅, that is, 𝜔′ ∉ Π(𝜔 , 𝑋). The contraposition is that if 𝜔′ ∈

Π(𝜔 , 𝑋), then Π(𝜔′ , 𝑋) = Π(𝜔 , 𝑋). Hence, Π satisfies Stationarity.  

  (⟸) Suppose that Π satisfies Subjective Nondelusion and Stationarity. Given 𝑃𝜆 

with Π(𝜔 , 𝑋) = 𝑃𝜆 for some 𝜔 ∈ Ω. By Subjective Nondelusion and the assumption 

of projection, for any 𝜔 ∈ Ω𝑋 , 𝜔 ∈ Π(𝜔 , 𝑋) . Therefore, ⋃ Π(𝜔 , 𝑋)𝜔∈Ω𝑋
=

⋃ 𝑃𝜆𝜆: 𝑃𝜆=Π(𝜔 ,𝑋) = Ω𝑋  is obvious, that is, Condition 1 in Definition 1 holds. By 

Subjective Nondelusion and the definition of 𝑃𝜆, Condition 1 in Definition 1 holds. By 

Stationarity, for any 𝜔, 𝜔′ ∈ Ω, if Π(𝜔 , 𝑋) ≠ Π(𝜔′ , 𝑋), then 𝜔′ ∉ Π(𝜔 , 𝑋). That is, 

Π(𝜔 , 𝑋) ∩ Π(𝜔′ , 𝑋) = ∅. By the definition of 𝑃𝜆, if 𝑃𝜆 ≠ 𝑃𝜆
′, then 𝑃𝜆 ∩ 𝑃𝜆

′ = ∅. That 

is, Condition 3 in Definition 1 holds. Therefore, Π is partially partitional on Ω𝑋. ∎ 
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      Four of the five assumptions of the possibility correspondence proposed Heifetz 

et al. (2006), Confinedness, Generalized Reflexivity, Projections Preserve Awareness 

(PPA) and Projections Preserve Knowledge (PPK) can be induced from Subjective 

Nondelusion and Stationarity in our model. Given 𝐸 ⊆ Ω, for any 𝑋 ⊆ 𝑃, let 𝐸𝑋 =

{𝜔𝑋 ∈ Ω|𝜔 ∈ 𝐸}  and let 𝐸𝑋 = {𝜔′ ∈ Ω|∀𝜔 ∈ 𝐸    𝜔′ = 𝜔 ⋁ 𝑝𝑝∈𝑍:𝑍⊆𝑋 } . Then, the 

above properties are formulated and shown as follows.  

 

Remark 2 If a possibility correspondence Π satisfies Subjective Nondelusion and 

Stationarity, then it satisfies the followings.  

1. Confinedness: For any 𝜔 ∈ Ω𝑋 and any 𝑋 ⊆ 𝑃, Π(𝜔 , 𝑋) ⊆ Ω𝑋.  

2. Generalized Reflexivity: For any 𝜔 ∈ Ω and 𝑋 ⊆ 𝑃, 𝜔 ∈ (Π(𝜔 , 𝑋))
𝑃

.  

3. Projections Preserve Awareness: For any 𝜔 ∈ Ω  and 𝑋 ⊆ 𝑃 , if 𝜔 ∈ Π(𝜔 , 𝑋) , 

then 𝜔𝑋 ∈ Π(𝜔𝑋 , 𝑋).  

4. Projections Preserve Knowledge: For any 𝜔 ∈ Ω  and 𝑋, 𝑌 ⊆ 𝑃 , if Π(𝜔 , 𝑋) ⊆

Ω𝑌, then (Π(𝜔 , 𝑋))
𝑌

= Π(𝜔𝑌 , 𝑋).  

 

Proof. (Property 1) By Subjective Nondelusion, 𝜔𝑋 ∈ Π(𝜔 , 𝑋). By Stationarity, if 

𝜔′ ∈ Π(𝜔 , 𝑋), then Π(𝜔′ , 𝑋) = Π(𝜔 , 𝑋). That is, 𝜔𝑋
′ = 𝜔′. Therefore, for any 

𝜔′ ∈ Π(𝜔 , 𝑋), 𝜔′ ∈ Ω𝑋. Hence, Π(𝜔 , 𝑋) ⊆ Ω𝑋.  

  (Property 2) Given any 𝜔 ∈ Ω and 𝑋 ⊆ 𝑃. Then, (Π(𝜔 , 𝑋))
𝑃

=
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{𝜔′′ ∈ Ω |∀𝜔′ ∈ Π(𝜔 , 𝑋)    𝜔′′ = 𝜔′ ⋁ 𝑝𝑝∈𝑍:𝑍⊆𝑋 }. By Subjective Nondelusion, 𝜔𝑋 ∈

Π(𝜔 , 𝑋) and there exists 𝑍 ⊆ 𝑋 with 𝜔 = 𝜔𝑋 ⋁ 𝑝𝑝∈𝑍 . Hence, 𝜔 ∈ (Π(𝜔 , 𝑋))
𝑃
.  

  (Property 3) It is obvious by Subjective Nondelusion.  

  (Property 4) Given 𝜔 ∈ Ω, 𝑋, 𝑌 ⊆ 𝑃 and Π(𝜔 , 𝑋) ⊆ Ω𝑌. For any 𝜔′ ∈

Π(𝜔 , 𝑋), because 𝜔′ ∈ Ω𝑌, 𝑟𝑌
𝑋(𝜔′) = 𝜔′. That is, (Π(𝜔 , 𝑋))

𝑌
= Π(𝜔 , 𝑋). Hence, 

by Subjective Nondelusion and Stationarity, Π(𝜔𝑌 , 𝑋) = Π(𝜔𝑋 , 𝑋) = Π(𝜔 , 𝑋). ∎ 

 

      Heifetz et al. (2006) describes the following remark.  

 

Remark 3 (Heifetz et al. 2006) The possibility correspondence Π  satisfies the 

following properties.  

A) Generalized Reflexivity implies Nondelusion.  

B) Confinedness and PPK implies PPA.  

 

Proof. (A) Suppose that Π satisfies Generalized Reflexivity. Given any 𝜔 ∈ Ω and 

𝑋 ⊆ 𝑃  with 𝜔 ∈ (Π(𝜔 , 𝑋))
𝑃

= {𝜔′′ ∈ Ω |∀𝜔′ ∈ Π(𝜔 , 𝑋)    𝜔′′ = 𝜔′ ⋁ 𝑝𝑝∈𝑍:𝑍⊆𝑋 } . 

Then, there must exist 𝜔′ ∈ Π(𝜔 , 𝑋)  such that 𝜔 = 𝜔′ ⋁ 𝑝𝑝∈𝑍:𝑍⊆𝑋  . That is, 

𝑟𝑋
𝑌(𝜔) = 𝑟𝑋

𝑌(𝜔′ ⋁ 𝑝𝑝∈𝑍:𝑍⊆𝑃 ) = 𝜔′. Hence, 𝜔𝑋 ∈ Π(𝜔 , 𝑋).  

  (B) Suppose that Π satisfies Confinedness and PPK. That is, for any 𝜔 ∈ Ω𝑋 and 

any 𝑋 ⊆ 𝑃 , Π(𝜔 , 𝑋) ⊆ Ω𝑋 , and for any 𝜔 ∈ Ω  and 𝑋, 𝑌 ⊆ 𝑃 , if Π(𝜔 , 𝑋) ⊆ Ω𝑌 , 

then (Π(𝜔 , 𝑋))
𝑌

= Π(𝜔𝑌 , 𝑋). By a proof in the property 4 of Remark 2, for any 𝜔 ∈
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Ω , (Π(𝜔 , 𝑋))
𝑌

= Π(𝜔 , 𝑋) . Let 𝑌 = 𝑋 . Suppose that 𝜔 ∈ Π(𝜔 , 𝑋) . Then, 𝜔 ∈

Π(𝜔𝑋 , 𝑋). By a definition of projections, because 𝜔𝑋 =  𝜔, 𝜔𝑋 ∈ Π(𝜔𝑋 , 𝑋). ∎ 

 

      Heifetz et al. (2006) assumes Projections Preserve Ignorance (PPI): For any 

𝜔 ∈ Ω and 𝑋, 𝑌 ⊆ 𝑃, (Π(𝜔 , 𝑋))
𝑃

⊆ (Π(𝜔𝑌 , 𝑋))
𝑃

. The property cannot be induced 

from Subjective Nondelusion and Stationarity of the possibility correspondence.  

 

Example 4 Given 𝑃 = {𝑥, 𝑦, 𝑧}. Then, Ω = {𝑥 ∨ 𝑦 ∨ 𝑧, 𝑥 ∨ 𝑦, 𝑦 ∨ 𝑧, 𝑧 ∨ 𝑥, 𝑥, 𝑦, 𝑧, 𝜙}. 

Suppose that an agent can perceive all basic propositions, that is, 𝑋 = 𝑃 , and that 

Π(𝑥 ∨ 𝑦 ∨ 𝑧 , 𝑃) = Π(𝑥 ∨ 𝑦 , 𝑃) = {𝑥 ∨ 𝑦 ∨ 𝑧, 𝑥 ∨ 𝑦} , Π(𝑦 ∨ 𝑧 , 𝑃) = Π(𝑧 ∨ 𝑥 , 𝑃) =

Π(𝑥 , 𝑃) = {𝑦 ∨ 𝑧, 𝑧 ∨ 𝑥, 𝑥 } , Π(𝑦 , 𝑃) = Π(𝑧 , 𝑃) = {𝑦, 𝑧} , and Π(𝜙 , 𝑃) = {𝜙} . The 

partitions are shown in Figure 4. Then, the possibility correspondence satisfies 

Subjective Nondelusion and Stationarity. Let 𝑌 = {𝑦}  and 𝜔 = 𝑥 ∨ 𝑦 . Then, 

(Π(𝜔 , 𝑃))
𝑃

= {𝑥 ∨ 𝑦 ∨ 𝑧, 𝑥 ∨ 𝑦, 𝑦 ∨ 𝑧, 𝑧 ∨ 𝑥, 𝑥} , while (Π(𝜔𝑌 , 𝑃))
𝑃

=

(Π(𝜔𝑌 , 𝑃))
𝑃

= {𝑥 ∨ 𝑦 ∨ 𝑧, 𝑥 ∨ 𝑦, 𝑦 ∨ 𝑧, 𝑧 ∨ 𝑥}. Then, it is obvious that (Π(𝜔 , 𝑋))
𝑃

⊈

(Π(𝜔𝑌 , 𝑋))
𝑃

 because there exists some element 𝑥 ∈ (Π(𝜔 , 𝑃))
𝑃

∖ (Π(𝜔𝑌 , 𝑃))
𝑃

. ∎ 
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Fig. 4: Projections Preserve Ignorance is not satisfied. 

 

Some previous studies refer to PPI under interactive situations, e.g., Heifetz et al. (2006; 

2008) and Galanis (2013; 2018). In contrast, because our model is a single agent model, 

the assumption would not be necessary. This paper does not assume the property. 5 

 

4-2 Knowledge Operator 

 

Let us define a knowledge operator. Let an event 𝐸 be the subset of Ω. When an agent 

can perceive the subset of basic propositions 𝑋 ⊆ 𝑃 , The knowledge operator 

 
5 Constructive Aumann structures are non-partitional standard possibility 

correspondence models with multi attribute. In non-partitional standard possibility 

correspondence models, it does not seem to assume PPI. This paper conjectures that 

PPI is not necessary in constructive Aumann structure with multi agents too. 
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𝐾𝑋: 2Ω ⟶ 2Ω  is defined as follows: 𝐾𝑋(𝐸) = {𝜔 ∈ Ω|Π(𝜔 , 𝑋) ⊆ 𝐸}  if 𝐸 ⊆ Ω𝑋 ; 

and 𝐾𝑋(𝐸) = ∅ otherwise. 𝐾𝑋(𝐸) is interpreted as “An agent who can perceive 𝑋 

knows the event 𝐸.” If 𝐾𝑋(𝐸) = ∅, it is false that the agent knows 𝐸.  

 

Example 3 (Continued.)  Suppose that 𝑋 = {𝑥}  and that Π(𝜔1 , 𝑋) = {𝜔2} , 

Π(𝜔2 , 𝑋) = {𝜔2} , Π(𝜔3 , 𝑋) = {𝜔4} , and Π(𝜔4 , 𝑋) = {𝜔4} . Let 𝐸1 = {𝜔2} . Then, 

𝐸1 ⊆ Ω𝑋  and Π(𝜔2 , 𝑋) ⊆ 𝐸1 . Therefore, 𝐾𝑋(𝐸1) = {𝜔2} , hence, the agent knows 

𝐸1. Let 𝐸2 = {𝜔1 , 𝜔2}. Then, because 𝐸2 ⊈ Ω𝑋, 𝐾𝑋(𝐸2) = ∅. This means that it is 

false that the agent knows 𝐸2. ∎ 

 

      𝐸 ⊆ Ω𝑋 in the definition of the knowledge operator is important. When 𝑋 ≠ 𝑃, 

Π(𝜔 , 𝑋) ⊆ Ω is evident. Therefore, if 𝐾𝑋(𝐸) = {𝜔 ∈ Ω|Π(𝜔 , 𝑋) ⊆ 𝐸} for every 𝐸, 

then 𝐾𝑋(Ω)  is not empty, and it allows that the agent knows Ω .6  Notably, 𝐾𝑋(𝐸) 

may be empty for some 𝐸 ⊆ Ω𝑋.  

 

Remark 4 Given 𝐸 ⊆ Ω𝑋, the following are equivalent.  

1. For any 𝜔 ∈ Ω, Π(𝜔 , 𝑋) ⊈ 𝐸.  

2. 𝐾𝑋(𝐸) = ∅.  

 

Example 3 (Continued.)  Let 𝐸3 = {𝜔4} . Then, because Π(𝜔2 , 𝑋) ⊈ 𝐸3 , 

 
6 In the case, Monotonicity is satisfied even if 𝑋 ≠ 𝑃.  
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𝐾𝑋(𝐸3) = ∅. That is, at 𝜔2, it is false that the agent knows 𝐸3. ∎ 

 

      It is evident that 𝐾𝑋(𝐸) is an event on Ω𝑋.  

 

Proposition 2 (Heifetz et al. 2006) For any 𝐸 ⊆ Ω, 𝐾𝑋(𝐸) ⊆ Ω𝑋.  

 

Proof. Given any 𝐸 ⊆ Ω and 𝜔 ∈ 𝐾𝑋(𝐸). By the definition of knowledge operator 

and Subjective Nondelusion, 𝜔 ∈ Π(𝜔 , 𝑋) ⊆ 𝐸 . Then, by Confinedness, as 

Π(𝜔 , 𝑋) ⊆ Ω𝑋, 𝜔 ∈ Ω𝑋. Therefore, 𝐾𝑋(𝐸) ⊆ Ω𝑋. ∎ 

 

      Let ¬𝐾𝑋(𝐸) = Ω ∖ 𝐾𝑋(𝐸)  be the negation of 𝐾𝑋(𝐸) . It interpreted as “An 

agent who can perceive only 𝑋 does not know the event 𝐸.” Here, we can show the 

generalization of properties of knowledge operators in Hefets et al. (2006).  

 

Proposition 3 A knowledge operator K𝑋 has the following properties.  

K1 (Necessitation) 𝑋 = 𝑃 if and only if 𝐾𝑋(Ω) = Ω.  

K2 (Monotonicity) 𝑋 = 𝑃 if and only if 𝐸 ⊆ 𝐹 ⟹ 𝐾𝑋(𝐸) ⊆ 𝐾𝑋(𝐹).  

K3 (Conjunction)  ∀𝜆 ∈ Λ    𝐸𝜆 ⊆ Ω𝑋 or ∀𝜆 ∈ Λ     𝐸𝜆 ⊈ Ω𝑋   ⟹   𝐾𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ) =

⋂ 𝐾𝑋(𝐸𝜆)𝜆∈𝛬 .  

K4 (Truth) 𝐾𝑋(𝐸) ⊆ 𝐸.  

K5 (Positive Introspection) 𝐾𝑋(𝐸) = 𝐾𝑋𝐾𝑋(𝐸).  
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K6 (Negative Introspection) 𝑋 = 𝑃 if and only if ¬𝐾𝑋(𝐸) ⊆ 𝐾𝑋¬𝐾𝑋(𝐸).  

 

Proof. (K1) (⟹) When 𝑋 = 𝑃, by Nondelusion, for any 𝜔 ∈ Ω, 𝜔 ∈ Π(𝜔 , 𝑃) ⊆ Ω. 

That is, Ω ⊆ 𝐾𝑃(Ω). Moreover, by Proposition 2, because 𝐾𝑃(𝐸) ⊆ Ω, 𝐾𝑃(Ω) = Ω.  

  (⟸) Suppose that 𝐾𝑋(Ω) = Ω. Assume that 𝑋 ≠ 𝑃. Then, Ω𝑋 ⊊ Ω. However, by 

the definition of the knowledge operator, 𝐾𝑋(Ω) = ∅. This is a contradiction. 

Therefore, 𝑋 = 𝑃.  

  (K2) (⟹) When 𝑋 = 𝑃, 𝐾𝑃(𝐸) = {𝜔 ∈ Ω|Π(𝜔 , 𝑃) ⊆ 𝐸} ⊆

{𝜔 ∈ Ω|Π(𝜔 , 𝑃) ⊆ 𝐹} = 𝐾𝑃(𝐹).  

  (⟸) Suppose that 𝐸 ⊆ 𝐹 ⟹ 𝐾𝑋(𝐸) ⊆ 𝐾𝑋(𝐹). Assume that 𝑋 ≠ 𝑃. Then, Ω𝑋 ⊊

Ω and 𝐾𝑋(Ω) = ∅. For any ∅ ≠ 𝐸 ⊆ Ω𝑋, because 𝐾𝑋(𝐸) ⊋ 𝐾𝑋(Ω), this is a 

contradiction. Therefore, 𝑋 = 𝑃.  

  (K3) Given any 𝜆 ∈ Λ, suppose that 𝐸𝜆 ⊆ Ω𝑋. Given any 𝜔 ∈ 𝐾𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ). 

Then, Π(𝜔 , 𝑃) ⊆ ⋂ 𝐸𝜆𝜆∈𝛬 . This means that for any 𝜆 ∈ Λ, Π(𝜔 , 𝑃) ⊆ 𝐸𝜆. That is, 

for any 𝜆 ∈ Λ, because 𝜔 ∈ 𝐾𝑋(𝐸𝜆), 𝜔 ∈ ⋂ 𝐾𝑋(𝐸𝜆)𝜆∈𝛬 . For any 𝜆 ∈ Λ, suppose that 

𝐸𝜆 ⊈ Ω𝑋. Then, 𝐾𝑋(𝐸𝜆) = ∅. That is, 𝐾𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ) = ⋂ 𝐾𝑋(𝐸𝜆)𝜆∈𝛬 = ∅.  

  (K4) Given any 𝜔′ ∈ 𝐾𝑋(𝐸), 𝜔′ ∈ Π(𝜔 , 𝑃) ⊆ 𝐸. Therefore, 𝐾𝑋(𝐸) ⊆ 𝐸.  

  (K5) By K4, 𝐾𝑋𝐾𝑋(𝐸) ⊆ 𝐾𝑋. Given any 𝜔 ∈ 𝐾𝑋(𝐸), Π(𝜔 , 𝑃) ⊆ 𝐸. Here, for 

any 𝜔′ ∈ Π(𝜔 , 𝑃), Π(𝜔′ , 𝑃) ⊆ 𝐸. Thus, 𝜔′ ∈ 𝐾𝑋(𝐸). Hence, because Π(𝜔 , 𝑃) ⊆

𝐾𝑋(𝐸), 𝜔′ ∈ 𝐾𝑋𝐾𝑋(𝐸). Thus, 𝐾𝑋(𝐸) ⊆ 𝐾𝑋𝐾𝑋(𝐸). Hence 𝐾𝑋(𝐸) = 𝐾𝑋𝐾𝑋(𝐸).  

  (K6) (⟹) Assume that 𝑋 = 𝑃. Given any 𝜔 ∈ ¬𝐾𝑃(𝐸), 𝜔 ∉ 𝐾𝑃(𝐸). Thus, 
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Π(𝜔 , 𝑃) ⊈ 𝐸. Given 𝜔′ ∈ Π(𝜔 , 𝑃), by Stationarity, because Π(𝜔 , 𝑃) = Π(𝜔′ , 𝑃), 

𝜔′ ∈ ¬𝐾𝑃(𝐸). That is, Π(𝜔 , 𝑃) ⊆ ¬𝐾𝑃(𝐸). Therefore, ¬𝐾𝑋(𝐸) ⊆ 𝐾𝑋¬𝐾𝑋(𝐸).  

  (⟸) Suppose that ¬𝐾𝑋(𝐸) ⊆ 𝐾𝑋¬𝐾𝑋(𝐸) and 𝑋 ≠ 𝑃. Then, 𝐾𝑋(𝐸) ⊆ Ω𝑋 ⊊ Ω. 

Because ¬𝐾𝑋(𝐸) ⊈ Ω𝑋, this must be 𝐾𝑋¬𝐾𝑋(𝐸) = ∅. This is a contradiction. 

Therefore, 𝑋 = 𝑃. ∎ 

 

      In our model, the knowledge operator satisfies Necessitation, Monotonicity and 

Negative Introspection if and only if the agent can perceive all basic propositions in 𝑃.  

 

Remark 5 𝐾𝑋(Ω𝑋) = Ω𝑋.  

 

      Although the remark is obvious, the agent who can perceive 𝑋 believes that 

she faces the Aumann structure with the Ω𝑋. Thus, if we define some correspondence 

on only Ω𝑋, we can define the standard knowledge operator on Ω𝑋.  

      Finally, we show the following proposition proposed by Heifetz et al. (2006).  

 

Proposition 4 (HMS 2006) ¬𝐾𝑋(𝐸) ∩ ¬𝐾𝑋¬𝐾𝑋(𝐸) ⊆ ¬𝐾𝑋¬𝐾𝑋¬𝐾𝑋(𝐸).  

 

Proof. See each property 2 in Proposition 5-7 in below. ∎ 

 

4.3 Awareness/Unawareness Operator 
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In this section, we define the unawareness operator. Suppose that an agent can perceive 

𝑋 . Then, the unawareness operator is defined as 𝑈𝑋(𝐸) = ¬𝐾𝑋(𝐸) ∩ ¬𝐾𝑋¬𝐾𝑋(𝐸) , 

while the awareness operator is defined as 𝐴𝑋(𝐸) = ¬𝑈𝑋(𝐸) = 𝐾𝑋(𝐸) ∪ 𝐾𝑋¬𝐾𝑋(𝐸).  

 

Example 3 (Continued.) For 𝐸1 = {𝜔2} , because ¬𝐾𝑋(𝐸1) = {𝜔1 , 𝜔3 , 𝜔4}  and 

¬𝐾𝑋¬𝐾𝑋(𝐸1) = ∅ , 𝑈𝑋(𝐸1) = ∅ . Therefore, 𝐴𝑋(𝐸1) = {𝜔2 , 𝜔4} . In contrast, for 

𝐸2 = {𝜔1 , 𝜔2} , because ¬𝐾𝑋(𝐸2) = {𝜔1 , 𝜔2 , 𝜔3 , 𝜔4}  and ¬𝐾𝑋¬𝐾𝑋(𝐸2) =

{𝜔1 , 𝜔2 , 𝜔3 , 𝜔4}, 𝑈𝑋(𝐸2) = {𝜔1 , 𝜔2 , 𝜔3 , 𝜔4} and 𝐴𝑋(𝐸1) = ∅. ∎ 

 

      Before we discuss properties of the knowledge and awareness/unawareness 

operators, we must consider three cases: the agent can perceive all basic propositions; 

the agent cannot perceive some non-empty subset of the basic proposition set, and an 

event is the subset of the state space which she can perceive; or the agent cannot 

perceive some non-empty subset of the basic proposition set, and an event is not the 

subset of the state space which she can perceive.  

      Let us show the following lemmas, prior to showing their properties.  

 

Lemma 3 (Heifetz et al. 2006) 𝐸, 𝐹 ⊆ Ω𝑋  ⟹  𝐾𝑋(𝐸 ∪ 𝐾𝑋(𝐹)) = 𝐾𝑋(𝐸) ∪ 𝐾𝑋(𝐹).  

 

Proof. First, given any 𝜔 ∈ 𝐾𝑋(𝐸 ∪ 𝐾𝑋(𝐹)) . Then, Π(𝜔 , 𝑋) ⊆ 𝐸 ∪ 𝐾𝑋(𝐹) . This 
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means that Π(𝜔 , 𝑋) ⊆ 𝐸  or Π(𝜔 , 𝑋) ⊆ 𝐾𝑋(𝐹) . Hence, by K5, because  𝐾𝑋(𝐹) =

𝐾𝑋𝐾𝑋(𝐹) , 𝐾𝑋(𝐸) ∪ 𝐾𝑋𝐾𝑋(𝐹) = 𝐾𝑋(𝐸) ∪ 𝐾𝑋(𝐹) , and 𝜔 ∈ 𝐾𝑋(𝐸) ∪ 𝐾𝑋(𝐹) . That is, 

𝐾𝑋(𝐸 ∪ 𝐾𝑋(𝐹)) ⊆ 𝐾𝑋(𝐸) ∪ 𝐾𝑋(𝐹) . Next, given any 𝜔 ∈ 𝐾𝑋(𝐸) ∪ 𝐾𝑋(𝐹) . By K5, 

𝐾𝑋(𝐸) ∪ 𝐾𝑋(𝐹) = 𝐾𝑋(𝐸) ∪ 𝐾𝑋𝐾𝑋(𝐹) . Then, Π(𝜔 , 𝑋) ⊆ 𝐸  or Π(𝜔 , 𝑋) ⊆ 𝐾𝑋(𝐹) . 

This means that Π(𝜔 , 𝑋) ⊆ 𝐸 ∪ 𝐾𝑋(𝐹) . Therefore, because 𝜔 ∈ 𝐾𝑋(𝐸 ∪ 𝐾𝑋(𝐹)) , 

𝐾𝑋(𝐸) ∪ 𝐾𝑋(𝐹) ⊆ 𝐾𝑋(𝐸 ∪ 𝐾𝑋(𝐹)). Thus, 𝐾𝑋(𝐸 ∪ 𝐾𝑋(𝐹)) = 𝐾𝑋(𝐸) ∪ 𝐾𝑋(𝐹). ∎ 

 

Lemma 4 An awareness operator has the following properties.  

1. (Triviality) If 𝑋 = 𝑃, then 𝐴𝑋(𝐸) = Ω.  

2. (Non-triviality) If 𝑋 ≠ 𝑃 and 𝐸 ⊆ Ω𝑋, then 𝐴𝑋(𝐸) = 𝐾𝑋(𝐸).  

3. (Non-triviality) If 𝑋 ≠ 𝑃 and 𝐸 ⊈ Ω𝑋, then 𝐴𝑋(𝐸) = ∅.  

 

Proof. (1) Suppose that 𝑋 = 𝑃 . Then, 𝐴𝑃(𝐸) = 𝐾𝑃(𝐸) ∪ 𝐾𝑃¬𝐾𝑃(𝐸) . By K5, 

𝐾𝑃(𝐸) ∪ 𝐾𝑃¬𝐾𝑃(𝐸) = 𝐾𝑃𝐾𝑃(𝐸) ∪ 𝐾𝑃¬𝐾𝑃(𝐸) . By Lemma 3, 𝐾𝑃𝐾𝑃(𝐸) ∪

𝐾𝑃¬𝐾𝑃(𝐸) = 𝐾𝑃(𝐾𝑃(𝐸) ∪ ¬𝐾𝑃(𝐸)) = 𝐾𝑃(Ω) = Ω. Therefore, 𝐴𝑃(𝐸) = Ω.  

  (2) Suppose that 𝑋 ≠ 𝑃 and 𝐸 ⊆ Ω𝑋. Then, by Proposition 2, because 𝐾𝑋(𝐸) ⊆

Ω𝑋 , ¬𝐾𝑋(𝐸) ⊈ Ω𝑋 . Therefore, 𝐾𝑋¬𝐾𝑋(𝐸) = 𝐾𝑋(∅) = ∅ . Thus, 𝐴𝑋(𝐸) = 𝐾𝑋(𝐸) ∪

𝐾𝑋¬𝐾𝑋(𝐸) = 𝐾𝑋(𝐸).  

  (3) Suppose that 𝑋 ≠ 𝑃 and 𝐸 ⊈ Ω𝑋. Then, by the definition of the knowledge 

operator, 𝐾𝑋(𝐸) = ∅ . Then, ¬𝐾𝑋(𝐸) = Ω  and 𝐾𝑋(Ω) = ∅ . Therefore, 𝐴𝑋(𝐸) =

𝐾𝑋(𝐸) ∪ 𝐾𝑋¬𝐾𝑋(𝐸) = ∅. ∎ 
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Properties of the knowledge and awareness/unawareness operators is the following.  

 

Proposition 5  When 𝑋 = 𝑃 , the following properties of knowledge and 

awareness/unawareness are obtained:  

① KU Introspection: 𝐾𝑋𝑈𝑋(𝐸) = ∅.  

② AU Introspection: 𝑈𝑋(𝐸) = 𝑈𝑋𝑈𝑋(𝐸).  

③ Weak Necessitation: 𝐴𝑋(𝐸) = 𝐾𝑋(Ω𝑋).  

④ Strong Plausibility: 𝑈𝑋(𝐸) = ⋂ (¬𝐾𝑋)𝑛∞
𝑛=1 (𝐸).  

⑤ Weak Negative Introspection: ¬𝐾𝑋(𝐸) ∩ 𝐴𝑋¬𝐾𝑋(𝐸) = 𝐾𝑋¬𝐾𝑋(𝐸).  

⑥ Symmetry: 𝐴𝑋(¬𝐸) = 𝐴𝑋(𝐸).  

⑦ A-Conjunction: 𝐴𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ) = ⋂ 𝐴𝑋(𝐸𝜆)𝜆∈𝛬 .  

⑧ AK-Self Reflection: 𝐴𝑋𝐾𝑋(𝐸) = 𝐴𝑋(𝐸).  

⑨ AA-Self Reflection: 𝐴𝑋𝐴𝑋(𝐸) = 𝐴𝑋(𝐸).  

⑩ A-Introspection: 𝐾𝑋𝐴𝑋(𝐸) = 𝐴𝑋(𝐸).  

 

Proof. Suppose that 𝑋 = 𝑃 . By condition 1 in Lemma 4, 𝐴𝑋(𝐸) = Ω . Therefore, 

𝑈𝑋(𝐸) = ∅.  

1) 𝐾𝑋𝑈𝑋(𝐸) = 𝐾𝑋(¬𝐾𝑋(𝐸) ∩ ¬𝐾𝑋¬𝐾𝑋(𝐸)) = 𝐾𝑋¬𝐾𝑋(𝐸) ∩ 𝐾𝑋¬𝐾𝑋¬𝐾𝑋(𝐸) ⊆

𝐾𝑋¬𝐾𝑋(𝐸) ∩ ¬𝐾𝑋¬𝐾𝑋(𝐸) = ∅.  

2) By condition 1 in Lemma 4, because 𝐴𝑋(𝐸) = Ω and 𝑈𝑋(𝐸) = ¬𝐴𝑋(𝐸) = ∅, 
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𝐴𝑋𝑈𝑋(𝐸) = 𝐴𝑋(∅) = 𝐾𝑋(∅) ∪ 𝐾𝑋¬𝐾𝑋(∅) = ∅ ∪ 𝐾𝑋(Ω) = Ω . Therefore, 

𝐴𝑋(𝐸) = 𝐴𝑋𝑈𝑋(𝐸) and 𝑈𝑋(𝐸) = 𝑈𝑋𝑈𝑋(𝐸).  

3) By 𝑋 = 𝑃, 𝐾𝑋(Ω) = Ω. By Lemma 4, because 𝐴𝑋(𝐸) = Ω, 𝐴𝑋(𝐸) = 𝐾𝑋(Ω).  

4) By Lemma 4, 𝑈𝑋(𝐸) = ¬𝐴𝑋(𝐸) = ∅ . By Lemma 4 and AU Introspection, 

𝑈𝑋(𝐸) = 𝑈𝑋𝑈𝑋(𝐸) = ∅  and 𝑈𝑋𝑈𝑋𝑈𝑋(𝐸) = 𝑈𝑋(∅) . Then, as 𝐴𝑋(∅) = Ω , 

𝑈𝑋𝑈𝑋𝑈𝑋(𝐸) = 𝑈𝑋(∅) = ∅. By repeating it, 𝑈𝑋(𝐸) = ⋂ (¬𝐾𝑋)𝑛∞
𝑛=1 (𝐸).  

5) 𝐴𝑋¬𝐾𝑋(𝐸) = 𝐾𝑋¬𝐾𝑋(𝐸) ∪ 𝐾𝑋¬𝐾𝑋¬𝐾𝑋(𝐸) = 𝐾𝑋𝐾𝑋¬𝐾𝑋(𝐸) ∪

𝐾𝑋¬𝐾𝑋¬𝐾𝑋(𝐸) = 𝐾𝑋(𝐾𝑋¬𝐾𝑋(𝐸) ∪ ¬𝐾𝑋¬𝐾𝑋(𝐸)) = 𝐾𝑋(Ω) = Ω . Therefore, 

¬𝐾𝑋(𝐸) ∩ 𝐴𝑋¬𝐾𝑋(𝐸) = ¬𝐾𝑋(𝐸) ∩ Ω = ¬𝐾𝑋(𝐸). By 𝑋 = 𝑃, the knowledge 

operator satisfies K6, i.e.,  ¬𝐾𝑋(𝐸) ⊆ 𝐾𝑋¬𝐾𝑋(𝐸) . Moreover, by K4, 

𝐾𝑋¬𝐾𝑋(𝐸) ⊆ ¬𝐾𝑋(𝐸) . Therefore, as ¬𝐾𝑋(𝐸) = 𝐾𝑋¬𝐾𝑋(𝐸) , ¬𝐾𝑋(𝐸) ∩

𝐴𝑋¬𝐾𝑋(𝐸) = 𝐾𝑋¬𝐾𝑋(𝐸).  

6) Given 𝐸 ⊆ Ω, because 𝐴𝑋(𝐸) = Ω, 𝐴𝑋(¬𝐸) = Ω. Hence, 𝐴𝑋(¬𝐸) = 𝐴𝑋(𝐸).  

7) For any 𝐸 ⊆ Ω  and any 𝜆 ∈ 𝛬 , as 𝐴𝑋(𝐸) = Ω , 𝐴𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ) = Ω  and 

𝐴𝑋(𝐸𝜆) = Ω, ⋂ 𝐴𝑋(𝐸𝜆)𝜆∈𝛬 = Ω. Therefore, 𝐴𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ) = ⋂ 𝐴𝑋(𝐸𝜆)𝜆∈𝛬 .  

8) Given 𝐸 ⊆ Ω , because 𝐴𝑋(𝐸) = Ω , 𝐴𝑋𝐾𝑋(𝐸) = Ω . Thus, 𝐴𝑋𝐾𝑋(𝐸) =

𝐴𝑋(𝐸).  

9) Given 𝐸 ⊆ Ω , because 𝐴𝑋(𝐸) = Ω , 𝐴𝑋𝐴𝑋(𝐸) = Ω . Thus, 𝐴𝑋𝐴𝑋(𝐸) =

𝐴𝑋(𝐸).  

10) For any 𝐸 ⊆ Ω, because 𝐴𝑋(𝐸) = Ω, 𝐾𝑋𝐴𝑋(𝐸) = 𝐾𝑋(Ω). By K1, 𝐾𝑋(Ω) =

Ω. Therefore, 𝐾𝑋𝐴𝑋(𝐸) = 𝐴𝑋(𝐸). ∎ 
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Proposition 6 When 𝑋 ≠ 𝑃  and 𝐸 ⊆ Ω𝑋 , the following properties of knowledge 

and awareness/unawareness are obtained:  

① KU Introspection: 𝐾𝑋𝑈𝑋(𝐸) = ∅.  

② AU Introspection: 𝑈𝑋(𝐸) ⊆ 𝑈𝑋𝑈𝑋(𝐸).  

③ Weak Necessitation: 𝐴𝑋(𝐸) ⊆ 𝐾𝑋(Ω𝑋).  

④ Strong Plausibility: 𝑈𝑋(𝐸) ⊆ ⋂ (¬𝐾𝑋)𝑛∞
𝑛=1 (𝐸).  

⑤ Weak Negative Introspection: ¬𝐾𝑋(𝐸) ∩ 𝐴𝑋¬𝐾𝑋(𝐸) = 𝐾𝑋¬𝐾𝑋(𝐸).  

⑥ Reverse Symmetry: 𝐴𝑋(¬𝐸) ⊆ 𝐴𝑋(𝐸).  

⑦ A-Conjunction: 𝐴𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ) = ⋂ 𝐴𝑋(𝐸𝜆)𝜆∈𝛬 .  

⑧ AK-Self Reflection: 𝐴𝑋𝐾𝑋(𝐸) = 𝐴𝑋(𝐸).  

⑨ AA-Self Reflection: 𝐴𝑋𝐴𝑋(𝐸) = 𝐴𝑋(𝐸).  

⑩ A-Introspection: 𝐾𝑋𝐴𝑋(𝐸) = 𝐴𝑋(𝐸).  

 

Proof. Suppose that 𝑋 ≠ 𝑃 and that for any 𝐸 ⊆ Ω, 𝐸 ⊆ Ω𝑋. Then, by Condition 2 in 

Lemma 4, 𝐴𝑋(𝐸) = 𝐾𝑋(𝐸). Therefore, 𝑈𝑋(𝐸) = ¬𝐾𝑋(𝐸).  

1) By 𝐴𝑋(𝐸) = 𝐾𝑋(𝐸), 𝑈𝑋(𝐸) = ¬𝐾𝑋(𝐸). By Proposition 2, because 𝐾𝑋(𝐸) ⊆ Ω𝑋, 

¬𝐾𝑋(𝐸) ⊈ Ω𝑋. Therefore, 𝐾𝑋(¬𝐾𝑋(𝐸)) = ∅.  

2) 𝑈𝑋(𝐸) = ¬𝐾𝑋(𝐸) ⊆ Ω . 𝑈𝑋𝑈𝑋(𝐸) = ¬𝐾𝑋𝑈𝑋(𝐸) . By KU Introspection, because 

𝐾𝑋𝑈𝑋(𝐸) = ∅, ¬𝐾𝑋𝑈𝑋(𝐸) = Ω. Therefore, 𝑈𝑋(𝐸) ⊆ 𝑈𝑋𝑈𝑋(𝐸).  

3) As 𝐴𝑋(𝐸) = 𝐾𝑋(𝐸) by Condition 2 in Lemma 4 and 𝐾𝑋(Ω𝑋) = Ω𝑋 by Remark 
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5, 𝐴𝑋(𝐸) ⊆ 𝐾𝑋(Ω𝑋).  

4) By AU Introspection, 𝑈𝑋𝑈𝑋(𝐸) = ¬𝐾𝑋𝑈𝑋(𝐸) = Ω . 𝑈𝑋𝑈𝑋𝑈𝑋(𝐸) =

𝑈𝑋¬𝐾𝑋𝑈𝑋(𝐸) = 𝑈𝑋(Ω) = ¬𝐾𝑋(Ω). By the definition of the knowledge operator, 

because 𝐾𝑋(Ω) = ∅ , 𝑈𝑋(Ω) = Ω . By repetition, ⋂ (¬𝐾𝑋)𝑛∞
𝑛=1 (𝐸) = Ω . 

Therefore, 𝑈𝑋(𝐸) ⊆ ⋂ (¬𝐾𝑋)𝑛∞
𝑛=1 (𝐸).  

5) By Condition 2 in Lemma 4, 𝐴𝑋¬𝐾𝑋(𝐸) = 𝐾𝑋¬𝐾𝑋(𝐸). By K4, because 𝐾𝑋(𝐸) ⊆

𝐸 ⊆ Ω𝑋 , ¬𝐾𝑋(𝐸) ⊈ Ω𝑋 . Therefore, 𝐾𝑋¬𝐾𝑋(𝐸) = ∅ . Thus, ¬𝐾𝑋(𝐸) ∩

𝐴𝑋¬𝐾𝑋(𝐸) = ¬𝐾𝑋(𝐸) ∩ ∅ = ∅ = 𝐾𝑋¬𝐾𝑋(𝐸).  

6) 𝐴𝑋(¬𝐸) = 𝐾𝑋(¬𝐸) ∪ 𝐾𝑋¬𝐾𝑋(¬𝐸) . By 𝐸 ⊆ Ω𝑋 , ¬𝐸 ⊈ Ω𝑋 . Therefore, 

𝐾𝑋(¬𝐸) = ∅ . By ¬𝐾𝑋(¬𝐸) = Ω , 𝐾𝑋¬𝐾𝑋(¬𝐸) = ∅ . Therefore, 𝐴𝑋(¬𝐸) = ∅ . 

By Condition 2 in Lemma 4, because 𝐴𝑋(𝐸) = 𝐾𝑋(𝐸), 𝐴𝑋(¬𝐸) ⊆ 𝐴𝑋(𝐸).  

7) For any 𝐸 ⊆ Ω𝑋 , because 𝐴𝑋(𝐸) = 𝐾𝑋(𝐸) , 𝐴𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ) = 𝐾𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ) . 

Moreover, for any 𝜆 ∈ 𝛬 , because 𝐴𝑋(𝐸𝜆) = 𝐾𝑋(𝐸𝜆) , ⋂ 𝐴𝑋(𝐸𝜆)𝜆∈𝛬 =

⋂ 𝐾𝑋(𝐸𝜆)𝜆∈𝛬 . Therefore, by K3, 𝐴𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ) = ⋂ 𝐴𝑋(𝐸𝜆)𝜆∈𝛬 . 

8) For any 𝐸 ⊆ Ω𝑋 , by K4, 𝐾𝑋(𝐸) ⊆ 𝐸 . Therefore, by 𝐴𝑋𝐾𝑋(𝐸) = 𝐾𝑋𝐾𝑋(𝐸) , 

𝐾𝑋𝐾𝑋(𝐸) = 𝐾𝑋(𝐸). Thus, 𝐴𝑋𝐾𝑋(𝐸) = 𝐴𝑋(𝐸).  

9) For any 𝐸 ⊆ Ω𝑋 , by K4, as 𝐾𝑋(𝐸) ⊆ 𝐸 . 𝐴𝑋(𝐸) = 𝐾𝑋(𝐸) , 𝐴𝑋𝐴𝑋(𝐸) =

𝐴𝑋𝐾𝑋(𝐸) = 𝐾𝑋𝐾𝑋(𝐸) = 𝐾𝑋(𝐸). Therefore, 𝐴𝑋𝐴𝑋(𝐸) = 𝐴𝑋(𝐸).  

10) For any 𝐸 ⊆ Ω𝑋 , because 𝐴𝑋(𝐸) = 𝐾𝑋(𝐸) , 𝐾𝑋𝐴𝑋(𝐸) = 𝐾𝑋𝐾𝑋(𝐸) = 𝐾𝑋(𝐸) . 

Therefore, 𝐾𝑋𝐴𝑋(𝐸) = 𝐴𝑋(𝐸). ∎ 
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Proposition 7 When 𝑋 ≠ 𝑃  and 𝐸 ⊈ Ω𝑋 , the following properties of knowledge 

and awareness/unawareness are obtained:  

① KU Introspection: 𝐾𝑋𝑈𝑋(𝐸) = ∅.  

② AU Introspection: 𝑈𝑋(𝐸) = 𝑈𝑋𝑈𝑋(𝐸).  

③ Weak Necessitation: 𝐴𝑋(𝐸) ⊆ 𝐾𝑋(Ω𝑋).  

④ Strong Plausibility: 𝑈𝑋(𝐸) = ⋂ (¬𝐾𝑋)𝑛∞
𝑛=1 (𝐸).  

⑤ Weak Negative Introspection: ¬𝐾𝑋(𝐸) ∩ 𝐴𝑋¬𝐾𝑋(𝐸) = 𝐾𝑋¬𝐾𝑋(𝐸).  

⑥ Reverse Symmetry: 𝐴𝑋(¬𝐸) ⊇ 𝐴𝑋(𝐸).  

⑦ A-Conjunction: 𝐴𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ) = ⋂ 𝐴𝑋(𝐸𝜆)𝜆∈𝛬 .  

⑧ AK-Self Reflection: 𝐴𝑋𝐾𝑋(𝐸) = 𝐴𝑋(𝐸).  

⑨ AA-Self Reflection: 𝐴𝑋𝐴𝑋(𝐸) = 𝐴𝑋(𝐸).  

⑩ A-Introspection: 𝐾𝑋𝐴𝑋(𝐸) = 𝐴𝑋(𝐸).  

 

Proof. Suppose that 𝑋 ≠ 𝑃  and that for any 𝐸 ⊆ Ω ,  𝐸 ⊈ Ω𝑋 . By Condition 3 in 

Lemma 4, 𝐴𝑋(𝐸) = ∅. Therefore, 𝑈𝑋(𝐸) = Ω.  

1) 𝐾𝑋𝑈𝑋(𝐸) = 𝐾𝑋(Ω) = ∅.  

2) Because 𝑈𝑋𝑈𝑋(𝐸) = 𝑈𝑋(Ω) . Ω ⊈ Ω𝑋  is obvious, 𝑈𝑋(Ω) = Ω . Therefore, as 

𝑈𝑋𝑈𝑋(𝐸) = Ω, 𝑈𝑋(𝐸) = 𝑈𝑋𝑈𝑋(𝐸).  

3) By Remark 5, 𝐴𝑋(𝐸) = ∅ ⊆ Ω𝑋 = 𝐾𝑋(Ω𝑋).  

4) By AU Introspection, 𝑈𝑋𝑈𝑋𝑈𝑋(𝐸) = 𝑈𝑋(Ω) = Ω . By repetition, 𝑈𝑋(𝐸) =

⋂ (¬𝐾𝑋)𝑛∞
𝑛=1 (𝐸).  
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5) By 𝐸 ⊈ Ω𝑋 , because 𝐾𝑋(𝐸) = ∅ , ¬𝐾𝑋(𝐸) = Ω . 𝐾𝑋¬𝐾𝑋(𝐸) = 𝐾𝑋(Ω) = ∅ . 

Therefore, because 𝐴𝑋¬𝐾𝑋(𝐸) = 𝐴𝑋(Ω) = 𝐾𝑋(Ω) ∪ 𝐾𝑋¬𝐾𝑋(Ω) = ∅ , 

¬𝐾𝑋(𝐸) ∩ 𝐴𝑋¬𝐾𝑋(𝐸) = 𝐾𝑋¬𝐾𝑋(𝐸).  

6) Because 𝐴𝑋(𝐸) = ∅, 𝐴𝑋(¬𝐸) ⊇ 𝐴𝑋(𝐸).  

7) For any 𝐸 ⊈ Ω𝑋, as 𝐴𝑋(𝐸) = ∅, 𝐴𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ) = ∅. Moreover, for any 𝜆 ∈ 𝛬, 

because 𝐴𝑋(𝐸𝜆) = ∅, ⋂ 𝐴𝑋(𝐸𝜆)𝜆∈𝛬 = ∅. Hence, 𝐴𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ) = ⋂ 𝐴𝑋(𝐸𝜆)𝜆∈𝛬 .  

8) Because 𝐾𝑋(𝐸) = ∅ , 𝐴𝑋𝐾𝑋(𝐸) = 𝐴𝑋(∅) = 𝐾𝑋(∅) ∪ 𝐾𝑋¬𝐾𝑋(∅) = ∅ ∪

𝐾𝑋(Ω) = ∅. Therefore, 𝐴𝑋𝐾𝑋(𝐸) = 𝐴𝑋(𝐸).  

9) 𝐴𝑋𝐴𝑋(𝐸) = 𝐴𝑋(∅) = ∅. Therefore, 𝐴𝑋𝐴𝑋(𝐸) = 𝐴𝑋(𝐸).  

10) 𝐾𝑋𝐴𝑋(𝐸) = 𝐾𝑋(∅) = ∅. ∎ 

 

Remark 6 Suppose 𝑋 ≠ 𝑃 . For any 𝜆 ∈ 𝛬 , let 𝐸𝜆 ⊆ Ω𝑋 , and for any 𝛿 ∈ ∆ , let 

𝐸𝛿 ⊈ Ω𝑋. Then, 𝐴𝑋(⋂ 𝐸𝜆𝜆∈𝛬 ⋂ 𝐸𝛿𝛿∈∆ ) ⊇ ⋂ 𝐴𝑋(𝐸𝜆)𝜆∈𝛬 ⋂ 𝐴𝑋(𝐸𝛿)𝛿∈∆ .  

 

      KU Introspection, AU Introspection, Weak Necessitation and Strong 

Plausibility have been proposed by Dekel et al. (1998); Symmetry, A-Conjunction, AK-

Self Reflection and AA-Self Reflection by Modica and Rustichini (1999); Weak 

Negative Introspection, Symmetry, A-Conjunction, AK-Self Reflection, and AA-Self 

Reflection by Halpern (2001); and A-Introspection was proposed by Heifetz et al. 

(2006). However, when 𝑋 ≠ 𝑃 and 𝐸 ⊆ Ω𝑋, AU Introspection, Weak Necessitation 

and Strong Plausibility may not satisfy equality, and when 𝑋 ≠ 𝑃 and 𝐸 ⊈ Ω𝑋, Weak 
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Necessitation may not satisfy equality. Moreover, the A-Conjunction is satisfied only 

when every event satisfies 𝐸 ⊆ Ω𝑋 or 𝐸 ⊈ Ω𝑋. By Remark 6, if the condition does 

not hold, ⋂ 𝐴𝑋(𝐸𝜆)𝜆∈𝛬 ⋂ 𝐴𝑋(𝐸𝛿)𝛿∈∆  may be empty.  

      Interestingly, Symmetry crashes with Non-triviality. Previous studies discussing 

properties of awareness/unawareness prove Symmetry, e.g., Heifetz et al. (2006; 2013a) 

and Li (2009), or assume it, e.g., Modica and Rustichini (1994; 1999), Halpern (2001), 

Heifetz et al. (2008), and Sadzik (2021). In contrast, in our model, when the 

awareness/unawareness operator is non-trivial, Symmetry does not hold. Although 

Fukuda (2020) suggests that Symmetry may not hold in infinite higher-order 

unawareness, he shows that Symmetry holds in second order unknown, i.e., in first 

order unawareness. In contrast with his result, we show that Symmetry does not hold 

in first order unawareness, i.e., in second order unknown. Let us call the properties a 

Reverse Symmetry. Moreover, the inclusion relations in Reverse Symmetry are different, 

whether 𝐸 ⊆ Ω𝑋 or 𝐸 ⊈ Ω𝑋.  

      As shown in the proofs, when the agent cannot perceive a part of basic 

propositions, by definition of the knowledge operator, if the agent knows 𝐸, she may 

not perceive the negation, as it is not in her subjective state space. Therefore, the 

knowledge operator with the negation is empty. When 𝐸 is not in her subjective state 

space, 𝐾𝑋(𝐸) = ∅  and the negations, i.e., ¬𝐸  and ¬𝐾𝑋(𝐸)  are empty or not. 

Therefore, she can perceive them or not.  

      It seems that the features of Reverse Symmetry are important and that there are 
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at least two implications. One hand suggests that we should not discuss alike the event 

that the agent can perceive and the negation that she cannot perceive. The other 

implication is related with modal logics. Modica and Rustichini (1994) shows S4 with 

Symmetry equals to S5. In contrast, our model Symmetry with Non-triviality does not 

hold. Reverse Symmetry may suggest that in discussions about unawareness, we should 

exclude S5, and that we should discuss S4 with Reverse Symmetry in modal logics.  

      Finally, in this subsection, we show Awareness leads to Knowledge, and the 

inverse inclusion. Galanis (2013) proposes the property: For any 𝑋, 𝑌 ⊆ 𝑃 with 𝑌 ⊆

𝑋  and 𝐸 ⊆ Ω , 𝐾𝑌(𝐸𝑌) ⊆ (𝐾𝑋(𝐸𝑌))
𝑌

∩ 𝐴𝑌(𝐸𝑌) . He suggests that if PPK is not 

assumed, then the inverse inclusion may not hold. However, this paper shows PPK 

induced from Subjective Nondelusion and Stationarity of the possibility 

correspondence. Therefore, the inverse inclusion of Awareness leads to Knowledge 

hold. It means that our model does not fit Galanis’s (2013) framework.  

 

Proposition 8  For any 𝑋, 𝑌 ⊆ 𝑃  with 𝑌 ⊆ 𝑋  and 𝐸 ⊆ Ω , 𝐾𝑌(𝐸𝑌) =

(𝐾𝑋(𝐸𝑌))
𝑌

∩ 𝐴𝑌(𝐸𝑌).  

 

Proof. Given 𝑋, 𝑌 ⊆ 𝑃 with 𝑌 ⊆ 𝑋 and 𝐸 ⊆ Ω. It is obvious that 𝐾𝑌(𝐸𝑌) ⊆ 𝐴𝑌(𝐸𝑌). 

By K4, because 𝐾𝑋(𝐸𝑌) ⊆ 𝐸𝑌, 𝐾𝑋(𝐸𝑌) ⊆ Ω𝑌. Given 𝜔 ∈ Ω ∖ 𝐸𝑌. Then, for any 𝜔′ ∈

Ω, 𝜔 ∉ Π(𝜔′ , 𝑋) and 𝜔 ∉ Π(𝜔′ , 𝑌). It means 𝜔 ∉ 𝐾𝑋(𝐸𝑌) and 𝜔 ∉ 𝐾𝑌(𝐸𝑌). That 

is, 𝜔 ∈ ¬𝐾𝑋(𝐸𝑌) and 𝜔 ∈ ¬𝐾𝑌(𝐸𝑌). because 𝜔 is arbitrary, ¬𝐾𝑋(𝐸𝑌) = ¬𝐾𝑌(𝐸𝑌). 
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Hence, 𝐾𝑋(𝐸𝑌) = 𝐾𝑌(𝐸𝑌) . because 𝐸𝑌 ⊆ Ω𝑌 , (𝐾𝑋(𝐸𝑌))
𝑌

= 𝐾𝑋(𝐸𝑌) . Therefore, 

𝐾𝑌(𝐸𝑌) = 𝐾𝑌(𝐸𝑌) ∩ 𝐴𝑌(𝐸𝑌) = 𝐾𝑋(𝐸𝑌) ∩ 𝐴𝑌(𝐸𝑌) = (𝐾𝑋(𝐸𝑌))
𝑌

∩ 𝐴𝑌(𝐸𝑌). ∎ 

 

4-4 Relationships with Standard Aumann Structure 

 

      In our models if 𝑋 = 𝑃 , the main theorem in Dekel et al. (1998), that 

unawareness is trivial, is satisfied as follows.  

 

Theorem 1 In any constructive Aumann structure, the following are equivalent.  

1. 𝑋 = 𝑃.  

2. For any 𝐸 ⊆ Ω, 𝑈𝑋(𝐸) = ∅.  

3. For any 𝐸, 𝐹 ⊆ Ω, 𝐸 ⊆ 𝐹, 𝑈𝑋(𝐸) ⊆ ¬𝐾𝑋(𝐹). 

 

Proof. (1 ⟹ 2) It is obvious by Condition 1 in Lemma 4.  

 (2 ⟹ 3) Given 𝐸 ⊆ Ω, 𝑈𝑋(𝐸) = ∅. Then, for any 𝐹 ⊆ Ω, ∅ = 𝑈𝑋(𝐸) ⊆ ¬𝐾𝑋(𝐹).  

 (3 ⟹ 1) Suppose that for every 𝐸, 𝐹 ⊆ Ω, if 𝐸 ⊆ 𝐹, then 𝑈𝑋(𝐸) ⊆ ¬𝐾𝑋(𝐹). Here, 

assume that 𝑋 ≠ 𝑃 and given 𝐸 = ∅ and  ∅ ≠ 𝐹 ⊆ Ω𝑋. Then, because ¬𝐾𝑋(∅) =

Ω  and 𝐾𝑋(Ω) = ∅ , 𝑈𝑋(∅) = ¬𝐾𝑋(𝐸) ∩ ¬𝐾𝑋¬𝐾𝑋(𝐸) = Ω ∩ ¬𝐾𝑋(Ω) = Ω ∩ (Ω ∖

𝐾𝑋(Ω)) = Ω . Because ¬𝐾𝑋(𝐹) ⊊ Ω  is obvious, ¬𝐾𝑋(𝐹) ⊊ 𝑈𝑋(∅) . This is a 

contradiction. Hence, 𝑋 = 𝑃. ∎ 
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      Dekel et al. (1998) show that if the unawareness operator satisfies Plausibility, 

AU Introspection and KU Introspection, and the knowledge operator satisfies 

Necessitation, then unawareness is trivial. Moreover, they show that under the above 

assumptions of the unawareness operator, if the knowledge operator satisfies 

Monotonicity, the agent is unaware of everything. In our model, where 𝑋 = 𝑃 , we 

show that the knowledge operator and unawareness operator satisfy the above 

properties. Hence, their main theorem must be satisfied when 𝑋 = 𝑃, and vise versa. 

      Chen et al. (2012) show that if the knowledge operator satisfies Necessitation, 

and the unawareness operator satisfies Plausibility, then Negative Introspection is 

equivalent to AU Introspection and KU Introspection, and that if the assumptions 

adding Monotonicity and Truth are satisfied, Negative Introspection is equivalent to 

AU Introspection. In our model, where 𝑋 = 𝑃 , Negative Introspection and AU 

Introspection are equivalent. Moreover, Negative Introspection is equivalent to 

Symmetry, as shown by Modica and Rustichini (1994). Therefore, we can generalize 

the main theorem in Chen et al. (2012) and Modica and Rustichini (1994) as follows.  

 

Theorem 2 In any constructive Aumann structure, the following are equivalent.  

1. 𝑋 = 𝑃.  

2. Negative Introspection if and only if AU Introspection if and only if Symmetry.  

 

Proof. (1 ⟹ 2) Suppose that 𝑋 = 𝑃. Then, by Proposition 3, Negative Introspection 
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holds. Moreover, by Proposition 5, AU Introspection and Symmetry hold.  

(2 ⟹ 1 ) Suppose that Negative Introspection, AU Introspection and Symmetry are 

equivalent. Here, assume that 𝑋 ≠ 𝑃. Then, by Proposition 3, Negative Introspection 

does not hold, and by Proposition 6 and Proposition 7, Symmetry does not hold. 

However, by Proposition 6 and Proposition 7, AU Introspection holds. This contradicts 

that the three properties are equivalent. Therefore, 𝑋 = 𝑃. ∎ 

 

      Finally, we consider a relationship with Fukuda (2020). He suggests that non-

trivial unawareness can be discussed in (non-partitional) standard state space models, 

and that Necessitation crashes AU Introspection. Hence, as pointed out by him, if AU 

introspection does not hold where Necessitation is satisfied, non-trivial unawareness 

can be discussed. Subsequently, he proposes Reverse AU Introspection (𝑈𝑋(𝐸) ⊇

𝑈𝑋𝑈𝑋(𝐸) ) instead of AU Introspection. He suggests two points: one is that AU 

Introspection is not necessary discussing non-trivial unawareness; the other is that if 

AU Introspection does not hold, (non-partitional) standard state space models represent 

awareness of unawareness. In contrast, our Reverse AU Introspection with Non-

triviality may not hold in our model when the equation of the inclusion relation does 

not hold. Our model must induce AU Introspection, even if the agent cannot perceive 

some part of basic propositions. The different results imply that different features exist 

between Fukuda (2020) and this study.  
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Ⅴ Concluding Remarks 

 

      This paper presents a constructive Aumann structure where a state space is a 

complete lattice. In contrast with Heifets et al. (2006) and Li (2009), the family of 

disjoint state spaces is not necessary in our model. However, unlike in the case of 

standard state space models, our models are multi-attribute models, similarly to those 

of Heifets et al. and Li. Note that our same states between different state spaces have 

different attributes. This means that a property of a state in each subjective state space 

turn on relationships with the others state in the state space.  

      Our model is a single agent model, and we do not discuss higher-order 

perceptions. However, our results differ from those of previous studies, as shown in 

Proposition 6, Proposition 7, and Remark 6. Possibly, other properties do not hold in 

multi-agent models or higher-order perceptions.  

      In particular, Symmetry with non-trivial unawareness is not satisfied. Previous 

studies prove or assume the property, but we show the impossibility. In the result 

(Reverse Symmetry), the implication is that we must not discuss alike the event that the 

agent can perceive and the negation that she cannot perceive, and that S5 in modal 

logics must be excluded discussing unawareness.  

      In contrast, constructive state spaces, HMS-state spaces, and Li-state spaces are 

equivalent, and we show generalizations of results in Deket et al. (1998) as Theorem 1 

in this paper, and in Chen et al. (2012) (and Modica and Rustichini 1994) as Theorem 
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2 in this paper. This implies that our model is an intermediate between Heifetz et al. 

(2006) and Li’s (2009) models and non-partitional standard state space models.  

      Previous studies discuss choice theories with unawareness, e.g., Karni and Vierø 

(2013; 2017) and Piermont (2017), interactive situations with unawareness, e.g., Auster 

(2013), Heifetz et al. (2013a) and Galanis (2013; 2018), and games with unawareness, 

e.g., Heifetz et al. (2013b), Halpern and Rêgo (2014), Perea (2018) and Feinberg (2020). 

In future studies, we must be able to introduce Aumann structures with complete lattices 

to their studies. For example, our model must be applied to Bayesian games with 

unawareness. Previous studies discussing games with unawareness are Sadzik (2021) 

and Meier and Schipper (2014). Sadzik discusses probabilistic beliefs with 

unawareness based on Heifetz et al. (2006) and defines Bayesian equilibrium in normal-

form games with unawareness. Meier and Schipper discuss probabilistic beliefs based 

on Heifetz et al. (2013a), define Bayesian equilibrium and prove the existence.7 We 

will discuss probabilistic beliefs based on our Aumann structure with a complete lattice 

and introduce it to Bayesian games with unawareness.  
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