
 
 
 
 
 
 
 
 

Discussion Paper No.342 
 

 
 

 

 

 

                                         
 
 
 

 January 2021 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INSTITUTE OF ECONOMIC RESEARCH 
Chuo University 

Tokyo, Japan 

The Chaotic Monopolist Revisited with  
Bounded Rationality and Delay Dynamics 

Akio Matsumoto 
Chuo University 

 

Ferenc Szidarovszky 
Corvinus University 

 



The Chaotic Monopolist Revisited with
Bounded Rationality and Delay Dynamics�

Akio Matsumotoy Ferenc Szidarovszkyz

Abstract

Two types of boundedly rational monopolists are studied when the
marginal revenue is not necessarily negative sloping. Knowledgeably mo-
nopolists (k-monopolists) know the analytic form of the price function
but unable to compute the pro�t-maximizing output level. Limited mo-
nopolists (`-monopolists) know only the price and output values in two
previous time periods. It is assumed that k-monopolists adjust their out-
put levels according to the usual gradient process, while `-monopolists
approximate the marginal pro�t with a two-point �nite di¤erence for-
mula. Discrete and continuous time scales are examined. A single-delay
model is considered for k-monopolists, however for `-monopolists a two-
delay model is constructed. In the discrete case the stability condition
is the same for the two models and requires a su¢ ciently small speed of
adjustments. However, there are di¤erences in the two dynamics. In the
continuous case the discrete models are transformed into continuous mod-
els via Berezowski transformation. In the one delay case the critical values
of the delays are computed and the directions of stability swiching deter-
mined. In the two-delay case the stability switching curves are analytically
found and the directions of stability switchings are characterized by com-
puting the stability index for each point of the curves. The analytical
results are veri�ed and illustrated via numerical studies, when sensitivity
analysis is performed showing that an increase in the adjustment coe¢ -
cient shrinks the stability region, while it is extended by increasing the
inertia coe¢ cient.
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1 Introduction

A textbook monopoly theory implicitly assumes that a monopolist possesses (i)
perfect knowledge of the price function, (ii) the enough computability to make
its optimal choices and (iii) instantaneous information about the economic ac-
tivities in the market. Further, the price function is assumed to be (iv) lin-
ear. Consequently, the textbook monopolist can solve the pro�t maximization
condition to determine a unique monopoly output and set the corresponding
monopoly price on the price function to clear the market. Such a monopolist is
called a rational monopolist that is a pro�t-maximizer and a price-maker. Since
the rational monopolist can hit on the exact point at which its pro�t is maxi-
mized and jump to it with a one-shot, the theory does not involve any dynamic
consideration.
In the old literature, Robinson (1933) is critical for a linear shape of the

price function and emphasizes that a nonlinear price function is plausible in
the market where there are several groups of consumers and each possesses a
di¤erent level of income. In such an environment, even if the price curve is
downward-sloping, the marginal revenue curve takes a convex-concave shape
generating multiple monopoly states. A monopolist with imperfect knowledge
somehow arrives at one of them but have no incentive to move further, although
it possibly gains a larger pro�t at some other point. No one doubts the impor-
tance of limited information, uncertainty, and non-instantaneous response for
optimal decision making. However, little has been done to develop the existing
monopoly theory.1

In recent literature, some studies have been conducted on the optimal behav-
ior of a boundedly rational monopolist that lacks some or all requirements (i), (ii),
(iii) and (iv). This development gives rise to a natural question: what happens if
such a monopolist sets its output at some level other than the monopoly output
level? Puu (1995) reproduces Robinson�s verbal model faithfully and mathemat-
ically with a cubic price function having the in�ection point. It is demonstrated
that complicated output dynamics can arise when the monopolist adopts the
gradient adjustment based on the past realized pro�ts in discrete-time scales.
Further, assuming that the price function is hyperbolic or log-concave, Naimzada
and Ricchiuti (2008), Askar (2013) and Elsadany and Awad (2016) construct the
discrete-time output adjustment process of the boundedly rational monopolist
and numerically exhibit chaotic output evolution. Matsumoto and Szidarovszky
(2014) examine discrete and one-delay monopoly dynamics with special binomial
price and cost functions, when the dynamic equation includes an inertia coe¢ -
cient. Only recently, Matsumoto and Szidarovszky (2020) reexamine this model
in a continuous-time framework under the conditions that the price function is
hyperbolic.
In this study, we return to Puu (1995) and reconsider, in a new apparatus of

delay di¤erential equation, Robinson�s insight that the marginal revenue curve
is not necessarily negative-sloping and the monopolist does not know all about

1Basic elements of today�s theory can be found in Robinson (1933) and Hicks (1935).

2



the market. To proceed, we introduce two boundedly rational monopolists. It
is �rst assumed that neither of them has enough computability to calculate the
monopoly output level. Besides, the monopolist is referred to as "knowledge-
able" if it has full information on the form of the price function and "limited" if
it does not know the form of the price function but possesses the values of output
and price only in the past two periods. We call the former the k-monopolist and
the latter the `-monopolist for convenience. Concerning the output level�s de-
termination, we adopt the gradient method based on observing a pro�t change
per unit output change. In the existing literature, it is not yet revealed whether
the stability conditions for the k-monopolist and the `-monopolist are the same
or not. It is not fully discussed whether delayed information could be a source
of output oscillations when the stability conditions are violated. Hence, this
paper compares the dynamic behavior of these two monopolists and discuss the
similarities and di¤erences between them.
The paper is organized as follows. Section 2 constructs a basic monopoly

model. Section 3 reviews the local and global dynamics in discrete-time scales.
Section 4 builds two continuous time models that correspond to the discrete-time
model. It is the central part of this paper and is divided into three subsections.
The dynamics for the k-monopolist and for `-monopolist is considered in the
�rst and second subsections. A comparison between the dynamics of the two
monopolists is made in the third. Section 5 o¤ers conclusions and outlines
further research directions.

2 Basic Models

Consider a monopolist that produces the quantity of output x. The price and
cost functions are denoted as p(x) and c(x). The pro�t function is de�ned as a
di¤erence of the revenue from the production cost,

�(x) = p(x)x� c(x): (1)

The pro�t-maximization condition for an interior solution is

d�

dx
= 0 (2)

and the market-clearing condition is to determine a price on the price function,

p = p(x): (3)

A textbook monopolist or rational monopolist can solve the pro�t-maximization
condition (2) to determine its monopoly output xM and set a monopoly price
pM through (3).
Our interest is focused on a boundedly rational monopolist that cannot make

such an optimal decision due to insu¢ cient information. We formally de�ne two
monopolists depending on how much information they have. If a monopolist
has full knowledge of the market price and cost functions but lacks the full
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computability, it is called the knowledgeable monopolist or the k-monopolist. If a
monopolist has neither of requirements (i) and (ii) but knows the values of x and
p in the past two periods of time, then it is called the limited monopolist or the `-
monopolist. Since each monopolist is unable to solve the �rst-order condition (2)
of the pro�t maximization, it determines an output level by checking whether
a small change in the current output will increase or decrease their pro�ts.
If the pro�t is expected to increase, decrease or remain the same, then the
monopolist increases, decreases and maintains the current level, accordingly.
The k-monopolist knows the form of the marginal pro�t. Hence it will adjust
output according to the following rule in discrete-time scales,

x(t) = x(t� 1) +Kd�(t� 1)
dx(t� 1) (4)

where K is the adjustment coe¢ cient and assumed to be positive. Alternatively,
the `-monopolist observes only the pro�ts �(t � 1) and �(t � 2) with output
levels x(t � 1) and x(t � 2) in the immediate past two periods. Based on this
information, it determines the next output level as

x(t) = x(t� 1) +K�(t� 1)� �(t� 2)
x(t� 1)� x(t� 2) : (5)

The solutions of these dynamic equations give the output behavior over time.
Note that information acquisition requires some time-delays in the discrete-time
framework. The formula (4) is called the gradient method and is often used to
explore the dynamics of the boundedly rational monopolist.2

In this section, we recapitulate a basic structure of Puu (1995) that recon-
siders Robinson (1933). The price function is cubic,

p(x) = A�Bx+ Cx2 �Dx3: (6)

The revenue is R(x) = p(x)x and thus the marginal revenue is also cubic,

MR(x) = A� 2Bx+ 3Cx2 � 4Dx3: (7)

It is further assumed that the cost function is cubic in x and has no �xed cost,

K(x) = Ex� Fx2 +Gx3

and then the marginal cost is quadratic,

MC(x) = E � 2Fx+ 3Gx2: (8)

The pro�t function becomes quartic and is simpli�ed as

�(x) = ax� bx2 + cx3 � dx4 (9)

2See, Naimzada and Ricchiuti (2008), Askar (2013), Elsadany and Awad (2016)). The
adjustment process of (5) is considered in Puu (1995) and Matsumoto and Szidarovszky (2021)
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with
a = A� E; b = B � F; c = C �G; and d = D

The marginal pro�t is

d�

dx
= a� 2bx+ 3cx2 � 4dx3: (10)

Solving d�=dx = 0 yields the pro�t maximizing output levels. The number
of the optimal solutions depends on the parameter speci�cation and is one or
three. Puu (1995) assumes the following parameter speci�cation,

Assumption I. a = 3:6; b = 2:4; c = 0:6 and d = 0:05:

Equating the marginal pro�t to zero and solving it yield three real solutions,

xe1 = 3�
p
3; xe2 = 3 and x

e
3 = 3 +

p
3 (11)

The corresponding pro�ts are

�(xe1) = �(x
e
3) =

9

5
and �(xe2) =

27

20

where �(xe1) and �(x
e
3) are the (local) maximum pro�t values and �(xe2) is the

(local) minimum pro�t value. Figure 1 illustrates the price curve, the marginal
pro�t curve and the marginal cost curve, which is a reproduction of Figure
1 of Puu (1995) intended to duplicate Figure 22 of Robinson (1933). In our
framework, both monopolists lack enough computability to �nd the optimal
values and do not know the existence of multiple optimal outputs. Having their
own information, the monopolists determine their production decisions based
on the gradient of the marginal pro�t changes. The two main questions we are
confronted with are the followings:

(i) Under what condition can the monopolist arrive at the optimal (pro�t-
maximizing) solution?

(ii) Where does the monopolist go when it is unable to reach the optimal
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solution?

Figure 1. Price curve, MR and MC curves

3 The Discrete-Time Models

In the discrete-time scales, Puu (1995) has considered the dynamic behavior
of the `-monopolist that knows only the two points on the price function. It
cannot calculate the marginal pro�t but obtains a proxy for it by a two-point
divided di¤erence formula:

��

�x
=
�[x(t� 1)]� �[x(t� 2)]
x(t� 1)� x(t� 2) (12)

where the right-hand side is equal to the following,

a� b [x(t� 1) + x(t� 2)] + c
�
x2(t� 1) + x(t� 1)x(t� 2) + x2(t� 2)

�
�d
�
x3(t� 1) + x2(t� 1)x(t� 2) + x(t� 1)x2(t� 2) + x3(t� 2)

�
and is denoted as g [x(t� 1); x(t� 2)]. Hence, the searching process of the `-
monopolist (5) can be described by a second-order di¤erence equation,

x(t) = x(t� 1) +Kg [x(t� 1); x(t� 2)] . (13)

We also examine the k-monopolist dynamic behavior for comparison. Since the
k-monopolist knows the price and cost functions and thus the marginal pro�t,
(10), its output is determined by a �rst-order non-linear di¤erence equation,

x(t) = x(t� 1) +Kf [x(t� 1)] (14)
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where

f(x) =
d�

dx
= a� 2bx+ 3cx2 � 4dx3

Notice that each of the equilibrium outputs xei for i = 1; 3 is a stationary
output for both dynamic systems, (13) and (14). The stability condition for
(14) is ���� dx(t)

dx(t� 1)

���� = j1� 2�Kj < 1 (15)

that is
K <

1

�

where, under Assumption I,

� = b� 3cxei + 6d (xei )
2
=
3

5
for i = 1; 3:

The characteristic polynomial of the homogeneous part corresponding to (13) is

'(�) = �2 � (1� �K)�+ �K

where
@g

@x(t� 1) =
@g

@x(t� 2) = ��:

The stability conditions for a quadratic equation are

'(1) = 2�K > 0; '(�1) = 2 > 0 and 1� �K > 0: (16)

From (15), the absolute value of the slope of (14) at the stationary output is
less than unity if K < 1=�. Since the �rst two conditions in (16) always hold,
the stability of system (13) is assured if the last inequality is satis�ed, K < 1=�.
Hence, local stability of the stationary output are summarized as follows:

Theorem 1 Given Assumption I, the optimal outputs, xe1 and x
e
3; are locally

asymptotically stable in both dynamic equations (13) and (14) if K < 1=�.

We now investigate how the output globally evolves when the adjustment
parameter K is continuously changed. Under Assumption I, Figure 2(A) shows
two bifurcation diagrams when the initial point is selected around the larger
equilibrium xe3:

3 The red bifurcation diagram is for the k-monopolist and the
blue one for the `-monopolist. The bifurcation parameter K has been increased
in steps of 0:007 from 0:1 to K1 = 3:335 for the red diagram and to K2 = 3:58
for the blue one. Trajectories for K larger than those critical values eventually
take negative values and thus lose their economic meanings. For each value of
K; dynamic systems (13) and (14) are iterated 2000 times and the output data

3We obtain a symmetric bifurcation diagram with respect to the x = xe2 line when an initial
point is selected in the neighborhood of xe1: This is because the pro�t function is symmetric
with respect to x = xe2.
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for the last 100 iterations are plotted against K. It is con�rmed in Figure 2(A)
that the equilibrium xe3 is asymptotically stable for K < K0 = 5=3. Figure 2(B)
describes two time trajectories starting at the same initial point, x(0) = xe3+0:5
with K = 1:6 in which the red one is for the k-monopolist and the blue one for
the `-monopolist. Although it will take more time than the k-monopolist, the
`-monopolist having only very limited information can arrive at the equilibrium
when it adopts cautious adjustments with a smaller value of K.

(A) x(0) = xe3 + 0:05 (B) Convergent trajectories

Figure 2. Bifurcation diagram and time trajectories for the two monopolists

We present some numerical results concerning the global dynamics of (13)
and (14) when the equilibrium xe3 becomes unstable. The time-trajectory start-
ing in the neighborhood of xe3 is illustrated in red and that starting around x

e
1

in blue. The �rst results are obtained for K = 2:1. The red bifurcation diagram
in Figure 2(A) shows that the equilibrium becomes unstable and a new stable
period-4 cycle is created after a stable period-2 cycle loses stability. Figure
3(A) illustrates a phase diagram of the periodic cycle surrounding the higher
and lower intersections of the convex-concave curve, x(t) = f [x(t� 1)] and the
diagonal, x(t) = x(t � 1). In Figure 3(B), the loci of g [x(t� 1); y(t� 1)] = 0
consist of the negative-sloping curve and the cycle-wise curve. The blue bi-
furcation diagram in Figure 2(A) seems to imply the birth of a period-3 cycle
after stability loss. However, as shown in Figure 3(B), a period-4 cycle emerges.
Observing the red diamond-shape cycle in the upper-right corner, the left and
right points� ordinates are 4:58552 and 4:57699 after 500 iterations and thus
their di¤erence is almost invisible. The same result is obtained for the blue one
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in the lower-left corner.

(A) Period-4 cycles (B) Period-4 cycles

Figure 3. Periodic cycles

In the next examples, K takes di¤erent values and the situation becomes a
bit complicated. K is increased to 2:6 in Figure 4(A) in which, after in�nitely
many bifurcations occur, chaotic output dynamics is possible, but the attractor
is contained in two disjoint intervals. K is increased to 2:75 in Figure 4(B)
which shows two coexisting chaotic attractors.

(A) K = 2:6 (B) K = 2:75

Figure 4. Separated chaotic dynamics

In the case of K = 3:3, the situation is much more complicated. In both of
Figures 5(A) and 5(B), the chaotic attractors with smaller K merge into one
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attractor. Time trajectories erratically oscillate over the entire domain.

(A) K = 3:3 (B) K = 3:3
33

Figure 5. Merged chaotic dynamics

There are some di¤erences between the two monopolists. The red bifurca-
tion diagram reveals that the dynamics is transformed into chaotic oscillation
through a typical period-doubling cascade having windows. The blue bifurca-
tion diagram displays a jump to chaos from periodic-oscillations. Figures 3-5
also exhibit similarities; periodic-cycles appear after losing stability, attractors
of chaotic dynamics are �rst separated and then merged into one as K is in-
creased.

4 Continuous-Time Models: Berezowski Tran-
sition

In this section, we transform a di¤erence equation into a continuous equation
and shed light on the roles of time delays in dynamics, addressing the fol-
lowing question: what can be said about the local and global dynamics when
obtaining information needs some delays in continuous-time framework. There
are many ways to transform a discrete-time model to a continuous-time model.
Euler approximation is frequently used. Despite it, we adopt the method used
by Berezowski (2001) and assume that the di¤erence equations (13) for the
`-monopolist and (14) for the k-monopolist are connected with some physical
process of de�nite inertia and rewrite these as continuous ones in the following
ways;

� _x(t) + x(t) = x(t� �1) +Kg [x(t� �1); x(t� �2)] (17)

and
� _x(t) + x(t) = x(t� �) +Kf [x(t� �)] (18)
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where the �xed time interval of the discrete-time equation is replaced with the
time delays, �1; �2 and � :4 The equilibrium outputs xei for i = 1; 3 are stationary
points of these equations and taking � = 0 can reduce (17) and (18) to the
original discrete-time models. These delay continuous-time models have three
essential factors that a¤ect dynamics, the inertia coe¢ cient �; the adjustment
coe¢ cient K and the time delays, �1; �2 and � . We �rst investigate the local
stability of the k-monopolist�s dynamics equation (18) and then turn to the
`-monopolist�s dynamic equation (17).

4.1 Continuous Model for the k-monopolist

To examine the local stability of the k-monopolist, we linearize the nonlinear
equation (18) around the equilibrium output,

� _x(t) + x(t)� (1� 2�K)x(t� �) = 0 (19)

where
@f

@x(t� 1) = �2�:

The corresponding characteristic equation based on an exponential solution,
x(t) = e�tu; u 6= 0; is

��+ 1� (1� 2�K) e��� = 0: (20)

Since the real solution � = 0 does not solve this equation, we assume the
imaginary solution � = i!; ! > 0:5 With it, the characteristic equation can be
separated into the real and imaginary parts,

1� (1� 2�K) cos!� = 0;

�! + (1� 2�K) sin!� = 0:
(21)

Moving the constants of both equations to the right-side, squaring and adding
them present

!2 =
4�K (�K � 1)

�2
: (22)

Although � > 0 and K > 0, !2 � 0 if �K � 1. In other words, there is no
! > 0 that means no existence of pure imaginary solutions. Hence, no stability
switch occurs. In addition, if � = 0, then (19) is reduced to

� _x(t) = �2�Kx(t):

�K=� > 0 leads to the local asymptotical stability in the no-delay case. These
results, therefore, imply that the delay is harmless and is summarized as follows:

4 If we take Euler approximation, _x(t) = x(t)� x(t� 1); then (13) and (14) are reduced to
_x(t) = Kg [x(t� �1); x(t� �2)]

and
_x(t) = Kf [x(t� �)] :

With these equations, we can proceed the analysis as in the same way to be done below.
5A conjugate pair can also be a solution. We only should consider positive !:
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Theorem 2 If �K � 1, then the optimal outputs xei for i = 1; 3 of (18) are
locally asymptotically stable for any � � 0.

ALternatively, if �K > 1, then !2 in (22) is positive and thus local stability
can be violated. In particular, solving (22) for ! gives a positive solution,

!+ =
2
p
�K (�K � 1)

�
> 0

that is substituted into the �rst equation of (21) to have

cos

 
2�
p
�K(�K � 1)

�

!
=

1

1� 2�K : (23)

Solving (23) for � yields the critical values of delay � ,6

�m(�;K) =
�

2
p
�K(�K � 1)

�
cos�1

�
1

1� 2�K

�
+ 2m�

�
for m 2 Z+: (24)

Since the characteristic solution of (20) depends on delay, di¤erentiating it
gives

�
d�

d�
� (1� 2�K) e���

�
�� d�
d�
� �
�
= 0

or
d�

d�
= � (1� 2�K) e����

� + (1� 2�K) e���� :

With (1� 2�K) e��� = 1 + �� from (20), the derivative is

d�

d�
= � (1 + ��)�

� + (1 + ��) �
:

At � = i!; its real part is

Re

�
d�

d�

����
�=i!

�
=

(�!)
2

(� + �)
2
+ (��!)

2 > 0:

This inequality implies that the solutions crossing the imaginary axis at i! cross
it from left to right as � increases. Hence, stability is lost at �0 (�;K) via a Hopf
bifurcation7 and stability cannot be regained for any larger value of � : It is seen
that all real parts of the characteristic solution are negative for � < �0 (�;K) and
one of them becomes zero for � = �0 (�;K) : Therefore, we have the following
on delay dynamics of the k-monopolist:

6 If !+ is substituted into the second equation of (21), we can obtain the same values in a
di¤erent form.

7 It is con�rmed now that the characteristic equation has a pair of pure imaginary solutions
and no other solutions with zero real parts exist and that the derivative of the real part for
� is positive at the optimal output. Hence a Hopf bifurcation can occur. See, for example,
Rustichini (1989).
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Theorem 3 If �K > 1, then the optimal outputs xei for i = 1; 3 of (18) are
locally stable for � < �0(�;K); loses stability at � = �0(�;K) and bifurcates to
periodic oscillations for � > �0(�;K) where m = 0 in (24) leading to

�0(�;K) =
�

2
p
�K(�K � 1)

cos�1
�

1

1� 2�K

�
:

We now consider how a parameter change a¤ects the critical value of � . From
(24), we have the following derivatives with �K > 1,

@�0(�;K)

@�
=

1

2
p
�K(�K � 1)

cos�1
�

1

1� 2�K

�
> 0

and

@�0(�;K)

@K
= �

��
h
2�K(�K � 1) +

p
�K(�K � 1)(2�K � 1)2 cos�1

�
1

1�2�K

�i
4 (2�K � 1)�K(�K � 1)2 < 0:

These inequality directions imply that increasing � extends the stability region
and increasing K makes the critical value of � smaller. That is, � has the
stabilizing e¤ect and K has the destabilizing e¤ect. For an appropriate K value
with which the discrete model exhibits complex dynamics, the corresponding
continuous model produces similar dynamics if � takes su¢ ciently smaller values
(i.e., the dominance of the K�s destabilizing e¤ect). However, such oscillatory
dynamics disappear if � takes su¢ ciently larger values (i.e., the dominance of
the inertia stabilizing e¤ect). These are numerically checked. The parameters
are taken to be � = 1; K = 3 and �0 ' 1:221 in Figure 6(A) in which increasing
� simpli�es dynamics via period-halving cascade, whereas � = 1, � = 0:2 and
K0 ' 1:777 in Figure 6(B) in which increasing K complicates dynamics via
period-doubling cascade.8

(A) �0 ' 1:221 (B) K0 ' 1:777

Figure 6. Bifurcation diagrams for � and K with given value of �

8Solving (24) for � under given K and for K under given � yield the critical values, �0 and
K0, respectively.
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To examine the time-delay e¤ects, we perform some simulations for � with
di¤erent K-values and �xed value of � = 0:2: In Figure 7(A) with K = 2:2; the
optimal point bifurcates to a limit cycle when it loses stability at � = �0 '
0:343: For further increased values of � ; a new multi-period cycle is created and
then chaotic oscillations arise. A typical time trajectory exhibits regular alter-
native oscillations around higher and lower output levels. In Figure 7(B), the
value of K is increased to 2:5 and accordingly, the critical � value is decreased to
�0 ' 0:242: Chaotic oscillations around the equilibrium output appear after the
ála period-doubling bifurcations. Two x-intervals including output oscillations
in Figure 7(A) are merged to one as shown in Figure 7(B).

(A) K = 2:2 (B) K = 2:5

Figure 7. Bifurcation diagrams for � with given values of � and K

4.2 Continuous Model for the `-monopolist

We now draw attention to dynamic equation (17) of the `-monopolist. It is to
be noticed that the optimal outputs xei for i = 1; 3 are the stationary outputs
for (17) and the inequality relation, �1 � �2; should hold since x(t� �1) is the
newest output information obtained at t� �1 and x(t� �2) is the second-newest
at t� �2. Linearizing (17) around the stationary output gives

� _x(t) + x(t) = (1� �K)x(t� �1)� �Kx(t� �2)

where, as in the di¤erence equation,

@g

@x(t� �1)
=

@g

@x(t� �2)
= ��:

The stability of the linearized equation depends on the locations of the solutions
of the associated characteristic equation. Substituting the exponential solution
presents

��+ 1� (1� �K) e���1 + �Ke���2 = 0:
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or dividing both sides by 1 + �� gives the following form,

1 + a1(�)e
���1 + a2(�)e

���2 = 0 (25)

where

a1(�) = �
1� �K
1 + ��

and a2(�) =
�K

1 + ��
:

As is seen, the characteristic equation depends on delays and hence its solutions
also depend on delays. In consequence, as the values of delays change, the sta-
bility of stationary outputs may change accordingly. Such phenomena are called
stability switches. The key technique determining those switches under two de-
lays is fully discussed in Matsumoto and Szidarovszky (2018) and is applied for
the two delay continuous model, (17).
Any stability switch might occur when the real part of the characteristic

solution changes its sign from negative to positive (i.e., stability loss) or positive
to negative (i.e., stability gain). It is clear that � = 0 does not solve the
characteristic equation (25). It is crucial to determine the values of �1 and �2
at which (25) has a pair of conjugate pure imaginary solutions. We then let
� = i! with ! > 0 and substitute it into (25),

1 + a1(i!)e
�i!�1 + a2(i!)e

�i!�2 = 0 (26)

where

a1(i!) = �
1� �K
1 + (�!)

2 + i
(1� �K) �!
1 + (�!)

2

and

a2(i!) =
�K

1 + (�!)
2 � i

�K�!

1 + (�!)
2 :

The absolute values and the arguments of a1(i!) and a2(i!) are, respectively,
given as follows,

ja1(i!)j =
j1� �Kjq
1 + (�!)

2
, ja2(i!)j =

�Kq
1 + (�!)

2
(27)

and
arg [a1(i!)] = arg [a2(i!)] = � tan�1 (�!) + 2� (28)

We now solve equation (26) in which the three terms are considered three
vectors in the complex plane. Their magnitudes are 1; ja1(i!)j and ja2(i!)j.
The right hand side of (26) is zero, implying that if we put these vectors head
to tail, they form a triangle (Figure 8). The imaginary solution � = i! with
! > 0 can solve (26) for some �1 and �2 if and only if the following triangle
conditions hold,9

1 � ja1(i!)j+ ja2(i!)j
9See Proposition 3.1 of Gu et al (2005) showing that an imaginary solution is obtained if

and only if the triangle conditions hold.
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and
�1 � ja1(i!)j � ja2(i!)j � 1:

Figure 8. Triangle formed by three vectors

Depending on whether �K � 1 or �K > 1, we have the following two results.

Theorem 4 If �K � 1, then the optimal outputs xei for i = 1; 3 of (17) are
locally asymptotically stable for any �1 � 0 and �2 � 0.

Proof. If �K � 1; from (27),

ja1(i!)j+ ja2(i!)j =
1q

1 + (�!)
2
< 1:

One of the triangle conditions is violated (that is, a triangle is not constructed),
implying that no pure imaginary solutions solve (26) for any �1 and �2: The
optimal output is locally asymptotically stable for �1 = �2 = 0: Hence, it is
stable for any �1 and �2 since no stability switch occurs.

The other result is concerned with the critical values of the delays:

Theorem 5 If �K > 1 and �! � 2
p
�K(�K � 1), then the characteristic

equation (17) with �1 > 0 and �2 > 0 has pure imaginary solutions for the
following sets of the delays,

��1;m(!) =
1

!
[arg[a1(i!)] + (2m� 1)� � �1(!)] for m 2 Z+;

��2;n(!) =
1

!
[arg[a2(i!)] + (2n� 1)� � �2(!)] for n 2 Z+
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where

�1(!) = cos
�1

0@ (�!)
2
+ 2 (1� �K)

2 (�K � 1)
q
1 + (�!)

2

1A and �2(!) = cos�1

0@ (�!)
2
+ 2�K

2�K

q
1 + (�!)

2

1A
Proof. It can be checked that the triangle conditions are satis�ed if �K > 1
and �! � 2

p
�K(�K � 1). The internal angles �1 and �2 of the triangle are

calculated by the law of cosine. For the vectors a1(i!)e�i!�1 and a2(i!)e�i!�2 ;
we have the followings, noticing that a symmetric triangle can be formed above
and under the real axis in Figure 8,

arg
�
a1(i!)e

�i!�1
�
� �1(!) + 2m� = �; m 2 Z+

and
arg
�
a2(i!)e

�i!�2
�
� �2(!) + 2n� = �; n 2 Z+:

With arg
�
e�i!�k

�
= �!�k; the forms of ��1;m(!) and ��2;n(!) are obtained.

We can numerically con�rm the stabilizing e¤ect of � for a �xed value of
K and the destabilizing e¤ect of K for a �xed value of �: Given ��1;0 = 1 and
�+2;0 = 2; the critical values, �0 ' 1:674 in Figure 9(A) and K0 ' 1:727 in Figure
9(B), are obtained by solving the following simultaneous equations with K = 3,
respectively, with � = 0:2;10

!��1;0 = � tan�1 [�!] + � � �1(!);

!�+2;0 = � tan�1 [�!] + � + �2(!):

As is seen, dynamics generated by (17) are simpli�ed when � is increased and
is complicated when K is increased. It is interesting to observe that the shapes
of the bifurcation diagrams constructed by decreasing � or increasing K seem
to be similar to the blue diagram obtained by increasing K in Figure 2(A)

10We solve these nonlinear equations with Mathematica, vol.12.1.
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(A) �0 ' 1:674 (B) K0 ' 1:727

Figure 9. Bifurcation diagrams with respect to � and K

We immediately obtain the followings from Theorem 5:

Theorem 6 The stability switching curve consists of the following segments,

SW 1
m;n =

(�
�+1;m(!); �

�
2;n(!)

�
j ! 2

"
0;
2
p
�K(�K � 1)

�

#
; (m;n) 2 Z+

)

SW 2
m;n =

(�
��1;m(!); �

+
2;n(!)

�
j ! 2

"
0;
2
p
�K(�K � 1)

�

#
; (m;n) 2 Z+

)
:

We now examine how the stability switching curve is shifted when the para-
meter � or K changes. In Figure 10, �2 � �1 in the yellow region, the red, green,
and blue curves are described by the segments SW 2

0;0; respectively, with � = 0:2
and K = 1:75; � = 0:3 and K = 1:75 and � = 0:2 and K = 2:11 Let us take
the red curve as a starting point. The red one divides the feasible yellow region
into two subregions. It has been checked that the stationary point is locally
asymptotically stable when there are no delays. In other words, the stability
is preserved in the subregion including the origin of �1 = �2 = 0: Hence, the
lower part of the yellow region is the stability region. The stability is lost when
a pair of two delays crosses the stability switching curve. When the value of
� is increased, the red curve is shifted rightward to the green curve, enlarging
the stability region. Hence, increasing � has the stabilizing e¤ect, which has
been con�rmed in Figure 9(A). However, when the K-value is increased, the

11The corresponding dotted curves in the white region are described by the segment SW 1
0;0

with the same parameter speci�cations. However, the condition �1 � �2 is violated, and thus,
these curves are not considered anymore.
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red curve is shifted leftward to the blue curve, shrinking the stability region.
Hence increasing K has the destabilizing e¤ect, which has also been con�rmed
in Figure 9(B).

Figure 10. Stability switcing curves

We calculate the stability index to �nd directions of stability switches and
provide a theoretical background for numerically-determined directions of the
stability switches.12 The second vector in (26) is rewritten as

a1(i!)e
�i!� =

 
� 1� �K
1 + (�!)

2 + i
(1� �K) �!
1 + (�!)

2

!
(cos!�1 � i sin!�1) :

Let R1 and I1 denote its real and imaginary parts,

R1 = �
1� �K
1 + (�!)

2 cos!�1 +
(1� �K) �!
1 + (�!)

2 sin!�1;

I1 =
(1� �K)
1 + (�!)

2 sin!�1 +
(1� �K) �!
1 + (�!)

2 cos!�1:

(29)

Similarly, the third vector is

a2(i!)e
�i!� =

 
AK

1 + (�!)
2 � i

AK�!

1 + (�!)
2

!
(cos!�2 � i sin!�2)

and the real part, R2, and the imaginary part, I2; are given by

R2 =
�K

1 + (�!)
2 cos!�2 �

�K�!

1 + (�!)
2 sin!�2;

I2 = �
�K

1 + (�!)
2 sin!�2 �

�K�!

1 + (�!)
2 cos!�2:

(30)

12See Gu et al. (2005) for more detailed discussion.
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The stability index is de�ned as follows:

S = R2I1 �R1I2:

With (29) and (30), S can be written as

S = ��K (�K � 1)
1 + (�!)

2 sin! (�1 � �2) (31)

where we use the following relations: the coe¢ cients of sin!�1 sin!�2 and
cos!�1 cos!�2 are zero and those of sin!�1 cos!�2 and cos!�1 sin!�2 are,
respectively,

��K (�K � 1)
1 + (�!)

2 and
�K (�K � 1)
1 + (�!)

2 :

We call the direction of the curve that corresponds to increasing ! the positive
direction. We also call the region on the left-hand side the region on the left when
we head in the curve�s positive direction. The region on the right is similarly
de�ned. Concerning the stability switches, we have the following result from
Matsumoto and Szidarovszky (2018).

Theorem 7 Let (�1; �2) be a point on the stability switching curve. Assume we
look toward increasing values of ! on the curve, and a point (�1; �2) moves from
the region on the right to the region on the left. Then a pair of characteristic
solutions crosses the imaginary axis to the right if S > 0 and to the left if S < 0:

We now compute the stability index on the solid red stability switching curve
in Figure 10. From Theorem 5, the red segment is the locus of the following
points,

SW 2
0;0 =

(�
��1;0(!); �

+
2;0(!)

�
j ! 2

"
0;
2
p
�K(�K � 1)

�

#)

where, by the de�nitions of the critical delays in Theorem 5,

!
�
��1;0(!)� �+2;0(!)

�
= � [�1(!) + �2(!)] < 0:

With �K > 1 and �! > 0; the stability index of (31) is positive. Hence, when
a pair of (�1; �2) crossing the solid red segment from the region on the right
denoted by R to the region on the left denoted by L in Figure 10, a pair of the
corresponding characteristic solutions crosses the imaginary axis to the right
from the left, implying stability loss. The same consideration can be applied to
the stability index along the green and blue curves.
We draw attention to how the delay a¤ects dynamics. We take K = 2:2 and

�2 = 2: Figure 11(A) illustrates a bifurcation diagram for �1 2 [0; �2] and shows
the birth of complicated dynamics for �1 a little bit larger than �0 ' 0:207
and a little bit smaller than 3(= �2): A limit cycle appears for the medium
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values of �1. Figure 11(B) is an enlargement of Figure 11(A) around �0 and
shows that multi-stability occurs. The red curve is the diagram with the initial
function '(t) = xe3 + 0:2 for t � 0 and the blue curve is the diagram with
the initial function '(t) = xe3 + 0:01: The two curves are di¤erent for �1 less
than �1 = 0:5007 and become identical for larger �1: Figure 11(C) is the phase
diagrams with �1 = 0:5007; before merging the red curve and the blue curve.
Multi-stability is observed when K is increased to 2:5 but is not found any more
for K = 3.

(A) K = 2:2 (B) Enlargement (C) �1 = 0:5007

Figure 11. Bifurcation diagrams for �1

4.3 Comparison: Delay Dynamics

This subsection compares the delay e¤ects caused by the two monopolists with
larger values of K. For numerical simulations, we �x the value of the inertia
coe¢ cient � = 0:2, the adjustment coe¢ cient K = 3 and �2 = 3. It is then in-
vestigated how the dynamics change when the bifurcation parameters �1 of (17)
and � of (18) are increased. In numerical simulations, the initial functions asso-
ciated with the dynamics equations are assumed to be identical, '(t) = xe3+0:1
for t � 0. Figures 12(A) and (B) illustrate the bifurcation diagrams with respect
to � and �1; both of which are selected from the interval [0:01; 3]:13 The critical
delay values for which the stability is violated are di¤erent: the stability loss
of the `-monopolist occurs at �L0 ' 0:1 that is smaller than the critical value
of the k-monopolist, �K0 ' 0:164: After losing stability, the optimal output is
replaced with periodic or aperiodic oscillations and the resultant diagrams are
separated into two parts, one in which the oscillations are limited to the neigh-
borhood of xe3 and the other in which the oscillations are over the entire interval
[0; 6]. Concerning the red diagram for the k-monopolist, the optimal output
proceeds to chaotic oscillation through a typical period-doubling bifurcation
cascade for � � �K1 ' 1:07: The periodic cycles appear again for � > �K1 ; and
their domains are extended. For the blue diagram for the `-monopolist, di¤er-

13 It is to be noticed that the two-delay equation (17) is de�ned for �1 � �2 = 3 whereas
the one-delay equation (18) does not have such a restriction and can be de�ned for � > 3 as
well.
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ent dynamic transition is observed with respect to �1: In the �rst phase for
�1 < �

L
a ' 1:43; a period-2 cycle is basic and its variants emerge. At the near-

end of the �rst phase, chaotic oscillations suddenly arise. In the second phase for
�1 > �

L
a ; chaotic oscillation expands its domain including x

e
1. The blue diagram

has a window in which periodic oscillations arise for �1 > �Lb ' 2:11: Chaotic
oscillations appear again for �1 getting closer to 3. Returning to the de�nitions
of g(x1(t� �1); x2(t� �2)) and f(x(t� �)); we see that

lim
� i!�j

g(x1(t� �1); x2(t� �2)) = f(xj(t� � j)) for i; j = 1; 2 and i 6= j.

This equality implies that the two-delay model (17) converges to the one-delay
model (18) when one delay � j of (17) is �xed and the other delay � i gets closer
to � j . Hence in the neighborhood of �1 = 3; both delay equations (17) and (18)
generate similar dynamics, very complicated dynamics in our example.

(A) �K0 ' 0:164 (B) �L0 ' 0:100

Figure 12. Bifurcation diagrams with respect to � and �1

Figure 13 depicts phase diagrams for three di¤erent values of bifurcation
parameters � and �1 in which the blue and red trajectories are represented,
respectively, by (17) and (18). For � = �1 = 0:4; both equations generate
periodic solutions as shown in Figure 13(A) in which equation (17) produces
a blue limit cycle and equation (18) a red multiperiodic cycle. The phase tra-
jectories starting for '(t) = xe3 + 0:1 are illustrated in the upper-right corner.
Figure 13(A) also displays symmetric diagrams with respect to x = xe2 in the
lower-left corner. These cycles are obtained under the di¤erent initial function,
'(t) = xe1 + 0:1: For the smaller bifurcation values, the delay equations have
initial point dependency. In Figure 13(B) the values of the bifurcation parame-
ters are increased to � = �1 = 1:2. It is seen that the k-monopolist�s dynamics
exhibits global oscillations, that is, the trajectory oscillates around xe3 for a
while, then moves to the neighborhood of xe1 oscillating there. Soon later, it is
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back to the xe3-neighborhood again. These ups and downs are repeated. On the
other hand, the `-monopolist�s dynamics is con�ned to the neighborhood of the
equilibrium output. The neighborhood where it stays depnds on which initial
function the dynamic equation adopts. The dynamics with a larger �1-value is
more complicated than the one with a lower �1-value. For � = 1:8; the lower os-
cillation and the upper oscillation are merged to make chaotic global oscillation
including two stationary outputs, xe1 and x

e
3 as shown in Figure 13(C).

(A) � = �1 = 0:4 (B) � = �1 = 1:2 (C) � = �1 = 1:8

Figure 13. Comparison between phase diagrams of two monopolists

5 Concluding Remarks

Rational monopolies have exact knowledge on the price function and have
enough computability to �nd the pro�t maximizing output level, which is then
known instantaneously giving no need for dynamic adjustments. Boundedly ra-
tional monopolies either know the price function but do not have the su¢ cient
computability to �nd the pro�t maximizing output level or they can observe only
output and price data from previous time periods. In the �rst case the usual
gradient adjustment process is applied and its delay version gives a one-delay
model. In the second case the marginal pro�t is approximated with a two-point
�nite di¤erence formula leading to a two-delay model. Assuming discrete time
scales, the stability conditions are identical requiring su¢ ciently small speed of
adjustments, however, the dynamics of the two models show some di¤erences.
The case of continuous dynamics is di¤erent. In the one delay case the critical
values of the delay are computed and the directions of stability switches are
determined via Hopf bifurcation. In the two delay case the discrete model is
transformed into a continuous model based on the Berezowski transformation.
The stability switching curves are analytically determined and the directions of
stability switches are characterized based on the value of the stability index at
each point of the curves. The theoretical results are veri�ed and illustrated by
numerical studies, In cases of stable and unstable steady states the dynamics is
illustrated and sensitivity analysis is performed. It is shown that the speed of

23



adjustments has a destabilizing e¤ect while the inertia coe�cient has a stabilizing
e¤ect.
The study reported in this paper can be extended in several directions. First,

more complex forms of the price function can be included in the model and to
show how the dynamics depends on function forms and parameters. Second,
to avoid sudden market �uctuations, a linear combination of previous output
values can replace the most current output level leading to multiple delay sys-
tems. Third, the gradient adjustment process can be changed to other dynamic
schemes. In the gradient process the pro�t maximizing output is approximated
with a �rst-order formula, however, higher-order formulas are also known from
the literature, which can be included in the dynamic equations.
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