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Abstract

In cases of non-point pollution sources the regulator can observe the
total emission but unable to distinguish between the �rms. The regulator
then selects an environmental standard. If the total emission level is high-
ter than the standard, then the �rms are uniformly punished, and if lower,
then uniformly awarded. This environmental regulation is added to n-�rm
dynamic oligopolies and the asymptotical behavior of the corresponding
dynamic systems is examined. Two particular models are considered with
linear and hyperbolic price functions. Without delays the equilibrium is
always (locally) asymptotically stable. It is shown how the stability can
be lost if time delays are introduced in the output quantities of the com-
petitors as well as in the �rms� own output levels. Complete stability
analysis is presented for the resulting one- and two-delay models includ-
ing the derivations of stability thresholds, stability switching curves and
directions of the stability switches.
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1 Introduction

Oligopolies are among the most frequently examined models in mathematical
economics. The early results up to the mid 70s are summarized in Okuguchi
(1976), and their multi-product extensions are discussed in Okuguchi and Szi-
darovszky (1999). These models and the corresponding dynamic systems are
linear, the asymptotical behavior of which is simple, since local asymptotical
stability implies global asymptotical stability. From the early 90s an increasing
attention was given to nonlinear oligopolies.The asymptotical stability of these
models was examined by a variety of concepts including linearization, Lyapunov
functions and the critical curve methods among others. Bischi et al. (2010) of-
fers a comprehensive summary of these developments. In all previous models
instantaneous information was assumed about the actions of the competitors as
well as about the own output selections of the �rms. However data collection,
determining appropriate actions and their implementations need time, therefore
delayed models describe reality more accurately. More recently Matsumoto and
Szidarovszky (2018) o¤er a collection of delayed dynamic oligopolies with brief
summary of the used mathematical methodology as well as with discussions on
di¤erent types of oligopoly models. A large variety of oligopoly models consider
environmental issues. The e¤ects of di¤erent environmental regulation policies
are examined by many authors including Downing and White (1986), Segerson
(1988), Jung et al. (1996), Montero (2002), Okuguchi and Szidarovszky (2002,
2007). In the case of non-point pollution sources the government can de�ne a
cut-o¤ value for the total emission level of the entire industry but cannot dis-
tinguish among the �rms. If the total emmission level exceeds the cut-o¤ value,
then the �rms are punished, otherwise rewarded. In early stages the existence
of the Nash equilibrium was the main fucus and how the govenmental policy
a¤ects the total polution level of the industry. Depending on the selected model,
increased ambient charge in duopolies can lead to higher pollution level (Gan-
guli and Raju, 2012), and in other cases to lower pollution (Raju and Ganguli,
2013). This result is generalized for n-�rm Cournot oligopolies by Matsumoto
et al. (2018a). Dynamic models are introduced and their asymptotical behavior
examined without and with time delays. The corresponding Bertrand models
are considered and investigated in Ishikawa et al. (2019), and in Matsumoto et
al. (2018b). Hyperbolic duopolies and triopolies are studied in Matsumoto et
al. (2019a) with static and dynamic analysis. Three-stage optimum models are
introduced in Matsumoto rt al. (2019b) for Cournot duopolies without product
di¤erentiation. This paper extends and further generalizes the earlier method-
ology and stability results for two particular models. Linear and hyperbolic
oligopolies are discussed with ambient charges or rewards, with selected cut-o¤
pollution levels for the entire industry. As the dynamic models are very similar,
we will present the complete analysis in detail for the general case including
both particular models.
This paper is developes as follows. In Section 2 the mathematical models are

introduced. In Sections 3 and 4 one-delay and two-delay models are examined.
In both cases two special cases are discussed in detail: symmetric �rms and
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general duopolies. Conclusions and further research directions are outlined in
Section 5.

2 The Mathematical Models

An oligopoly of n-�rm is considered. Let qk denote the output of �rm k,
Qk =

P
i 6=k qi the output of the rest of the industry and Q = qk + Qk the

industry output. Assume that the price function of the product by �rm k is
given as Pk(qk; Qk). Firm k emits pollutions ekqk in connection with its pro-
duction, so the total amount of pollutions is

Pn
k=1 ekqk. The government can

measure this total amount and unable to distinguish behavior between the �rms.
An exogenously determined environmental standard E is selected by the gov-
ernment and a � > 0 is chosen to determine the emission penalty or award for
the �rms. If ck is the production unit cost of �rm k, then its payo¤ is given as

�k = [Pk(qk; Qk)� ck] qk � �
 

nX
i=1

eiqi � E
!
: (1)

Assume that at time t, each �rm k has only delayed information about the
outputs of the competitors, so the payo¤ of �rm k is the following,

�k(t) = [Pk(qk(t); Qk(t� �k))� ck] qk(t)� �

0@ekqk(t) + nX
i 6=k

eiqi(t� �k)� E

1A :
(2)

The gradient adjustment process of �rm k is driven by the delay di¤erential
equation

_qk(t) = Kk
@�k(t)

@qk(t)
(3)

where Kk > 0 is the speed of adjustment of �rm k and the marginal pro�t is

@�k(t)

@qk(t)
=

@Pk
@qk(t)

qk(t) + Pk � ck � �ek:

Let

gk(qk(t); Qk(t� �k)) =
@�k(t)

@qk(t)
:

Then equation (3) can be rewritten as

_qk(t) = Kkgk(qk(t); Qk(t� �k)): (4)

In order to linearize this equation. Let

Uk =
@gk
@qk(t)

and Vk =
@gk

@Qk(t� �k)
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and notice that for all i 6= k,

@gk
@qi(t� �k)

= Vk

since by di¤erentiation the last term of gk(qk(t); Qk(t� �k)) cancels out. Then
the linearized equation has the form

_qk"(t) = KkUkqk" +KkVk
P
i 6=k

qi"(t� �k) (5)

where qi" is the di¤erence of qi and its equilibrium level.
Before proceeding to the stability analysis of the system, two important cases

are introduced.

Case 1.

Assume di¤erentiated products, when the price of the product of �rm k is
as follows:

Pk = �k � qk � 
k
P
i 6=k

qi

where �k is the maximum price and 
k represents the substitutability of the
products, 0 � 
k � 1. In this case,

�k(t) =

"
�k � qk(t)� 
k

P
i 6=k

qi(t� �k)� ck

#
qk(t)��

0@ekqk(t) + nX
i 6=k

eiqi(t� �k)� E

1A
(6)

therefore

gk(qk (t) ; Qk(t� �k)) = �k � 2qk(t)� 
kQk(t� �k)� ck � �ek

and so
Uk = �2 and Vh = �
k:

Notice that for all k;
Uk < Vk � 0:

Case 2.

Assume a hyperbolic oligopoly without product di¤erentiation and common
price function

P =
�

qk +Qk

where � is a positive constant. In this case the pro�t function is rewritten as

�k(t) =

�
�

qk(t) +Qk(t� �k)
� ck

�
qk(t)� �

0@ekqk(t) + nX
i 6=k

eiqi(t� �k)� E

1A
(7)
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consequently,

gk (qk (t) ; Qk(t� �k)) =
�Qk(t� �k)

(qk(t) +Qk(t� �k))2
� ck � �ek:

Then at the equilibrium

Uk = �2�Qk(t� �k) (qk(t) +Qk(t� �k))
(qk(t) +Qk(t� �k))4

= �2�
�Qk
�Q3

where �Qk and �Q are the equilibrium levels of Qk and Q. Similarly,

Vk =
� (qk(t) +Qk(t� �k))2 � 2�Qk(t� �k) (qk(t) +Qk(t� �k))

(qk(t) +Qk(t� �k))4

=
�
�
�qk � �Qk

�
�Q3

where �qk is the equilibrium level of qk.
Notice that Uk < 0; Uk < Vk; and if there is no dominant �rm, then Vk � 0.

In the rest of this paper we will assume the absence of a dominant �rm. So we
will assume that

Uk < Vk � 0:

3 Single Delay Stability

To determine the characteristic equation of model (5) assume exponential solu-
tion form, qi"(t) = e�tui, then substituting them into (5) gives

�e�tuk = KkUke
�tuk +KkVke

�(t��k) P
i 6=k

ui:

So the characteristic equation can be written as

'(�) = det

0BBBBBB@
A1 � � B1e

���1 � � � B1e
���1

B2e
���2 A2 � � � � � B2e

���2

�
�
�

�
�
�

�
�
�
�

Bne
���n Bne

���n � � � An � �

1CCCCCCA = 0 (8)

where the simplifying notation Ak = KkUk and Bk = KkVk are used. Let

a =

0BBBBBB@
B1e

���1

B2e
���2

�
�
�

Bne
���n

1CCCCCCA ; b =
0BBBBBB@

1
1
�
�
�
1

1CCCCCCA
5



and
D = diag

�
A1 � ��B1e���1 ; � � �; An � ��B���nn

�
to have

'(�) = det
�
D + abT

�
= det(D) det(I +D�1abT )

= det(D)
h
1 + bTD�1a

i
where the identity discussed in Bischi et al. (2010, Appendix E) is used. So

'(�) =
nQ
k=1

�
Ak � ��Bke���k

� �
1 +

nP
k=1

Bke
���k

Ak � ��Bke���k

�
: (9)

We have now two possibilities. Consider �rst equation

Ak � ��Bke���k = 0: (10)

Without delay �k = 0 and from (10), � = Ak �Bk < 0. Stability switch might
occur if � = i! with some ! > 0. Then (10) implies that

Ak � i! �Bk (cos!�k � i sin!�k) = 0:

Separation of the real and imaginary parts shows that

Bk cos!�k = Ak;

Bk sin!�k = !:

Adding the squares of these equations gives that

!2 = B2k �A2k < 0

since Ak < Bk � 0. There is no solution for !.
Consider next equation

1 +
nP
k=1

Bke
���k

Ak � ��Bke���k
= 0: (11)

Proposition 1 System (5) is locally asymptotically stable if all roots of equation
(11) are negative real numbers or complex with negative real parts.

In Case 1, system (5) is linear, so the asymptotical stability is global. Equa-
tion (11) is very complicated in general, so two special cases are examined.
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3.1 Case of symmetric �rms

Assume Ak = A; Bk = B; �k = � , then (11) is specialized as

A� �+ (n� 1)Be��� = 0: (12)

Without delay, � = A + (n � 1)B < 0. Stability switching might occur with
� = i! (! > 0), and substituting it into (12) yields

A� i! + (n� 1)B (cos!� � i sin!�) = 0;

which implies that
(n� 1)B cos!� = �A;

(n� 1)B sin!� = �!:
(13)

By adding the squares of these equations, we have

!2 = (n� 1)2B2 �A2.

If (n� 1)B � A; then the right hand side is non-positive with no solution and
without stability switch. Otherwise,

!� =
p
(n� 1)2B2 �A2: (14)

From (13), it is clear that cos!� < 0 and sin!� > 0; furthermore the critical
values of the delays are

��m =
1

!�

�
cos�1

�
�A

(n� 1)B

�
+ 2m�

�
; m � 0: (15)

The direction of stability switches can be determined by using Hopf bifurcation.
Let � be selected as the bifurcation parameter and consider � as a function of
� : � = �(�): By implicitly di¤erentiating equation (12) with respect to � shows
that

�0 =
�(��A)�
1 + (��A)�

where equation (12) is used again. At the critical value � = i!;

�0 =
!2 + iA!

1�A� + i!� �
1�A� � i!�
1�A� � i!� ;

the real part of which has the same sign as

!2(1�A�) + !A!� = !2 > 0:

Proposition 2 In the symmetric case, the equilibrium is locally asymptotically
stable if (n� 1)B � A, otherwise if � < ��0. At � = ��0 stability is lost via Hopf
bifurcation and stability cannot be regained with larger values of � .
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In the linear case,

Uk = �2; Vk = �
k so 
k = 
:

Furthermore with Kk = K;

A = �2K and B = �K


so
(n� 1)B �A = K [�(n� 1)
 + 2]

which is non-negative if


 � 2

n� 1 :

3.2 General duopolies

In the case of n = 2, equation (8) shows that

'(�) = (A1 � �) (A2 � �)�B1B2e��(�1+�2) = 0

which is a single-delay equation with � = �1 + �2:

�2 � (A1 +A2)�+A1A2 �B1B2e��� = 0: (16)

Without delay � = 0; and (16) becomes

�2 � (A1 +A2)�+A1A2 �B1B2 = 0:

Since jAkj > jBkj for k = 1; 2; both the linear coe¢ cient and the constant term
are positive implying that the roots are negative real values or complex with
negative real parts. Stability switch might occur if � = i! with ! > 0 when
from (16) we have

�!2 � i(A1 +A2)! +A1A2 �B1B2 (cos!� � i sin!�) = 0

implying that
B1B2 cos!� = �!2 +A1A2

B1B2 sin!� = (A1 +A2)!:

By adding the squares of these equations and arranging the terms, we have

!4 +
�
A21 +A

2
2

�
!2 +

�
A21A

2
2 �B21B22

�
= 0:

Since jAkj > jBkj for k = 1; 2; all coe¢ cients are positive showing that no
stability switch can occur.

Proposition 3 The equilibrium in duopoly is always locally asymptotically sta-
ble with all �1; �2 � 0:
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4 Two-Delay Stability

Assume next that �rm k has a delay �k1 in its only output and delay �
k
2 in the

outputs of its competitors. Then the dynamic equation (5) modi�es as follows:

_qk"(t) = Akqk"(t� �k1) +Bk
P
i 6=k

qi"(1� �k2) (17)

Similarly to equations (8) and (9), the characteristic equation can be derived as

'(�) =
nQ
k=1

�
Ake

���k1 � ��Bke���
k
2

�"
1 +

nP
k=1

Bke
���k2

Ake���
k
1 � ��Bke���

k
2

#
= 0:

(18)

Proposition 4 The equilibrium of system (17) is locally asymptotically stable
if all roots of (18) are negative reals or complex with negative real parts.

Similarly to the previous model, two special cases will be reexamined.

4.1 Case of symmetric �rms

Assume now that Ak = A;Bk = B; �k1 = �1 and �
k
2 = �2. From (18), we have

to consider two cases. First we examine equation

Ae���1 � ��Be���2 = 0 (19)

which can be rewritten as

1 + a1(�)e
���1 + a2(�)e

���2 = 0

with

a1(�) = �
A

�
and a2(�) =

B

�
:

We will apply the method introduced by Gu et al. (2005) and discussed in
details in Matsumoto and Szidarovszky (2018a). Notice that

a1(i!) = i
A

!
and a2(i!) = �i

B

!
;

ja1(i!)j = �
A

!
and ja2(i!)j = �

B

!

and
arg [a1(i!)] =

3�

2
and arg [a2(i!)] =

�

2
:

The range of ! is determined by conditions,

ja1(i!)j+ ja2(i!)j � 1

�1 � ja1(i!)j � ja2(i!)j � 1
(20)
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which simplify in our case as

�A
!
� B
!
� 1 or ! � � (A+B)

and

�1 � �A
!
+
B

!
� 1 or ! � B �A:

So ! runs through interval [B �A;� (A+B)]. Moreover by the law of cosine,

�1(!) = cos
�1

"
1 + ja1(i!)j2 � ja2(i!)j2

2 ja1(i!)j

#
= cos�1

�
!2 +A2 �B2

�2A!

�
(21)

and

�2(!) = cos
�1

"
1 + ja2(i!)j2 � ja1(i!)j2

2 ja2(i!)j

#
= cos�1

�
!2 +B2 �A2

�2B!

�
(22)

The stability switching curves are given by pairs
�
��k1 ; ��m2

�
with

��k1 =
1

!

�
3�

2
+ (2k � 1)� � �1(!)

�
(23)

and

��m2 =
1

!

�
3�

2
+ (2m� 1)� � �2(!)

�
(24)

The directions of stability switching can be assessed by computing the fol-
lowing expressions:

a1(!)e
�i!�1 = i

A

!
(cos!�1 � i sin!�1)

and

a2(!)e
�i!�2 = �iB

!
(cos!�2 � i sin!�2)

with real and imaginary parts,

R1 = Re
�
a1(!)e

�i!�1
�
=
A

!
sin!�1;

I1 = Im
�
a1(!)e

�i!�1
�
=
A

!
cos!�1;

R2 = Re
�
a2(!)e

�i!�2
�
= �B

!
sin!�2;

I2 = Im
�
a2(!)e

�i!�2
�
= �B

!
cos!�2

and �nally

S1 = R2I1 �R1I2 =
AB

!2
(sin!�1 cos!�2 � cos!�1 sin!�2)
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which has the same sign as sin!(�1 � �2):
Consider next equation

Ae���1 � �+ (n� 1)Be���2 = 0 (25)

which can be rewritten as

1 + a1(�)e
���1 + a2(�)e

���2 = 0

with

a1(�) = �
A

�
and a2(�) = �

(n� 1)B
�

:

Then

a1(i!) = i
A

!
and a2(i!) = i

(n� 1)B
!

;

ja1(i!)j = �
A

!
and ja2(i!)j = �

(n� 1)B
!

and
arg [a1(i!)] = arg [a2(i!)] =

3�

2
:

The range of ! is determined again based on conditions (20), which are the
following in this case:

�A
!
� (n� 1)B

!
� 1 or ! � � (A+ (n� 1)B)

and

�1 � �A
!
+
(n� 1)B

!
� 1 or ! � jA� (n� 1)Bj

so range of ! is in the interval,

[jA� (n� 1)Bj ;� (A+ (n� 1)B)] :

By the low of cosines,

�1(!) = cos
�1
�
!2 +A2 � (n� 1)2B2

�2A!

�
(26)

and

�2(!) = cos
�1
�
!2 + (n� 1)2B2 �A2

�2(n� 1)B!

�
: (27)

The stability switching curves are given by pairs
�
��k1 ; ��m2

�
with

���k1 =
1

!

�
3�

2
+ (2k � 1)� � �1(!)

�
(28)

and
���m2 =

1

!

h�
2
+ (2m� 1)� � �2(!)

i
: (29)
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The directions of stability switches can be determined similarly to the previous
case. Notice that

a1(!)e
�i!�1 = i

A

!
(cos!�1 � i sin!�1)

and

a2(!)e
�i!�2 = i

(n� 1)B
!

(cos!�2 � i sin!�2)

with real and imaginary parts,

R1 = Re
�
a1(!)e

�i!�1
�
=
A

!
sin!�1;

I1 = Im
�
a1(!)e

�i!�1
�
=
A

!
cos!�1;

R2 = Re
�
a2(!)e

�i!�2
�
=
(n� 1)B

!
sin!�2;

I2 = Im
�
a2(!)e

�i!�2
�
=
(n� 1)B

!
cos!�2

and therefore

S1 = R2I1 �R1I2 =
(n� 1)AB

!2
(sin!�2 cos!�1 � cos!�2 sin!�1)

which has the same sign as sin!(�2 � �1):

Proposition 5 The stability switching curves are formed by points
�
��k1 ; ��m2

�
when ! runs through interval [B �A;�(A+B)] and points

�
��k1 ; ��m2

�
when

! runs through [jA� (n� 1)Bj ;� (A+ (n� 1)B)]

Proposition 6 Let (�1; �2) be a point on the stability switching curve and as-
sume that the curve is crossed at this point from right to left when we are looking
forward increasing values of ! on the curve. If S1 (or S2) is positive, then at
least one pair of eigenvalues changes the sign of the real part from negative
to positive. If S1 (or S2) is negative, then the sign change is in the opposite
direction.

4.2 General duopolies

In the case of n = 2 from (18), we have

'(�) =
�
A1e

���11 � ��B1e���
1
2

��
A2e

���21 � ��B2e���
2
2

�
+B1e

���12
�
A2e

���21 � ��B2e���
2
2

�
+B2e

���22
�
A1e

���11 � ��B1e���
1
2

�
= 0
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which can be simpli�ed as�
A1e

���11 � �
��
A2e

���21 � �
�
�B1B2e��(�

1
2+�

2
2) = 0: (30)

This equation is analytically intractable, since it has four delays, �11; �
2
1; �

1
1 +

�21; �
1
2 + �

2
2: Therefore we make the following simplifying assumption,

�11 = �
2
1 = �

1
2 = �

2
2 = �

when (30) becomes

�2 � (A1 +A2) e��� + (A1A2 �B1B2) e�2�� = 0:

By multiplying both sides by e�� we have

�2e�� � (A1 +A2)�+ (A1A2 �B1B2) e��� = 0: (31)

Without delay a quadratic equation is obtained by �

�2 � (A1 +A2)�+ (A1A2 �B1B2) = 0:

The linear coe¢ cient and constant term are positive, the roots are negative real
values, since the discriminant is positive. Stability switch might occur if � = i!
with ! > 0; then from (31),

�!2 (cos!� + i sin!�)� i! (A1 +A2)+(A1A2 �B1B2) (cos!� � i sin!�) = 0:

By separating the real and imaginary parts, we have�
�!2 + (A1A2 �B1B2)

�
cos!� = 0�

�!2 � (A1A2 �B1B2)
�
sin!� = ! (A1 +A2)

(32)

We have to consider now two possibilities from the �rst equation of (32).

(i) cos!� 6= 0;

then,
!2 = A1A2 �B1B2

and from the second equation of (32),

�2 (A1A2 �B1B2) sin!� = ! (A1 +A2) : (33)

However

!2 (A1 +A2)
2 � 4 (A1A2 �B1B2)2

= (A1A2 �B1B2)
�
A21 +A

2
2 + 2A1A2

�
� 4 (A1A2 �B1B2)2

= (A1A2 �B1B2)
h
(A1 �A2)2 + 4B1B2

i
where the �rst term is positive and the second is being nonnegative. If it is
positive, (33) has no solution. If it is zero, then sin!� = +1 implying that
cos!� = 0; which is contradiction. The other possibility is
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(ii) cos!� = 0;

then, from the second equation of (32), sin!� = 1 and

!2 + (A1 +A2)! + (A1A2 �B1B2) = 0: (34)

The discriminant is
� = (A1 �A2)2 + 4B1B2 � 0;

furthermore,
(A1 +A2)

2 �� = 4 (A1A2 �B1B2) > 0;
so both roots are positive,

!� =
� (A1 +A2)�

p
�

2
> 0: (35)

Notice that � = 0 if A1 = A2 and one of B1 and B2 equals zero. Then
!� = �A1 = �A2. From the �rst equation of (32), the critical value of the
delay are

��m =
1

!�

��
2
+ 2m�

�
for m = 0; 1; 2; ::: (36)

The direction of the stability switches are assessed by considering � as the
function of the bifurcation parameter, � = �(�) and implicitly di¤erentiating
equation (31):

2��0e��+�2e��
�
�0� + �

�
��0 (A1 +A2)+(A1A2 �B1B2) e���

�
��0� � �

�
= 0:

The multiplier of �0 and the constant term are

2�e�� + �2�e�� �A1 �A2 � (A1A2 �B1B2) e����

and
�3e�� � (A1A2 �B1B2) e����;

respectively, so �
�0
��1

=
�2�e�� +A1 +A2

�3e�� � (A1A2 �B1B2)�e���
� �

�
: (37)

Notice that at the critical values of ��m; cos!� = 0 and sin!� = 1 implying
that

ei!� = cos!� + i sin!� = i

and
e�i!� = cos!� � i sin!� = �i:

At � = i!; we are interested in the real part of (37), where the second term is
pure complex. Therefore

Re
h�
�0
��1i

= Re

�
�2�e�� +A1 +A2

�3e�� � (A1A2 �B1B2)�e���

�
=

2! + (A1 +A2)

! [!2 � (A1A2 �B1B2)]
:
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Substituting (35) with numerator �
p
� into the denominator presents

!

4

h
2(A1 �A2)2 + 8B1B2 � 2(A1 +A2)

p
�
i
=
!

2

p
�
�p
�� (A1 +A2)

�
We know however that jA1 +A2j >

p
�; so this expression is positive at !+

and negative at !�. Hence Re
h�
�0
��1i

is always positive.

Proposition 7 The equilibrium is locally asymptotically stable for � > �+0 ,
stability is lost at � = �+0 via Hopf bifurcation, and stability cannot be regained
with larger values of � :

5 Conclusions

Environmental regulations were added to the classical n-�rm Cournot model.
In cases of non-point source pollution the regulator can measure only the total
emission level without knowing the individual emissions of the �rms. Therefore
in the regulation the �rms are uniformly punished if the total emission is higher
then a regulator selected standard, and awarded otherwise. In the dynamic
extensions we considered three cases. First, no delays were introduced about
information on the outputs of all �rms, second, delayed data were assumed
about the output levels of the competitors and third, additional delays were
added in the �rms� own output levels. The stability analysis was conducted
under general conditions which are satis�ed in cases of linear and hyperbolic
price functions. Models without delays, with single-delay and with two delays
were analyzed in detail. It was demonstrated how the stability of the no-delay
models can be lost by introducing delays. The stability thresholds, stability
switching curves and directions of stability switches were analytically derived.
It will be an interesting project to extend the results of this paper to more

general cases including nonlinear Cournot models, multi-product, labor man-
aged oligopolies and rent-seeking games among others. This will be the subject
of our continued research project.
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