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Abstract

This paper analyzes the e¤ectiveness of the ambient charges for con-
trolling emissions of non-point source pollutions. To this end, we con-
struct a two-stage Bertrand duopoly game, in which optimal abatement
technologies are chosen �rst and then the optimal prices as well as the op-
timal productions are determined. It is shown that the ambient charge is
always e¤ective at the second stage. Since the e¤ect could be ambiguous
at the �rst stage, this paper sheds light on the conditions under which the
ambient charge becomes e¤ective.
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1 Introduction

Non-point source (NPS) pollution refers to the form of pollution in which neither
the source nor the size of speci�c emissions can be observed. It includes farm
surface runo¤, water pollution contaminating river, lake and groundwater, air
pollution that may arise health problems, ocean plastic pollution that recently
came to focus, etc. It is emerging as a top threat to our living system including
ecosystem. The key features of NPS pollution are its multiple sources that
prevent from specifying individual contribution and its stochastic nature (e.g.,
weather e¤ect) that makes accurate measuring di¢ cult. In consequence, the
conventional environmental policy implementation such as emission charge in
form of Pigouvian tax, marketable emission permit, direct control on emission
level etc. are not applicable. In order to control the total emissions of NPS
pollution, Segerson (1988) proposes ambient based polices, according to which
the regulator �rst determines an environmental standard level and then imposes
uniform tax on the pollutants if the concentration level is above the standard
level and pays uniform subsidies if it is below.
Much of the literature is theoretical. Further, a theoretical framework to

study how to address NPS pollution is game-theoretic. This is because the payo¤
of one agent depends on the actions of the other agents. More speci�cally, it
strictly depends on the actions of other agents whether an agent receives penalty
or award regardless of its level. Ganguli and Raju (2012) model a Bertrand
duopoly and numerically show that an increase of the ambient charge rate could
increase the total concentration, which is called a "perverse" e¤ect. Ishikawa,
et al. (2019) extend the duopoly to an n-�rm framework and theoretically
show that the ambient charge is de�nitely e¤ective in duopoly and triopoly,
whereas for n � 4; the sign of the e¤ect depends on the number of the �rms
involved and the degree of substitutability among the goods.
This paper is mainly concerned how a Bertrand �rm changes its action in

response to changes in the rate of the ambient charge and, in particular, recon-
siders the ambient charge e¤ect in a Bertrand duopoly in a two-stage theoretic
framework in which the optimal abatement technologies are chosen �rst and then
the optimal prices as well as the optimal outputs are selected. If we consider the
�rst stage short-run in the sense that the levels of the abatement technologies
are �xed and the second stage long-run in the sense that the technologies are
strategic variables, then our main results can be mentioned as follows:

(i) The ambient charge is e¤ective in controlling the NPS pollution in the short-
run.

(ii) The conditions under which the ambient charge could be e¤ective depend
on the degree of substitutability, the demand elasticity with respect to the
abatement technology and the ambient charge rate.

The rest of this paper is organized as follows. In Section 2, the optimal
price strategies of Bertrand duopolistic �rms are determined. It is shown that
the total concentration of NPS pollution is negatively related to the rate of the
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ambient charge. In Section 3, the long-run optimal abatement technologies are
determined. The issue is examined under the heterogenous �rms in its �rst hald
and under the homogenous �rms in the second half. The parametric conditions
to con�rm the e¤ectiveness of the ambient charge are demonstrated. In Section
4, concluding remarks and further research directions are presented.

2 Bertrand Equilibrium

We consider e¤ects of an environmental policy on NPS pollution in a Bertrand
duopoly market. Each �rm produces a di¤erentiated good. Demand functions
for these goods are given by

qi = a� pi + bpj

qj = a+ bpi � pj
(1)

in the region of price space where quantities are non-negative. Here qk denotes
the quantity of good k produced by �rm k and pk is the unit price of this product
for k = i; j. The goods are assumed to be substitutes (i.e., b > 0). Further,
considering the duality of prices and quantities in a di¤erentiated duopoly, we
suppose on the following condition for the production di¤erentiation parameter,
b.

Assumption 1. 0 < b < 1:

Justi�cation for Assumption 1 is given as follows. From (1), the inverse
demand or price functions are obtained as

pi = �� �qi � 
qj

pj = �� 
qi � �qj
(2)

where

� =
a

1� b ; � =
1

1� b2 and 
 =
b

1� b2 :

Notice that � denotes the maximum price of both goods and thus is positive,
implying that 1 > b should hold.1 The goods are substitutes, independent or

1There is another way to show this condition. Following Singh and Vives (1984), we can
derive the exact forms of the linear functions given in (2) as the optimal solutions that solve
a net utility maximizing problem of the representative consumer,

U(qi; qj)� (piqi + pjqj)

where U is the utitlity function,

U(qi; qj) = � (qi + qj)�
1

2

�
�q2i + 2
qiqj + �q

2
j

�
with the parameter conditions, �2 � 
2 > 0 and � � 
 > 0, both of which correspond to
1� b2 > 0 and 1� b > 0 in our framework.
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complements according to whether 
 R 0 or

b

1� b2 R 0: (3)

Hence the goods are substitutes if 
 > 0 or b > 0. The di¤erentiation parameter
therefore should satisfy the following constraint:

0 < b < 1:

If b = 1; then inverse demand functions do not exit since �; � and 
 are not
de�ned, and from (1)

pi � pj = a� qi = qj � a;

implying that pi and pj cannot be uniquely determined. The parameter ratio

2=�2 = b2 expresses the degree of product di¤erentiation ranging from zero
when the goods are independent and to unity when the goods are perfect sub-
stitutes. The above strict inequalities imposed on b eliminate these extreme
cases.
Each �rm produces output as well as emits pollutions and it is assumed that

one unit of production emits one unit of pollution. However using an abatement
technology denoted by �k, �rm k can reduce the actual amount of pollution to
�kqk by abating (1 � �k)qk. The technology is subject to 0 � �k � 1 with a
pollution-free technology if �k = 0 (i.e., no pollution) and a fully-discharged
technology if �k = 1 (i.e., no abatement). Since the pollutions are non-point
source, the government can measure the total quantity of pollution,

P
k �kqk

but cannot identity individual contributions to it. To control such NPS pollu-
tion, the government carries out the environmental policy that imposes uniform
ambient charges � on the total quantity and has an exogenously determined
environmental standard �E. The government will, according to � times the dif-
ference between

P
k �kqk and �E; charge the penalty if the di¤erence is positive

and award the subsidy if negative. � is positive and measured in some monetary
unit per emission. It is then not necessarily less than unity.
The pro�t functions of �rms i and j are

�i(pi; pj) = qipi � �iqi � �
�
�iqi + �jqj � �E

�
;

�j(pi; pj) = qjpj � �jqj � �
�
�iqi + �jqj � �E

�
;

(4)

where �k is the marginal production cost for �rm k = i; j. Substituting the de-
mand functions (1) into (4) and then solving the resultant �rst-order conditions
of pro�t maximization for �rms i and j present the optimal prices,

p�i (�i; �j) =
1

4� b2
�
a(2 + b) + 2�i + b�j + �

�
(2� b2)�i � b�j

�	
p�j (�i; �j) =

1

4� b2
�
a(2 + b) + 2�j + b�i + �

�
(2� b2)�j � b�i

�	
:

(5)
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Denoting the marginal cost associated with producing an additional unit of
output by ck = �k+��k, we assume the following to ensure positive equilibrium
quantities and prices,2

Assumption 2. a > ck for k = i; j.

Substituting the optimal prices into the demand functions presents the op-
timal productions,

q�i (�i; �j) = a� p�i (�i; �j) + bp�j (�i; �j)

=
1

4� b2
�
a(2 + b)� (2� b2)�i + b�j � 2��i + b(3� b2)��j

�
> 0

(6)
where the last inequality is due to 2a�2�i�2��i = 2 (a� ci) > 0: The positive
optimal product of �rm j is also shown in the same way (i.e., q�j (�i; �j) > 0).
The total pollution at the equilibrium is

E�(�i; �j) = �iq
�
i (�i; �j) + �jq

�
j (�i; �j): (7)

Di¤erentiationg E�(�i; �j) with respect to � yields, after arranging the terms,

@E�(�i; �j)

@�
= �

2
�
�2i � b(3� b2)�i�j + �2j

�
4� b2 (8)

where for �i 6= �j ;

�2i � b(3� b2)�i�j + �2j � �2i � 2�i�j + �2j

=
�
�i � �j

�2
> 0

and for �i = �j = �;

�2i � b(3� b2)�i�j + �2j =
�
2� b(3� b2)

�
�2 � 0

and the last equality holds only when b = 1; which is eliminated by Assumption
1. Therefore we have the following result.

Theorem 1 Under Assumptions 1 and 2, the ambient charge is e¤ective in
controlling the total amount of NPS pollution,

@E�(�i; �j)

@�
< 0:

2 In particular, under Assumption 2,

ab+ b�j � �b�j = b
�
a+ �j � ��j

�
> b(�j + ��j + �j � ��j)

= 2b�j > 0:

With this inequality we have p�i > 0. In the same way, p
�
j > 0 can be shown.
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We verify the individual responses to a change in �. Di¤erentiating the
optimal production of each �rm gives

@q�i (�i; �j)

@�
=
b(3� b2)�j � 2�i

4� b2 ;

@q�j (�i; �j)

@�
=
b(3� b2)�i � 2�j

4� b2 ;

from both of which we can derive the zero-response curves of �rms i and j,

�j =
2

b(3� b2)�i ,
@q�i (�i; �j)

@�
= 0

and

�j =
b(3� b2)

2
�i ,

@q�j (�i; �j)

@�
= 0:

where under Assumption 1,

b(3� b2)
2

<
2

b(3� b2) :

Theorem 2 Although the total pollution is negatively related to a change in the
ambient charge rate, the individual response could be "perverse,"

@q�i (�i; �j)

@�
< 0 and

@q�j (�i; �j)

@�
> 0 if

2

b(3� b2)�i < �j ;

@q�i (�i; �j)

@�
< 0 and

@q�j (�i; �j)

@�
< 0 if

b(3� b2)
2

�i < �j <
2

b(3� b2)�i;

@q�i (�i; �j)

@�
> 0 and

@q�j (�i; �j)

@�
< 0 if �j <

b(3� b2)
2

�i:

If �rm i has a more e¢ cient abatement technology than �rm j to the extent
that 2�i=b(3� b2) < �j holds, then it has an individual perverse reaction. On
the other hand, if the technology of �rm j is much more e¢ cient satisfying
�j < b(3� b2)�i=2; then �rm j increases its pollution when the rate of ambient
charge increases. Otherwise, the ambient charge is e¤ective in controlling the
individual pollution. Notice that the government is unable to observe these
individual responses.

3 Optimal Abatement Technology

Given the rate of ambient charge � and the optimal decisions at the second
stage, each �rm now determines the optimal abatment technology at the �rst
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stage. This section is divided into two subsections. In Section 3.1, a selection
of the abatement technology is considered when the �rms are heterogeneous in
the sense that their production costs are di¤erent and then in Section 3.2, the
same issue is discussed when the �rms are homogeneous.

3.1 Heterogenous Firms

Substituting the optimal prices in (5) and the optimal productions in (6) into the
pro�t functions in (4) and subtracting the implmentation cost of the abatement
technology yield the reduced form of the pro�t functions of the �rms,

��i (�i; �j) = q
�
i p
�
i � �iq�i � �

�
�iq

�
i + �jq

�
j � �E

�
� (1� �i)2

��j (�i; �j) = q
�
j p
�
j � �jq�j � �

�
�iq

�
i + �jq

�
j � �E

�
� (1� �j)2

(9)

where the arguments of the optimal prices and productions are omitted for
notational simplicity. Di¤erentiating ��i (�i; �j) with respect to �i presents the
�rst-order condition for �rm i,

@��i
@�i

=
@��i
@pi

@p�i
@�i

+
@��i
@pj

@p�j
@�i

+
@��i
@�i

����
p�i ;p

�
j :const

= 0

where
@��i
@pi

= a� 2p�i + bp�j + �i � �
�
��i + b�j

�
= 0;

@p�i
@�i

=
�
�
2� b2

�
4� b2 ;

@��i
@pj

= bp�i � b�i � �
�
b�i � �j

�
;

@p�j
@�i

= � �b

4� b2 ;

@��i
@�i

����
p�i ;p

�
j :const

= 2(1� �i)� �
�
a� p�i + bp�j

�
:

The same condition is obtained for �rm j: These �rst-order conditions are
arranged as

2(4� b2 + 2�)(4� b2 � 2�)�i + b(4 + b� b2)(4� b� b2)�2�j = mi

b(4 + b� b2)(4� b� b2)�2�i + 2(4� b2 + 2�)(4� b2 � 2�)�j = mj

(10)

with
mi = 2(2� b)2(2 + b)2 � 4�

�
a(2 + b)� (2� b2)�i + b�j

�
;

mj = 2(2� b)2(2 + b)2 � 4�
�
a(2 + b)� (2� b2)�j + b�i

�
:
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The second-order conditions for �rms i and j are

@2��i
@�2i

=
@2��j

@�2j
= �2(4� b2 + 2�)(4� b2 � 2�) < 0

where one su¢ cient condition is

� <
4� b2
2

:

Solving (10) for the abatement technologies presents

�ei =
2(4� b2 + 2�)(4� b2 � 2�)mi � b(4 + b� b2)(4� b� b2)�2mj

(4� b2)�1�2
;

�ej =
2(4� b2 + 2�)(4� b2 � 2�)mj � b(4 + b� b2)(4� b� b2)�2mi

(4� b2)�1�2

(11)

with
�1 = 2(2� b)2(2 + b)� (1� b)

�
4� 6b� b2 + b3

�
�2;

�2 = 2(2� b)(2 + b)2 � (1 + b)
�
4 + 6b� b2 � b3

�
�2:

It can be veri�ed that �1 < 0 and/or �2 < 0 could be possible if � is larger than
unity. For the sake of analytical simplicity we make the following assumption
by changing the monetary unit or the measure unit of emission, under which
the second-order condition for the pro�t maximizing outputs hold,

Assumption 3. � < 1:

As is seen in (11), the optimal abatement technologies �ei and �
e
j depend on

the �ve parameter values of a; b; �; �i and �j . It is not easy to analytically deter-
mine dependecy of the optimal technology on these parameters. One exception
is that the following holds regardless of the values of other parameters,

�ei ! 1 and �ej ! 1 as both of b and � ! 0:

Further it is numerically ver�ed that given the values of (a; �i; �j), there are loci
of b and � such that

�ei = 0 and �
e
j = 0:

Specifying the values of the parameters, we illustrate the two loci of �ei = 0 and
�ej = 0 in Figure 1. The downward-sloping curve that is a boundary of the
shaded region is the �ej = 0 locus and �ej > 0 below the curve. The other
curve located above is the �ei = 0 locus and �ei > 0 below the curve. Hence,
0 < �ei < 1 and 0 < �

e
j < 1 are established in the shaded region. In the region

between these two curves, �ei < 0 and �ej > 0 whereas �ei < 0 and �ej > 0 in
the region above or right to the upper curve. There is a case in which the loci
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of �ei = 0 and �ej = 0 are located outside the feasible region of (b; �) for some
combinations of the parameter values.

(A) a = 10; �i = 8; �j = 5 (B) a = 5; �i = 3; �j = 1

Figure 1. Dividion of the (b; �) plane

Substituting �ei and �
e
j into the optimal prices obtained at the second stage

(that is, p�k(�i; �j) for k = i; j in (5)) presents the optimal prices with the
optimal technologies,

pei = p
�
i (�

e
i ; �

e
j) and p

e
j = p

�
j (�

e
i ; �

e
j)

both of which are substituted into the demand functions (1) to obtain the cor-
responding optimal outputs

qei = a� pei + bpej and qej = a+ bpei � pej :

The mutual size relation between these optimal values become prescribed by
the magnitude relation of the production costs:

�ei � �ej =
4(1 + b)�

�2
(�i � �j); (12)

pei � pej =
2(2� b)(2 + b)� (1� b)b(1 + b)�2

�2
(�i � �j) (13)

where the denominator is positive since it is greater than the following under
� < 1,

2(2� b)(2 + b)� (1� b)b(1 + b) = 8� b� 2b2 + b3 > 0
and

qei � qej = �(1 + b)
�
pei � pej

�
: (14)

Therefore we have the following results concerning the optimal strategy
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Theorem 3 A �rm with a higher production cost adopts a worse technology,
sets a higher price and produces less output than a �rm with a lower production
cost.

Theorems 2 and 3 imply that a �rm with a lower production cost might
perversely react to a change in the ambient charge while a �rm with a higher
production cost reacts cooperatively.
It may be intractable to analytically deal with the e¤ects caused by a change

in the rate of the ambient charge on the total concentration of NPS pollution.
Instead, using the same parameter speci�cation to illustrate Figures 1(A) and
1(B), we numerically reveal the controllability with the ambient charge. The
total concentration is de�ned as

Ee(�) = �ei q
e
i + �

e
jq
e
j :

The forms of the derivative of Ee(�) with respect to � is long and clumsy, we
would not present them but illustrate them in Figure 2. It can be seen that

dEe(�)

d�
< 0 for 0 < b < 1 and 0 < � < 1:

Although these are numerical examples and thus there could be a case in which
the direction of inequality is reversed, we have shown a possibility that the
ambient charge can control the emission of NPS pollution.

(A) a = 10; �i = 8; �j = 5 (B) a = 5; �i = 3; �j = 1

Figure 2. Numerical con�rmation of dE
e

d� < 0

3.2 Homogeneous Firms

We now turn attention to the homogeneous �rms that have the same marginal
production cost:

Assumption 4. �i = �j = �:
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Solving (10) for �i and �j gives the optimal levels of the abatment technolo-
gies,

��i (�) = �
�
j (�) = �

e(�) =
A�B�
A� C�2

(15)

where A;B and C are de�ned as

A = 2(2� b)2(2 + b) > 0
B = 4[a� (1� b)�] > 0
C = (1� b)f(b)

with
f(b) = 4� 6b� b2 + b3:

Lemma 1 Under Assumption 1, the function f(b) de�ned on the unit interval
[0; 1] with f(0) = 4 and f(1) = �2 is decreasing in b and crosses the horizontal
axis at b0 ' 0:642 at which f(b0) = 0; implying that

f(b) > 0 for 0 < b < b0 and f(b) < 0 for b0 < b < 1.

Concerning the value of �e(�) for b0 < b < 1; we have the following result.

Theorem 4 In case of b0 < b < 1, if � � A=B, then

0 � �e(�) < 1:

Proof. The condition � � A=B and Lemma 1 with b0 < b < 1 lead to 0 �
A�B� and C < 0: Hence 0 � A�B� < A < A�C�2 that is divided by A�C�2
to have

0 � A�B�
A� C�2

< 1

so
0 � �e(�) < 1:

This completes the proof.

Notice that if � � 3=2a; then the condition � � A=B is always satis�ed over the
interval (0; 1):
We then draw attention to the value of �e(�) for 0 < b < b0: In case of

0 < b < b0; C > 0 due to Lemma 1. The di¤erence between the denominator
and the numerator of the last expression in (15) is

�
A� C�2

�
� (A�B�) = C�

�
B

C
� �
�
: (16)
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The ratios A=B and B=C depend on b: As is shown shortly, the former is
decreasing in b in the unit interval and the latter is increasing in b 2 (0; b0): In
particular, di¤erentiating A=B with respect to b gives

d

db

�
A

B

�
= �

(2� b)
�
a(2 + 3b) + (2� b+ 2b2)�

�
2[a� (1� b)�]2 : (17)

Due to Assumption 1, 2� b+2b2 > 0 and 2� b > 0. Therefore a(2+ 3b) + (2�
b+2b2)� > 0 for 0 < b < 1, implying A=B is decreasing in b over interval (0; 1):
Next, denoting a = �+n with n > 0 and then di¤erentiating B=C with respect
to b gives

d

db

�
B

C

�
=
4
�
2[5� 5b� 3b2 + 2b3]n+ (4� 5b2 � 4b3 + 3b4)�

	
(1� b)2(4� 6b� b2 + b3)2 (18)

where it can be shown that

5� 5b� 3b2 + 2b3 > 0 and 4� 5b2 � 4b3 + 3b4 > 0 for 0 < b < b0.

Hence B=C is increasing in b. It is clear that

A

B
=

4

a� � if b = 0 and
A

B
=
3

2a
if b = 1

and
B

C
= a� � if b = 0 and limitb!b0

B

C
=1:

It is also apparent that for b = 0;

A

B
Q B

C
according to 2 Q a� �:

Lemma 2 If a� � � 2; then we have

A

B
<
B

C
for b 2 (0; b0)

and if a� � < 2; then there is a b1 2 (0; b0) such that

A

B
>
B

C
for b 2 (0; b1),

A

B
<
B

C
for b 2 (b1; b0)

and
A

B
=
B

C
holds for b = b1:

Proof. If a � � � 2, then A=B � B=C for b = 0. Since A=B is decreasing in
b 2 (0; 1) by (17) and B=C is increasing in b 2 (0; b0) by (18), the �rst result is
shown. On the other hand, if a� � < 2; then the dowanward-sloping AC curve
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crosses the upward-sloping B2 curve only once from above at some b 2 (0; b0)
that is denoted by b1. It is apparent that

A

B
>
B

C
for b 2 (0; b1) and

A

B
<
B

C
for b 2 (b1; b0):

This completes the proof.

We are now ready to determine the optimal level of the abatement techonol-
ogy in case of 0 < b < b0:

Theorem 5 Assume 0 < b < b0: If a� � � 2 and � � A=B or if a� � < 2 and
� � min [A=B;B=C] ; then

0 � �e(�) < 1:

Proof. 0 < b < b0 implies C > 0. Further, the �rst part of Lemma 2 and
� � A=B imply � � A=B < B=C leading to � < B=C: By (16), we have

0 � A�B� < A� C�2.

By the second part of Lemma 2, B=C < A=B in (0; b1) and thus � � B=C
implying � � A=B: In the same way, A=B < B=C over (b1; b0) and thus � � A=B
that leads to � � B=C: In both intervals, by (16) with C > 0, we have the same
inequality condition,

0 � A�B� < A� C�2

that is divided by A� C�2 to obtain

0 � �e(�) < 1:

This completes the proof.

Theorems 1 and 2 clarify the conditions for which the optimal level of the
abatement technology satis�es 0 < �e(�) < 1: We now turn attention to sen-
sitivity of �e(�) to a change in �. Di¤erentiating �e(�) of (15) with respect to
� gives

d�e(�)

d�
= � g(�)�

A� C�2
�2 (19)

where
g(�) = BC�2 � 2AC� +AB

with

g0(�) = 2BC� � 2AC

g0(0) = �2AC
(
< 0 if C > 0 or 0 < b < b0;

> 0 if C < 0 or b0 < b < 1:
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and for the discriminant of g(�);

D

4
= ABC2

�
A

B
� B
C

�
: (20)

The sign of the derivative in (19) is determined by the sign of g(�):

Theorem 6 In case of b0 < b < 1, if � � A=B; then

d�e(�)

d�
< 0:

Proof. In this case, Lemma 1 gives C < 0 and then D > 0; implying that
equation g(�) = 0 has two real roots,

�� =
A

B
�

s
A

B

�
A

B
� B
C

�
:

The smaller root �� is negative and the larger root �+ is positive and larger
than A=B: It can be checked that g(0) > 0, g0(0) > 0 and g(�) > 0 for � �
A=B: Therefore, (19) with g(�) > 0 leads to the negative derivative.

We now determine the sign of the derivative in case of 0 < b < b0:

Theorem 7 If a� � � 2 or if a� � < 2 and b1 < b < b0; then

d�e(�)

d�
< 0

whereas if a� � < 2 and 0 < b < b1; then

d�e(�)

d�
< 0 for 0 � � < �1

and
d�e(�)

d�
� 0 for �1 � � �

B

C

where

�1 =
A

B
�

s
A

B

�
A

B
� B
C

�
> 0:

Proof. Lemma 1 yields C > 0 as 0 < b < b0. Lemma 2 implies A=B <
B=C under the conditions given in the �rst part. This inequality indicates
D < 0 by (20), implying that g(�) > 0 for all � � 0: Therefore d�e(�)=d� < 0.
Lemma 2 implies A=B > B=C under the conditions in the second part, leading
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to D > 0 by (20). Hence g(�) = 0 has two real solutions, smaller of which is �1
and less than B=C; since

�1 �
B

C
=

r
A

B
� B
C

 r
A

B
� B
C
�
r
A

B

!
� 0:

Hence g(�) � 0 for � � �1: Therefore d�
e(�)=d� < 0: Lastly, g(�) � 0 for

�1 � � � B=C: Therefore (19) implies d�e(�)=d� � 0 where the equality holds
for � = �1:

We have determined the optimal level of the abatement technology for the
two symmetric �rms. Accordingly, the optimal prices under the optimal tech-
nologies are determined by inserting �e(�) into the forms in (5),

p�k(�
�
i (�); �

�
j (�)) = p

�
k(�

e(�); �e(�)) for k = i; j

that is now denoted by pe(�);

pe(�) =
a+ � + � (1� b)�e(�)

2� b : (21)

Notice that the derivative of pe(�) consists of two parts,

@pe(�)

@�e
=
@pe(�)

@�e

����
�:const

and
@pe(�)

@�
=
@pe(�)

@�

����
�e(�):const

:

The optimal production under the optimal technology is obtained by the demand
function (1) with pe(�),

qe(�) = a� (1� b)pe(�): (22)

The total amount of pollutions emitted by the two �rms is the double of
individually emitted pollutions,

Ee(�) = 2�e(�)qe(�): (23)

We are now concerned with the changes of Ee(�) in response to a change in the
rate of the ambient charge, �. If the value of � increases (i.e., �� > 0), then
there are two sorts of e¤ects, the technological e¤ect caused by a change in �e(�)
and the production e¤ect caused by a change in �. Suppose an increase of � and
consider the production e¤ect �rst. Keeping the abatement technology �xed,
the �rm pushes the price up by �pe > 0 via (21) and thus, via the downward-
sloping demand function (22), decreases output as well as emission levels (i.e.,
�qe < 0). Therefore, the production e¤ect is negative. The change in emission
caused by the production e¤ect is

e1 = �
e(�)

�qe

��
< 0:
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Next, taking � as given, we consider the technology e¤ect. Suppose that
the �rm replaces the existing abatement technology with more e¢ cient one
(i.e., ��e < 0): This is the direct e¤ect and decreases emission (i.e., qe��e <
0). Since the decrease in �e also pushes the price down via the optimal price
(21) (i.e., �pe < 0) that then generates more production and more emissions
via the demand function (21). This is the indirect e¤ect and positive (i.e.,
�e ��qe=�pe ��pe=��e). The technology e¤ect is the sum of these direct and
indirect e¤ects. The initial change in the technology is thought to be induced
by the change in �. Thus dividing the sum of these changes presents the total
change in emission due to the technology e¤ect

e2 = q
e��

e

��
+ �e

�qe

�pe
�pe

��e
��e

��
:

Notice that the �rst term is negative and the second term is positive. The
sign of the total e¤ect caused could be the demand on the relative magnitute
of the opposite signed e¤ects. These intuitive arguments can be con�rmed by
di¤erentiating (23) with respect to �,

1

2

dEe(�)

d�
=
d�e(�)

d�
qe(�) + �e(�)

dqe(�)

dpe(�)

�
@pe(�)

@�e(�)

d�e(�)

d�
+
@pe(�)

@�

�

= qe(�)

�
1 +

�e(�)

qe(�)

dqe(�)

d�e(�)

�
d�e(�)

d�
+ �e(�)

dqe(�)

dpe(�)

@pe(�)

@�

= qe(�) (1� ") d�
e(�)

d�
� (1� b)

2

2� b [�e(�)]
2

(24)

where " denotes the elasticity of demand with respect to the abatement tech-
nology � evaluated at the optimal point and is de�ned as

" = ��
e(�)

qe(�)

dqe(�)

d�e(�)
:

By Lemmas 3, 4 and the last form in (24), we have the following results.

Theorem 8 The ambient charge is e¤ective in controlling NPS pollutions,

dEe(�)

d�
< 0

if the demand is inelastic (i.e.," < 1) and one of the following conditions hold,

(i) b0 < b < 1 and � �
A

B
;

(ii) 0 < b < b0 and a� � � 2;

(iii) b1 < b < b0 and a� � < 2;

(iv) 0 < b < b1; a� � < 2 and 0 < � < �1
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or the demand is elastic (i.e., " > 1) and

(v) 0 < b < b1; a� � < 2 and �1 < � <
B

C

or if the elasticity is unity.

4 Concluding Remarks

This paper is mainly concerned with whether the ambient charge, environmen-
tal policy implementation, is e¤ective in controlling the total emission of NPS
pollution in a Bertrand duopolistic framework. To this end, we �rst examined
the ambient charge e¤ect in short-run in which the abatement technnlogies are
�xed. Theorem 1 analytically demonstrated that the total emission of NPS pol-
lution falls in response to an increase in the rate of the ambient charge. We
then turned attention to the e¤ect in the long-run in which the �rms are able
to adjust their abatement technologies ranging from zero (i.e., no abatement)
to unity (i.e., no pollution). After selecting the optimal abatement technology,
we speci�ed the conditions for 0 � �e(�) < 1 in Theorems 3 and 4 and for
d�e(�)=d� < 1 in Theorems 5 and 6. Finally, the conditions under which the
ambient charge becomes e¤ective were summarized in Theorem 7.
In future studies, we will verify the e¤ectiveness of the ambient charge in

two more general cases: �rst without Assumption 3 (i.e., symmetry) and second
symmetric oligopolies with more �rms.
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