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Abstract 
This study presents a case of student-supervisor matching in a Japanese university. We 
report on the recent reform in the matching mechanism between students and 
supervisors in the Japanese university. A mechanism based on the deferred acceptance 
(DA) was adopted in this reform. In this mechanism, both students and supervisors are 
classified as one of the types, depending on their affiliations. Then, supervisors set type-
specific maximal and minimal quotas. For fulfilling minimal quotas, maximal quotas 
are dynamically adjusted. It is proved that the mechanism may not satisfy strategy-
proofness and feasibility, but it eliminates justified envy among the same “type” of 
students. Moreover, if the sum of ranks of the student and supervisor in the final 
assignment is viewed as a measure of welfare, there is no domination relationship 
between this mechanism and the DA mechanism. 
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1. Introduction 
In this study, we report on the recent reform in the matching mechanism between 
students and supervisors in a Japanese university. 

In the Japanese university, for writing a graduation thesis, third-year 
undergraduate students designate their supervisors from among the university faculty 
members according to their preferences at the near end of the school year. Since each 
supervisor has limited capacity, a matching mechanism must be designed.  

The most popular matching mechanism used so far in many Japanese 
universities was the Boston mechanism. In this mechanism, all the students apply to 
their first-choice supervisors, and each supervisor accepts applicants based on his/her 
own priority ordering of students. Once a supervisor’s quota is filled, the remaining 
applicants are rejected. The accepted students’ assignment is final at this point. Students 
rejected in this step apply to their next choice supervisors, and the iterating continues till 
all the students are assigned. 

The other popular matching mechanism is Priority Matching. In this 
mechanism, students submit their preferences and priority orderings of supervisors, the 
sum of a student’s ranking for a supervisor and the supervisor’s ranking for the student 
is calculated, then the student-supervisor pairs are formed in ascending order of the sum 
(with a tie-breaking rule).  

It is well known that neither of these mechanisms is strategy-proof, that is, 
manipulating students’ preferences may be beneficial to them. To overcome this 
problem, a simple alternative may be the Serial Dictatorship (SD) mechanism. In this 
mechanism, given a specified order (based on factors like a GPA score), students apply 
to their first-choice supervisors, and each supervisor accepts them up to his/her quota. 
Essentially, SD is strategy-proof. Unfortunately, a matching outcome produced by SD as 
well as the other two mechanisms mentioned above are not stable, that is, a student-
supervisor pair may have justified envy for another student-supervisor combination in 
the resulting matching outcome.  

Accordingly, adopting the Deferred Acceptance (DA) mechanism (Gale and 
Shapley, 1962) is a natural consequence to overcome these problems. In fact, DA is 
strategy-proof, and a matching outcome produced by DA is always stable. Even though 
increasing number of DA applications in resident matching and school choice are 
reported, adoption of DA in a Japanese university is still uncommon.  

In 2015, the education committee of Future University Hakodate, Japan, 
decided to use DA in the assignment process of undergraduate students, who write 
graduation thesis, to supervisors. One of the authors (Kawagoe) of the present study was 
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a member of the committee. Based on his explanation of the working and desirable 
properties of DA, the committee soon understood and accepted DA, but the members 
asked several substantial qualifications to DA. The most challenging one is about 
imposing minimal quota in the assignment process, that is, every supervisor must be 
assigned a positive number of students in the resulting matching outcome. This is 
problematic because of the “rural hospitals theorem” in the matching theory. In the 
context of the present study, this theorem simply states that a supervisor who is not 
assigned any student in a stable matching is never assigned any student in any other 
stable matchings. Thus, for satisfying minimal quota, one must give up the stability 
requirement. 

However, a non-negligible number of faculty members believed that imposing 
minimal quota was necessary. The reasons cited included that if a supervisor is not 
assigned a certain number of students, it may not be feasible for the supervisor to 
manage the on-going research projects. The other reason was a request for equal share 
of educational burden among the supervisors, that is, it was deemed that allowing a 
supervisor who was not assigned any student was unfair. 

Due to such arguments, the committee decided to impose minimal quota. Note 
that imposing minimal quota generally leads to instable matching because a student’s 
assignment in stable matching, for example, must be modified for fulfilling minimal 
quota.  

In the literature, several studies propose a mechanism to implement minimal 
quota by discarding one of the components in the definition of stability, that is, no 
justified envy and non-wastefulness (Fragiadakis et al. 2015; Fragiadakis and Troyan, 
2017; Tomoeda, 2018). By examining these mechanisms, the committee decided to 
choose the mechanism proposed by Fragiadakis and Troyan (2017) as the basis for the 
matching mechanism. 

Another concern the committee discussed was about handling students’ 
preferences for a supervisor whose affiliation is different from that of students. In 
Future University Hakodate, students are segregated into four major courses in the 
second year.1 Thereafter, students choose their supervisors from among their course 
faculty members. However, a few students wanted to choose supervisors whose 
affiliation is different from their own, and such requests are respected.  

Before 2015, as there were only a few students, they were assigned supervisors 
before other students’ assignment process began. However, this was problematic. If 

 
1 In Future University Hakodate, there are two departments with two sub-departments 
each. The sub-department is called “course” in the university. 
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students feel safe to be assigned to a supervisor whose affiliation is different from their 
own (as they need not compete with other students over supervisors whose affiliation is 
the same), they can misrepresent preferences as if the supervisor is their first-choice. Or, 
if a sufficient number of students with different affiliations have been accepted, a 
supervisor is reluctant to accept more students who share the same affiliation. In this 
case, students who have the same affiliation may experience justified envy against 
students whose affiliation is different. Thus, the previous treatment for students whose 
affiliation is different may violate strategy-proofness and stability. 

This problem is very similar with the matching problem under affirmative 
action policy. There are several research papers concerned about the matching 
mechanism with affirmative action policy (e.g., Abdulkadiroglu, 2003, 2005; 
Abdulkadiroglu and Sönmez, 2003; Kojima, 2012; Matsubae, 2011; Hafalir et al., 2013; 
Kawagoe et al., 2017). The committee decided to choose the DA-based mechanism 
proposed by Kojima (2012) and Mastubae (2011) for handling students in different 
courses. Before the assignment process begins, each supervisor must declare quotas for 
both students whose affiliation is the same and for students with a different affiliation. It 
is assumed that all students whose affiliation is the same is acceptable to supervisors, 
but students whose affiliation is different may not be. In the context of affirmative 
action, the former students are considered as majority and the latter students as minority. 

Thus, the mechanism proposed by the committee was a mixture of minimal 
quota and affirmative action policy. In this mechanism, both students and supervisors 
are classified as one of the types, depending on their affiliations. Then, supervisors set 
maximum and minimum type-specific quotas. For fulfilling minimal quotas, maximal 
quotas were dynamically adjusted. Unfortunately, it has been proved that the 
mechanism did not satisfy strategy-proofness and feasibility but eliminated justified 
envy among students with the same type.  

The mechanism was implemented in 2016, and totally 254 students and 67 
supervisors participated. All the students were matched, and minimal quotas were 
fulfilled for every supervisor, even though, in theory, the mechanism did not satisfy 
feasibility. The mechanism was not strategy-proof, but most students seemed to submit 
their true preferences. About 90% of the students were assigned to their fifth or better 
supervisors. For supervisors, about 70% of the students who were matched with them 
were their fifth choice or better. As for the sum of ranks of the student and supervisor in 
student-supervisor pairs in the resulting matching, about 80% were smaller than or 
equal to ten. Thus, the matching outcome was quite satisfactory. 

The remainder of the study is structured as follows. Section 2 provides a brief 
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overview of the institution of student-supervisor matching adopted in a Japanese 
university, based on DA with type-specific quotas and affirmative action. Section 3 
presents the formal model of student-supervisor matching with affirmative action via 
type-specific quotas. Section 4 presents the results for the 2016 student-supervisor 
matching. Section 5 concludes. All the propositions and proofs are included in 
Appendix A. The raw data in our student-supervisor assignment problem are available 
in an online Appendix. 
 
 
2. Overview of the institution of student-supervisor matching 
Future University Hakodate is in Hokkaido, Japan. It is essentially a computer science 
department, which is divided into four major courses; Complex Systems, Intelligent 
Systems, Information Systems, and Information Design courses.  

Undergraduate students are assigned to one of these courses during the second 
year. Later, before the fourth year of education begins, the process of matching students 
with supervisors is conducted so that students prepare their graduation thesis.  

Supervisors also belong to one of the courses. Students are advised to choose 
supervisors who belong to the same course, but they can also choose supervisors from 
other courses. Students can also choose supervisors who belong to the Communication 
Media Laboratory (CML). 

The Maximal quota for each supervisor in each course is determined by 
dividing the total number of students in the course by the total number of supervisors in 
the same course, so that students are not unmatched. Basically, the maximal quota 
determined through this method is four or five students. If supervisors would like, they 
can accept two additional students in the same course. As for students in different 
courses, supervisors must declare the maximal quota to them. However, if they do not 
want to accept any of them, it can be set equal to zero.  

The Minimal quota is determined by a uniform consent among supervisors in 
the same course, and each supervisor in the same course has basically the same amount 
of minimal quota. Minimal quota used was one or two in the majority of courses, but 
one course chose three. As supervisors in the CML have no obligation to accept any 
student, the minimal quota for them is set equal to zero. 

Before starting the matching process, the chief of the educational committee in 
the university explains about the matching process and the basic properties of the DA 
mechanism for students, including the fact that truth-telling is a dominant strategy. 

Later, for two weeks, students interview with supervisors whom they would 
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like to apply. After that, students submit their preferences for supervisors through paper 
forms. They also rank every supervisor in the same course, for avoiding no match. Of 
course, they can also rank supervisors in different courses, but the number is restricted 
to two. 

Then, each supervisor is informed via an electronic file delivery system about 
students’ preferences and additional information such as GPA, number of compulsory 
courses, and the total number of courses that students have already secured credits. The 
supervisors can only see the preferences of the students who rank themselves. Based on 
such information, supervisors submit their priority orderings to students via the 
electronic file delivery system. Supervisors must rank all the students who belong to the 
same course, but they can eliminate students who are in different courses, if they do not 
want to accept them. 

Subsequently, based on students’ preferences, supervisors’ priority orderings, 
and type-specific maximal and minimal quotas, a matching outcome is determined. The 
algorithm used is based on the Deferred Acceptance (DA) mechanism with 
modifications. We call it the DAMin mechanism, which is explained in the next section. 
 
 
3. Model 
We present a formal model of a student-supervisor matching with type-specific 
maximum and minimum quotas described in Section 2. As the algorithm used is a DA-
based mechanism, we first describe DA with no distributional constraints for simplicity.  
 
3.1 Student-supervisor problem in general 
The basic setups for a student-supervisor problem are as follows: 
(1) A non-empty finite set of students 𝑆 = {𝑠&, 𝑠(, … , 𝑠*}; 
(2) A non-empty finite set of supervisors 𝑇 = {𝑡&, 𝑡(, … , 𝑡.}; 
(3) Students’ preference profile is 𝑃 = 0𝑃12, 𝑃13, … , 𝑃145, where 𝑃16 is a preference 

relation over 𝑇 for the student 𝑠7. We assume in this study that preferences are 
strict for all the students. 𝑡8𝑃16𝑡9 means that student 𝑠7 prefers 𝑡8 to 𝑡9. Let 𝑅16 
denote the weak preference relationship induced by 𝑃16, that is, 𝑡8𝑃16𝑡9 or 𝑡8 = 𝑡9 
if and only if 𝑡8𝑅16𝑡9. We also assume that every supervisor is acceptable to every 
student and there is no constraint on the size of the submitted preference.2 

 
2 Calsamiglia et al. (2010) conducted an experiment to compare school choice problems 
with and without the constraint on the size of the submitted preference list and found 
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(4) Supervisors’ priority profile is ≿= <≿=2, ≿=3, … , ≿=>?, where ≿=@ is the priority 
ordering over 𝑆 for supervisor 𝑡8.3 The priority ordering is also assumed to be 
strict for all supervisors. Denote ≻B@ as supervisor 𝑡8 's strict priority ordering; 
thus, 𝑠7 ≻=@ 𝑠C if and only if 𝑠7 ≿=@ 𝑠C but not 𝑠C ≿=@ 𝑠7.  

(5) Each supervisor 𝑡8 ∈ 𝑇 has a non-negative integer 𝑞=@, which is the capacity of the 
supervisor 𝑡8	(i.e., total number of students she can accept). We call it total 

capacity. Let 𝑞 = 	 0𝑞=@58G&
.  be the vector of total capacity. 

 
Then, matching 𝜇 involves mapping from the set 𝑆 ∪ 𝑇 to the set of all 

subsets of 𝑆 ∪ 𝑇 such that 
 
(M1) |𝜇(𝑠7)| = 1 for each student 𝑠7, and 𝜇(𝑠7) = 𝑠7 if 𝑠7 ∉ 𝜇(𝑡8) for any 

supervisor 𝑐8; 
(M2) For each 𝑠7 ∈ 𝑆 and 𝑐8 ∈ 𝐶, 𝜇(𝑠7) = 𝑡8 if and only if 𝑠7 ∈ 𝜇(𝑡8); and 
(M3) |𝜇(𝑡8)| ≤ 𝑞=@ and 𝜇(𝑡8) ⊆ 𝑆 for each supervisor 𝑡8. 

 
(M1) and (M2) mean that all the students are matched with at most one supervisor or 
with themselves. (M3) implies that all the supervisors are matched with up to the 
number of students allowed by their total capacity. 

Mechanism 𝜑 is a mapping that produces a matching for any preference 
profile. For determining a matching 𝜇, DA mechanism (Gale and Shapley, 1962) is 
used. The mechanism runs as follows. 
 
Assignment process of DA mechanism: 
Step 1: Every student applies to her first-choice supervisor. For each supervisor 𝑡8, 

𝑞=@applicants who have highest priority for 𝑡8 are tentatively accepted by 𝑡8, and 
the others are rejected.  

Step 𝑘 ≥ 2: Applicants who were rejected at step 𝑘 − 1 apply to their next-choice 
supervisors. For each school 𝑡8, 𝑞=@ students who have the highest-priority for 𝑡8 
among the new applicants and those accepted by step 𝑘 − 1 are tentatively 
accepted, and the rest are rejected.  

 
that the proportion of (truncated) truth-telling is significantly higher in the 
unconstrained than in the constrained case. As a result, efficiency is significantly 
reduced, and stability is low in the constrained compared to the unconstrained case.  
3 This means that every student is acceptable to every supervisor. 
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Terminal condition: If either every student is accepted or no more supervisors remain in 
the submitted preferences for unmatched students, the process terminates.  
 
The mechanism stops at a finite number of steps, and the resulting matching 𝜇 is 
unique. Moreover, the matching 𝜇 is stable and student optimal.  
 
Stability: A matching 𝜇 is stable if the following apply: 
  (S1) 𝜇(𝑠7)𝑃16𝑠7 for each student 𝑠7 ∈ S, and  

(S2) if 𝑡8𝑃16𝜇(𝑠7), then |𝜇(𝑡8)| = 𝑞=@ and 𝑠C ≻=@ 𝑠7 for any student 𝑠C ∈
𝜇(𝑡8). 
 
(S1) means the condition of individual rationality that all the students prefer matching 
with a supervisor than matching with themselves. (S2) means that no pair (𝑡8, 𝑠7) can 
be a blocking pair for matching 𝜇; thus, if student 𝑠7 prefers supervisor 𝑡8 to the 
outcome obtained under matching 𝜇, then the total capacity of supervisor 𝑡8 is already 
full, and supervisor 𝑡8 does not give student 𝑠7 higher priority than any other student 
𝑠C she accepts under 𝜇. If a matching outcome is not stable, one student feels justified 
envy against another student.  
 
Justified envy: For a matching 𝜇, 𝑠7	feels justified envy against another student 𝑠C	if 
𝜇(𝑠C)	𝑃16𝜇(𝑠7), 𝑠7 ≻Y<1Z? 𝑠C, and there exists another matching 𝜈 such that 

𝜈(𝑠7) = 𝜇(𝑠C), 𝜈<𝑠C? ≠ 𝜇<𝑠C?	𝑎𝑛𝑑	𝜈(𝑠9) = 𝜇(𝑠9)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑠9d7,C. 
 
The definition of student optimality is as follows. 
 
Student-optimal stable matching: A stable matching that every student weakly prefers 
to any stable matching. 
 
Mechanism 𝜑 is a student-optimal stable mechanism (SOSM) if it produces student-
optimal stable matching for any preference profile. 
 
Theorem 1 (Theorems 1, 2 in Gale and Shapley 1962): Given (𝑃,≳), the DA 
mechanism is SOSM. 
 
Further, the DA mechanism is strategy-proof: stating a true preference is the dominant 
strategy for students. 
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Strategy-proofness: Let 𝜑(𝑃) be a matching induced by a matching mechanism 𝜑 
under a true preference profile 𝑃, and 𝜑16(𝑃) be student 𝑠7 's matching outcome in 
𝜑(𝑃). For any student 𝑠7’s preference 𝑃16

f  and any profile of other students’ 
preferences other than 𝑠7, 𝑃gh16, if 

𝜑17<𝑃16, 𝑃gh16?𝑅16𝜑16<𝑃16
f , 𝑃gh16? 

holds, 𝜑 is strategy-proof. 
 
Theorem 2 (Theorem 9 in Dubins and Freedman, 1981; Theorem 5 in Roth, 1982b): the 
DA mechanism is strategy-proof. 
 
However, the resulting matching with DA is not always Pareto-efficient (Abdulkadiroglu, 
2003).4 
 
Pareto-efficiency: A matching is Pareto-efficient if it is not Pareto-dominated by any 
other matching. 
 
A matching 𝜇 Pareto-dominates another matching 𝜈 if 𝜇(𝑠7)𝑅16𝜈(𝑠7) for every 

student 𝑠7 ∈ 𝑆 and 𝜇<𝑠C?𝑃1Z𝜈<𝑠C? for at least one 𝑠C ∈ 𝑆. Thus, a matching 𝜇 Pareto-

dominates another matching 𝜈 if every student prefers the supervisor assigned under 𝜇 
to the supervisor assigned under 𝜈, and at least one student strictly prefers the outcome 
obtained under 𝜇.  
 
3.2 Student-supervisor problem with type-specific maximal and minimal quotas. 
We then consider a student-supervisor problem with type-specific maximal and minimal 
quotas. This is also called the controlled school choice problem in the literature and 
studied by Ehlers et al. (2014) and Fragiadakis and Troyan (2017).  

To consider this problem, we add the following settings to the general setting 
described in the previous subsection.  

 
4 Note that the outcome of the DA mechanism is not necessarily efficient in the context 
of school choice. Ergin (2002) shows that the outcome of the DA mechanism is Pareto 
efficient if and only if the school priorities satisfy a certain acyclicity condition. Ehlers 
and Erdil (2010) generalize the result in the case where school priorities are coarse. This 
can be interpreted as a negative result for the efficiency of the DA mechanism, since 
school priorities are not likely to satisfy the acyclicity conditions of Ergin (2002) and 
Ehlers and Erdil (2010) in applications. 
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𝛩 =	 {𝜃&, … , 𝜃k} is the finite set for types of students, and each student belongs 
to at most one of the following types. We interpret “type” as a course that a student 
belongs to. The function 𝜏: 𝑆 → 𝛩 assigns one of the types for each student and 
denotes that 𝑆o is the set of students of type 𝜃 ∈ Θ, and 𝑇o is the set of supervisors of 
type 𝜃 ∈ Θ. We assume that types are publicly observable (i.e., types cannot be 
misreported). 

For all types 𝜃 ∈ 𝛩 and supervisor 𝑡 ∈ 𝑇o, in addition to total quota 𝑞=, each 
supervisor has a type-specific maximal quota 𝑈=,o and a type-specific minimal quota 

𝐿=,o. Let 𝑈 = (𝑈=,o)=∈s,o∈t be the vector of maximal quota and 𝐿 = <𝐿=,o?=∈s,o∈t be 

the vector of minimal quota. Moreover, denote 𝑈=,ho as the maximum number of 
students other than type 𝜃 assigned to supervisor 𝑡 ∈ 𝑇o, and 𝐿=,ho as the minimum 
number of students other than type 𝜃 assigned to supervisor 𝑡 ∈ 𝑇o. We assume 
0 ≤ 𝐿=,o ≤ 𝑈=,o ≤ 𝑞= for all (𝑡	(∈ 𝑇o), 𝜃). We also assume that 𝑈=,ho = 𝑞= and 
𝐿=,ho = 0. Thus, we consider a school choice problem where minimal quota constraint 
is binding when student and supervisor types are the same. 

Denote ℳ as the set of matchings. For any 𝜇 ∈ ℳ, let 𝜇o(𝑡) be the set of 
students of type 𝜃 assigned to a supervisor 𝑡 ∈ 𝑇o under matching 𝜇.  
 
Feasibility: A matching 𝜇 is feasible if 𝐿=,o ≤ |𝜇o(𝑡)| ≤ 𝑈=,o for all (𝑡	(∈ 𝑇o), 𝜃) 
and |𝜇(𝑡)| ≤ 𝑞=. In other words, feasible matching satisfies type-specific minimal and 
maximal quotas for any type as well as the total capacity for any supervisor.  
 
Denote ℳw ⊂ℳ as the set of feasible matchings. We assume in the study that ℳw ≠
∅; this is the (obviously necessary) requirement that the distributional constraints such 
as maximal and minimal quotas are consistent with the number of students of each type 
actually present in the market.  

The definition of justified envy defined in subsection 3.1 should be modified 
accordingly with the introduction of maximal and minimal quotas.  
 
Justified envy: For a matching 𝜇, a student 𝑠7 ∈ 𝜇(𝑡8) justifiably envies student 𝑠C ∈
𝜇(𝑡9) if (i) 𝑡9𝑃16	𝑡8, (ii) 𝑠7 ≻=z 	 𝑠C, and (iii) there exists an alternative matching 𝜈 ∈ ℳw 
such that 𝜈(𝑠7) = 𝑡9, 𝜈<𝑠C? ≠ 𝑡9, and 𝜈(𝑠{) = 𝜇(𝑠{) for all ℎ ≠ 𝑖, 𝑗.  
 
In other words, student 𝑠7 justifiably envies another student 𝑠C if (i) she prefers 
supervisor 𝑡9 to whom student 𝑠C is assigned to 𝑡8, (ii) has a higher rank than 𝑠C on 
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the priority ordering of supervisor 𝑡9, (iii) and 𝑠7 and 𝑠C can be reassigned without 
violating any distributional constraints (and without altering the allocation of any other 
student). If no student justifiably envies any other student, then the matching eliminates 
justified envy.  

Then, denote 𝐷𝐴<��?(⋅) as the DA mechanism with maximal quota vector 𝑈′. 
A DA mechanism with minimal quota (henceforth, DAMin) is defined as follows. Note 
that the maximal quota for each supervisor would be reduced at each period if the 
matching outcomes are not feasible.  

We also use the following notations in describing DAMin: the mapping 
𝑅𝑎𝑛𝑘(⋅) maps a supervisor	𝑡	assigned to a student to the supervisor’s ranking number 
{1, … , 𝑛} for the student on her priority, 𝑇� ≔ {𝑡′ ∈ 𝑇 ∶ 	 |𝜇o(𝑡′)| > 𝐿=f,o, 𝑓𝑜𝑟	𝑎𝑛𝑦	𝜃}, 

and for any 𝑡′ ∈ 𝑇�, 𝑅𝑎𝑛𝑘�������(𝑡′) ≔ max
1∈Y(=f)

𝑅𝑎𝑛𝑘(𝑡′). 

 
Assignment process of DAMin mechanism: 
Step 1: Starting with maximal quotas vector 𝑈& = <𝑈=2

& , 𝑈=3
& ,⋯ , 𝑈=>

& ?, determine a 
matching outcome with 𝐷𝐴(�2)(𝑃) (as defined in subsection 3.1) with 𝑈&. If the 
matching outcome 𝜇 is feasible, the algorithm is terminated, and the matching 
outcome is finalized. If not, proceed to next Step. 

Step 𝑘 ≥ 2: If a feasible matching is not obtained in Step 𝑘 − 1, ∃	𝑡 ∈
𝑇o	𝑠. 𝑡. |𝜇o(𝑡)| < 𝐿=,o, the rankings of student rated lowest are compared among 
supervisors whose minimal quotas are fulfilled. Thus, we choose supervisor 𝑡fsuch 
that 𝑅𝑎𝑛𝑘�������(𝑡′) is maximum in 𝑡f ∈ 	𝑇�, and the maximal quota for supervisor 𝑡′ is 
adjusted to 𝑈=f8h& − 1. Note that if there are two or more supervisors satisfying the 
above condition, one of them would be randomly chosen. With this updated 
maximal quota vector 𝑈8, run 𝐷𝐴(�@)(𝑃) again. If the resulting matching 𝜇 is 
feasible, terminate the algorithm and the matching outcome is finalized. If not, 
proceed to Step 𝑘 + 1.  

Terminal condition: If (i) either every student is accepted, or (ii) no more acceptable 
supervisors remain in the submitted preferences for unmatched students, or (iii) if 
for every supervisor, the number of students of the same type who is assigned is 
more than his/her minimal quota; 𝐿=,o ≤ |𝜇o(𝑡)|, or (iv) 𝑈=,o = 𝐿=,o for all 
(𝑡(∈ 𝑇o), 𝜃) (by updating maximal quota vector, the maximal quota for any 
supervisor will be less than his/her minimal quota), the process terminates. The 
mechanism stops at a finite number of steps, and the resulting matching 𝜇 is 
unique.  
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The following example shows the working of DAMin. 
  
Example 1. 
There are five students 𝑆 = 	 {𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�} and there are two types 𝛩 = {𝜃&, 𝜃(}. 
So, the students are divided as 𝑆o2 = {𝑠(, 𝑠�} and 𝑆o3 = {𝑠&, 𝑠�, 𝑠�}. There are three 
supervisors 𝑇 = 	 {𝑡&, 𝑡(, 𝑡�}, and they are divided as 𝑇o2 = {𝑡&} and 𝑇o3 = {𝑡(, 𝑡�}. 
Total quotas, and type-specific minimal and maximal quotas are as follows. 

(𝑞, 𝐿, 𝑈) =	 	{<𝑞=2, 𝐿=2,o2, 𝑈=2,o2
& ? = (3, 1, 2),

<𝑞=3, 𝐿=3,o2, 𝑈=3,o2
& ? = (1, 1, 1),

<𝑞=�, 𝐿=�,o3, 𝑈=�,o3
& ?} = (2, 1, 2)}.

 

True preference profiles for each student are as follows.5 
𝑃1&: 𝑡�𝑡&𝑡(, 
𝑃13: 𝑡&𝑡�𝑡(, 
𝑃1�: 𝑡&𝑡(𝑡�, 
𝑃1�: 𝑡&𝑡(𝑡�, 
𝑃1�: 𝑡�𝑡&𝑡(. 

Priority orderings for each supervisor are as follows.6 
≻=2: 𝑠(𝑠�𝑠�𝑠&𝑠�	,  
≻=3: 𝑠&𝑠(𝑠�𝑠�𝑠�,  
≻=�: 𝑠�𝑠(𝑠�𝑠�𝑠&. 

Assume that every student submits her true preference. Then, all the students are assigned 
to their first choice, but this matching is not feasible. In fact, supervisor 𝑡(  has not 
satisfied her minimal quota. Then, since 5 = 𝑅𝑎𝑛𝑘�������(𝑡�) > 𝑅𝑎𝑛𝑘�������(𝑡&) = 3, the maximal 
quota for supervisor 𝑡� is reduced to 𝑈=�

( =1 and the DA runs again with this updated 
quota vector. As a result, student 𝑠& is rejected by his first-choice supervisor 𝑡�. Then, 
he applies to his second-choice supervisor 𝑡& and is again rejected; finally, he is accepted 
by his third-choice supervisor 𝑡(. As every student is assigned, DAMin ends and the 
resulting matching 𝜇 is as follows. 

 
5 The notational convention is that supervisors are listed in the order of students’ 
preferences and supervisors who are not on the preference list are unacceptable: for 
instance, for student 𝑠&, supervisor 𝑡� is preferred to supervisor 𝑡&, and supervisor 𝑡& 
is preferred to supervisor 𝑡(. Henceforth, the same notation is used in the study. 
6 The notational convention here is that students are listed in the order of supervisors’ 
priorities. Henceforth, the same notation is used in the study.  
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𝜇 = 	 �
𝑡& 𝑡( 𝑡�

𝑠(, 𝑠�, 𝑠� 𝑠& 𝑠�
�. 

 
Remark 1: 
DAMin starts with the standard DA, and then checks if, given the submitted 
preferences, the resulting matching fulfills the feasibility constraint, especially the 
minimal quota. If feasibility is satisfied, the algorithm produces the same matching 
outcome as the standard DA. If not, one of the supervisors’ maximal quotas is reduced 
by one. This does not necessarily reduce the number of assigned students to the 
supervisor (i.e., when the number of assigned students is strictly less than the maximal 
quota, reduction of maximal quota does not change anything.). However, repeating this 
reduction process finally removes a student from the supervisor’s quota. If the rejected 
student then applies to his next-choice supervisor and the supervisor accepts him, she 
may reject her lowest priority student who was assigned in the previous step. In this 
way, the rejection chain starts and continues until no student is rejected, according to the 
DA algorithm. Thus, by lowering the maximal quota in sequence, we gradually fulfill 
the minimal quota for every supervisor. 
 
Remark 2:  
Fragiadakis and Troyan (2017) proposed that the method for reducing maximal quota 
exogenously determined one (for example, a randomly chosen sequence of the 
supervisors). One of the authors (Kawagoe) of the present study, strongly recommended 
it to the university’s education committee, but the chief of the committee finally decided 
to choose the method for the endogenous one, that is, among the supervisors whose 
number of assigned students are strictly greater than the minimal quota in the previous 
step, the supervisor who is assigned the lowest ranked student with respect to his/her 
submitted priority order is chosen. By changing the reduction sequence from exogenous 
to endogenous, some good properties of DAMin, for example, strategy-proofness, is 
lost. 

The reason underlying the chief’s decision is the fact that with an exogenously 
chosen sequence, a student was not removed from a supervisor whose worst student’s 
rank was lower (in fact, 81st) but from another supervisor whose worst student’s rank 
was relatively higher (in fact, 6th). With an endogenously chosen sequence, a supervisor 
was in a better position by eliminating the lowest ranked student because the student 
was unacceptable to her and the student could have a chance to be assigned to his next-
choice supervisor, changing the reduction sequence from exogenous to endogenous may 
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not be so detrimental. In fact, the assumption that all students are acceptable may not 
hold. In the Japanese university, it was enforced that supervisors must accept any 
student if seats are available. The sum of ranks of the student and supervisor in the final 
assignment with the endogenously chosen sequence was slightly higher than the with 
the exogenously chosen sequence, as well as with the original DA. 
 
Remark 3: DAMin mechanism is SOSM. 
 
Eliminates justified envy among students with same type 
Thus, if DAMin satisfies the desired properties described in subsection 3.1, it 
guarantees that the final resulting matching eliminates justified envy among students 
with the same type.  
  
Proposition 1. DAMin eliminates justified envy among students with same type.  
 
Feasibility 
DAMin may produce infeasible matching outcomes because with DAMin any student 
can apply to supervisor 𝑡 who is different type 𝜃 and whose maximal quota 𝑈=,ho is 
not reduced.  
 
Proposition 2. For any preference profile, DAMin may not be a feasible matching.  
 
Remark 4: 
The problem of infeasibility may occur not only under the DA-based mechanism such 
as DAMin but also under any other kind of mechanism, if type-specific minimal quotas 
are imposed, as some supervisors of type 𝜃 cannot fulfill their minimal quotas when 
sufficient number of students are assigned to supervisors whose types are other than 𝜃. 
 
Strategy-proofness 
If the method of reducing maximal quotas is exogenously determined, as Fragiadakis 
and Troyan (2017) show, DAMin is strategy-proof. However, if it is endogenously 
determined, DAMin may not be strategy-proof, as explained in Remark 2.  

For example, consider a situation where student s applied to a popular 
supervisor 𝑡 as his first choice. Even though maximal quota of supervisor 𝑡 is still 
vacant; if there is another supervisor 𝑡′ whose minimal quota is not filled, the maximal 
quota of supervisor 𝑡 may be reduced because she is the supervisor who is assigned the 
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worst student 𝑠 among supervisors who fulfill minimal quotas. As a result, if student 𝑠 
may be assigned to a supervisor worse than 𝑡. Anticipating this, student s may hesitate 
to state her true preference. 
 
Proposition 3. For any 𝑃, DAMin is not strategy-proof. 
 
Efficiency 
First, we state that there is no Pareto dominance relationship between DAMin and the 
original DA. As DAMin includes DA as a special case (e.g., when the final matching 
outcome is determined in Step 1 with DAMin), no ordinal Pareto domination 
relationship holds between them. 
 
Proposition 4. DAMin is not necessarily Pareto dominated by DA.  
 
Then, as stated in Remark 2, in the actual matching of student-supervisor data in 2016, 
the sum of ranks of the student and supervisor in the final assignment with 
endogenously chosen sequence was rather slightly higher than with the exogenously 
chosen sequence and original DA. 

When we consider the sum of ranks of the student and supervisor as a measure 
of welfare, DAMin is cardinally more efficient than DA by the sum of ranks of the 
student and supervisor. We formally define this type of efficiency as follows.  
 
Cardinal efficiency: A matching outcome 𝜇 is cardinally more efficient than 𝜇′ by 
the sum of ranks of the student and supervisor if 
 

 ∑ 𝑅𝑎𝑛𝑘1∈� <𝜇(𝑠)? + ∑ ∑ 𝑅𝑎𝑛𝑘(𝑡)1f∈Y(=) <=∈s	 ∑ 𝑅𝑎𝑛𝑘1∈� <𝜇′(𝑠)? +
∑ ∑ 𝑅𝑎𝑛𝑘(𝑡)1f∈Yf(=) ,=∈s	  
 
where the mapping 𝑅𝑎𝑛𝑘(⋅) maps a student	𝑠 assigned to a supervisor based on the 
student’s ranking number {1, … ,𝑚} for the supervisor on her preference. 
 
Cardinal domination: If a matching 𝜇 with a mechanism 𝜑 is cardinally more 
efficient than 𝜇′ with another mechanism 𝜓, 𝜑 cardinally dominates 𝜓.  
 
Then, we have the following proposition. 
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Proposition 5. DAMin is not necessarily cardinally dominated by DA  
 

However, the following proposition shows that under a certain priority 
structure, DAMin is cardinally dominated by DA. To prove this, we use the following 
definition of an essentially homogeneous priority structure introduced by Kojima 
(2013).  
 
Essentially homogeneous (Kojima, 2013)  
A priority structure ({𝑃=, 𝑞=}=∈s) is essentially homogeneous if there exist no 𝑡, 𝑡f ∈
𝑇	and 𝑠, 𝑠f ∈ 𝑆 such that (1) 𝑠	𝑃=	𝑠′ and 𝑠′	𝑃=	𝑠, and (2) there exist sets of students 
𝑆=	𝑆=f ⊂ 𝑆 ∖ {𝑠, 𝑠f} such that |𝑆=| = 𝑞= − 1, |𝑆=�| = 𝑞=� − 1, 𝑆= = {𝑠ff ∈ 	𝑆 ∶ 	 𝑠ff	𝑃=	𝑠f}, 
and 𝑆=� = {	𝑠ff ∈ 𝑆:	𝑠ff	𝑃=�	𝑠}. 
 
Proposition 6. If a school’s priority structures are essentially homogeneous, then 
DAMin is cardinally dominated by DA.  
 
The concept of an essentially homogenous priority structure seems to be similar with 
the acyclic condition introduced by Ergin (2002), or Kesten (2006).7 Thus, if a priority 
structure has a cycle, the above negative result for DAMin may not hold. The following 
example shows that this conjecture may be right.  
 
Example 3.  
We show the above statement with the following example. There are five students 𝑆 =
	{𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�} and there are two types 𝛩 = {𝜃&, 𝜃(}. So, the students are divided as 
𝑆o2 = {𝑠�, 𝑠�, 𝑠�} and 𝑆o3 = {𝑠&, 𝑠(}. There are three supervisors 𝑇 = 	 {𝑡&, 𝑡(, 	𝑡�}, and 
they are divided as 𝑇o2 = {𝑡&, 𝑡(} and 𝑇o3 = {𝑡�}. The total quotas, type-specific 

 
7 Ergin (2002): A strong cycle is a set 𝑡, 𝑡f ∈ 𝑇	and 𝑠7, 𝑠C, 𝑠8 ∈ 𝑆 such that (1) 
𝑠7	𝑃=	𝑠C	𝑃¡	𝑠8, 𝑠8	𝑃=f	𝑠7, and (2) there exist (possibly empty) disjoint sets of students 
𝑆=, 𝑆=f ⊂ 	𝑆 ∖ {𝑠7, 𝑠C, 𝑠8}	such that 𝑆= ⊂ 	𝑈=<𝑠C? = 	 0	𝑠 ∈ 	𝑆 ∶ 	𝑠	𝑃=	𝑠C5, |𝑆=| = 𝑞= 	−
	1, 𝑆=� ⊂ 	𝑈=�(𝑠7), |𝑆=�| = 𝑞=f 	− 	1. A profile of supervisor priorities and capacities is 
weakly acyclic if no strong cycle exists.  
Kesten (2006): A cycle is a set	𝑡, 𝑡f ∈ 	𝑇	𝑎𝑛𝑑	𝑆7, 𝑠C, 𝑠C ∈ 	𝑆 such that (1)  
𝑠7	𝑃=	𝑠C	𝑃=	𝑠8, 𝑠8	𝑃=f𝑠7, 𝑠C,	and (2) there is a (possibly empty) set 𝑆= ⊂ 	𝑆 ∖
0	𝑠7, 𝑠C, 𝑠85𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑆= ⊂ 	𝑈=	(𝑠7) ∪	(𝑈=	<𝑠C? ∖ 	𝑈=�(𝑠8))	𝑎𝑛𝑑	|𝑆=| 	= 	 𝑞= 	− 1. A 
profile of school priorities and capacities is acyclic if no cycle exists. Note that if a 
priority structure is a satisfied cycle, then the priority structure becomes a strong cycle.  
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minimal and maximal quotas are as follows. 

(𝑞, 𝐿, 𝑈) =	 	{<𝑞=2, 𝐿=2,o2, 𝑈=2,o2? = (2, 1, 2),
<𝑞=3, 𝐿=3,o2, 𝑈=3,o2? = (3, 1, 3),
<𝑞=�, 𝐿=�,o3, 𝑈=�,o3? = (2, 1, 2)}.

 

Under true preference profiles for each student 
𝑃12: 𝑡�𝑡&𝑡(,  
	𝑃13: 𝑡�𝑡&	𝑡(,  
𝑃1�: 𝑡(𝑡&𝑡�,  
𝑃1�: 𝑡(𝑡&𝑡�,  
𝑃1�: 𝑡(𝑡&𝑡�, 

and priority orderings for each supervisor 
≻=2: 𝑠�𝑠&𝑠(𝑠�𝑠�	,  
≻=3: 𝑠�𝑠�𝑠�𝑠(𝑠&,  
≻=�: 𝑠&𝑠(𝑠�𝑠�𝑠�, 

the resulting final matching with DA is as follows. Note that the priority structures have 
cycle structure. 

𝜇 = 	£
𝑡& 𝑡( 𝑡�
∅	 𝑠�, 𝑠�, 𝑠� 𝑠&, 𝑠(

¤. 

The sum of students’ and supervisors’ ranks is 14. The result of DAMin is 𝜇¥7*: 

𝜇¥7* = 	 �
𝑡& 𝑡( 𝑡�
𝑠�	 𝑠�, 𝑠� 𝑠&, 𝑠(

�. 

The sum of ranks of the student and supervisor is 12.  
 
This example shows that if a priority structure has a cycle, DAMin cardinally dominates 
DA. However, this property does not hold for any matching market as the following 
example shows  
 
Example 4. 
There are five students 𝑆 = 	 {𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�} and there are two types 𝛩 = {𝜃&, 𝜃(}. 
So, the students are divided as 𝑆o2 = {𝑠�, 𝑠�, 𝑠�} and 𝑆o3 = {𝑠&, 𝑠(}. There are three 
supervisors 𝑇 = 	 {𝑡&, 𝑡(, 	𝑡�}, and they are divided as 𝑇o2 = {𝑡&, 𝑡(} and 𝑇o3 = {𝑡�}. 
Total quotas, type-specific minimal and maximal quotas are as follows. 

(𝑞, 𝐿, 𝑈) =	 	{<𝑞=2, 𝐿=2,o2, 𝑈=2,o2? = (2, 1, 2),
<𝑞=3, 𝐿=3,o2, 𝑈=3,o2? = (3, 1, 3),
<𝑞=�, 𝐿=�,o3, 𝑈=�,o3? = (2, 1, 2)}.
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Under true preference, the profiles for each student are 
𝑃12: 𝑡�𝑡&𝑡(,  
	𝑃13: 𝑡�𝑡&	𝑡(,  
𝑃1�: 𝑡(𝑡�𝑡&,  
𝑃1�: 𝑡(𝑡&𝑡�,  
𝑃1�: 𝑡(𝑡&𝑡�, 

and priority orderings for each supervisor are 
≻=2: 𝑠�𝑠&𝑠(𝑠�𝑠�	,  
≻=3: 𝑠�𝑠�𝑠�𝑠(𝑠&,  
≻=�: 𝑠&𝑠(𝑠�𝑠�𝑠�, 

the resulting final matching with DA is as follows. Note that the priority structure has a 
cycle. 

𝜇 = 	£
𝑡& 𝑡( 𝑡�
∅	 𝑠�, 𝑠�, 𝑠� 𝑠&, 𝑠(

¤. 

The sum of students’ and supervisors’ rank is 14. The result of DAMin is 𝜇¥7*: 

𝜇¥7* = 	 �
𝑡& 𝑡( 𝑡�
𝑠�	 𝑠�, 𝑠� 𝑠&, 𝑠(

�. 

     
The sum of students’ and supervisors’ rank is 17.  
 
Then, DAMin with endogenous sequence can Pareto-dominate exogenous sequence in 
general? Our conjecture is that there is no Pareto-dominated relationship among these 
mechanisms. The following Proposition 7 supports our conjecture. 
 
Proposition 7. There is no Pareto-dominated relationship in DAMin with endogenous 
sequence, and the one with exogenous sequence for any matching market. 
 
Then, DAMin with endogenous sequence cardinally dominates one with exogenous 
sequence? We show that from the following proposition, there is no cardinal domination 
relationship between both types of DAMin.  
 
Proposition 8. There is no cardinal domination relationship between both types of 
DAMin for any matching market. 
 
These findings suggest that the only limitation of DAMin with endogenous sequence is 
lack of strategy-proofness, when we compare it with the one with exogenous sequence. 
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However, the number of experimental findings show that (e.g., Kawagoe et al., 2018) 
strategy-proofness is not satisfied even for the DA mechanism. Therefore, lack of 
strategy-proofness may not be a major problem in practice.  
  
Comparison with related mechanisms 
Fragiadakis et al. (2015) also study a model of school choice with minimal quotas (hard 
floor constraints). The model they proposed is restricted to the case that each school has 
an aggregate floor constraint, that is, they do not allow a school to have separate floors 
for different types of students. Unlike the model proposed by Fragiadakis et al. (2015) 
and Fragiadakis and Troyan (2017), DAMin allows a supervisor to have separate floors 
for different types of students. 

The extended-seat DA (ESDA) mechanism proposed by Fragiadakis et al. 
(2015) fills an aggregate floor constraint by separating each school’s total quotas into 
two parts, one part corresponds to minimal quotas and the other the remaining seats. 
Subsequently, students are assigned to each school by filling minimum quota as early as 
possible unless any justified envy causes any delay. Specifically, when students apply to 
their first-choice schools, the schools accept them up to their minimal quotas based on 
their priority orderings. Then, students who are rejected by their first-choice schools 
apply for the remaining seats (total quotas minus minimal quotas) at their first-choice 
schools. If they are again rejected, then they apply to their second-choice schools, and 
so on. The ESDA fulfills each school’s seats from the bottom, while the model proposed 
by Fragiadakis and Troyan (2017) and DAMin reduce each school’s seats from the top 
to fulfill minimal quotas. Fragiadakis et al. (2015) proved that ESDA is strategy-proof 
and satisfies a modified sense of stability (Fragiadakis et al., (2015) Theorem 3). 

In the DAMin, maximal quota is reduced one by one. This causes unwarranted 
and unfair feelings for supervisors who were removed students once assigned in 
previous steps in the algorithm. On the other hand, ESDA fulfills minimal quotas, 
unless justified envy is caused. In this case, as students are not removed but added up 
for each supervisor, unfair feelings do not seem to occur. In fact, the example used in 
Proposition 2 is feasible under ESDA: 

𝜇¦�§¨ = 	 �
𝑡& 𝑡( 𝑡�

𝑠(, 𝑠� 𝑠&, 𝑠� 𝑠�
�. 

There is no cardinal domination between ESDA and DAMin. In the following 
proposition, DAMin cardinally dominates ESDA.  
 
Proposition 9. There is cardinally no dominating relationship between DAMin and 
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ESDA for any matching market. 
 
Tomoeda (2018) also studies the model of a school choice with minimal quotas. He 
proposes a mechanism called by Deferred Acceptance Mechanism with Precedence 
Lists (DAPL). He also considers a dynamic DA based mechanism. In his model, for 
fulfilling minimal quotas, the rankings over students of the same type are dynamically 
changed, while maximal quotas are changed in DAMin. The DAPL is also strategy-
proof and satisfies a modified sense of stability (Tomoeda (2018) Proposition 2). The 
proposed model is like our model, but it does not seem applicable to our situation 
because interpretations of types in Tomoeda’s (2018) model and ours are different. 
Tomoeda (2018) interprets a type as student’s characteristics, but we interpret a type as 
a student’s as well as supervisor’s affiliation. In other words, in Tomoeda (2018), a type 
is defined only for students.  

The inherent weakness of DAMin is the lack of strategy-proofness when a 
reduction sequence is endogenously determined. However, some studies show that 
mechanisms with some dynamic adjustment processes do not satisfy strategy-proofness. 
For example, Haeringer and Iehlé (2016), who study a dynamic DA-based mechanism 
such that students can resubmit their preferences for obtaining a better match in the later 
stages of admission to a French college, prove that the mechanism is not strategy-proof. 
Okumura (2017) studies a certain kind of school choice problem for resolving shortages 
in childcare in nursery schools in Japan, where different quotas are set to different age 
groups in each nursery school, and these quotas are dynamically adjusted in the school 
for resolving co-existence of excess demand and supply for different age groups. The 
proposed mechanism satisfies a modified sense of stability but is not strategy-proof.  

However, if we put DAMin in the context of a large economy environment, it 
would be possible to show that it is strategy-proof.8  
 
 
4. Empirical data 
The DAMin mechanism was implemented in 2016 at Future University Hakodate with 
254 students and 67 supervisors. Totally, there are four courses in the university, and 
each student belongs to at the most one course. In the following analyses, we refer to 

 
8 For example, Kojima and Pathak (2009) study a large economy environment and the 
same technique can be used to show strategy-proofness for DAMin in a large economy.     
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these courses as A, B, C, and D.9 Supervisors belong to either one of the four courses or 
the Communication Media Laboratory (CML).  

Students were recommended to apply to supervisors who belonged to the same 
course, but they could apply to any supervisor in any course. In fact, 21.2% students (54 
out of 254) were assigned to supervisors in different courses. Due to this, although 
minimal quota was fulfilled for all the supervisors, the maximal quota for students in the 
same course was not fulfilled for 7.5% supervisors (5 out of 67). 

The maximal quotas for students in the same course were equal among 
supervisors in the same course. The maximal quotas were set to ensure that if every 
student in the same course applied to supervisors in the same course, they could not be 
unmatched. Therefore, the maximal quotas in each course were set equal to the number 
of students in the course divided by the number of supervisors in the same course (if the 
calculated number contained decimal points, it was rounded up to the closest integer).  

The minimal quotas for students in the same course were basically equal 
among supervisors belonging to the same course. However, it was different for the four 
courses, thereby reflecting the educational objective of each course. Supervisors had to 
set strictly positive minimal quotas for students who belonged to the same course, but 
they could set minimal quotas equal to zero for students who belonged to different 
courses. For supervisors who belonged to CML, maximal quotas were four and they 
could set minimal quotas equal to zero for students in any course. 

The number of students and supervisors, maximal and minimal quotas for 
students in the same course and in each course are summarized in Table 1. 

 
 A B C D CML Total 
# of students 62 62 86 44 0 254 
# of supervisors 13 12 19 13 10 67 
Maximal quota 6 6 4 4 4 --- 
Minimal quota 2 2 2 3 0 --- 

Table 1. # of students, # of supervisors, and maximal and minimal quotas for students in 
the same course and in each course. 
 

Students had to rank all the supervisors who belonged to the same course in 
their submitted preferences, and supervisors also had to rank all the students who 
belonged to the same course in their submitted priority orderings. When maximal quotas 

 
9 A, B, C, and D correspond to Complex Systems, Intelligent Systems, Information 
Systems, and Information Design courses, respectively. 
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were set, this did not allow any student to be left unmatched. Students did not have to 
rank supervisors in different courses, and supervisors also did not have to rank students 
in different courses.  

Given the preferences, priority orderings, maximal and minimal quotas, the 
matching outcome was determined by DAMin. No student was left unmatched, but 
eight supervisors could not fulfill their minimal quota at the first step of the algorithm in 
DAMin. As a result, the quota adjusting process started and, finally, every supervisor 
fulfilled her minimal quota at the 47th step. 

The maximal ranking of a supervisor, as ranked by a student was 23 and 
minimal ranking was 14, depending on the number of supervisors in the course and a 
student’s preference for supervisors in different courses. 

 
Assignments in the final matching outcome 
In the resulting matching, 71.7% students were matched with their first-choice 
supervisor. Totally, 90% students were matched with their fifth or better supervisor. In 
the worst-case scenario, a student was matched with his nineteenth choice. In the next 
worst case, a student was matched with his fourteenth choice. 
 
Rank 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
Freq. 182 22 13 9 5 6 2 4 4 0 
% 71.7 8.7 5.1 3.5 2.0 2.4 0.8 1.6 1.6 0.0 
Cum. % 71.7 80.3 85.4 89.0 90.0 93.3 94.1 95.7 97.2 97.2 

Table 2. Matching results for students 
The number of students who were assigned to their tenth choice, its relative 

percentages, and cumulative percentages in the population are shown in Table 2. 
Except for supervisors in the CML, the maximal number of students a 

supervisor ranked was 96 and minimal number was 47, depending on the number of 
students in the course and the supervisor’s preference for students in different courses. 
Up to four students applied to supervisors in the CML. 

In the resulting matching, 21.7% students who were matched with supervisors 
were their first-choice students. Totally 90.2% students whom supervisors were matched 
with were their 13th or better students. In the worst-case scenario, a supervisor was 
matched with his 81st choice. In next worst case, a supervisor was matched with his 
73rd choice. 

One may think that the matching outcome for supervisors are relatively worse 
than students. However, note that supervisors had to accept up to their maximal quota. 
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Even in the best case, each supervisor had to accept four or more students, if the 
maximal quota was fulfilled. Then, as 60.2% (73.6%) of students whom the supervisors 
were matched with were up to their fourth (sixth) choice, relative performance of the 
mechanism for supervisors is not worse than students (also remember that DAMin is a 
student optimal.). 

The number of supervisors who were assigned up to their tenth choice, its 
relative percentages, and cumulative percentages in the population are shown in Table 3. 
 
Rank 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
Freq. 55 42 30 26 22 12 12 11 5 4 
% 21.7 16.5 11.8 10.2 8.7 4.7 4.7 4.3 2.0 1.6 
Cum. % 21.7 38.2 50.0 60.2 68.9 73.6 78.3 82.7 84.6 86.2 

Table 3. Matching results for supervisors 
 
Welfare 
The sums of a student’s rank for supervisor and a supervisor’s rank for a student in the 
student-supervisor pairs are shown in Table 4. If both a student and supervisor is 
matched with their first choice, the sum of ranks is 2. Such cases occurred in 20.9% 
matching cases. As already pointed out, each supervisor had to accept four or more 
students, if the maximal quota is fulfilled, the sum of ranks should be 5 to 8. Then, 74% 
of the matching observed is such cases. 
 
Rank 2 3 4 5 6 7 8 9 10 11- 
Freq. 53 38 33 25 20 13 6 8 6 52 
% 20.9 15.0 13.0 9.8 7.9 5.1 2.4 3.1 2.4 20.5 
Cum. % 20.9 35.8 48.8 58.7 66.5 71.7 74.0 77.2 79.5 100.0 

Table 4. Distribution of the sum of ranks for students and supervisors 
 
Example 2 in Section 3 shows that if we consider the sum of ranks of the student and 
supervisor in the final assignment as a measure of welfare, DAMin can dominate DA. It 
is also the case in this matching. In fact, the sum of ranks of the student and supervisor 
in the final assignment with the original DA is 2460, and the sum with DAMin with 
endogenous sequence is 2398. Thus, in this regard, DAMin improves welfare more than 
DA. 
 
Strategy-proofness 
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In this student-supervisor matching, it is not possible to determine if students submitted 
their true-preferences. Therefore, we asked students to respond via an online 
questionnaire after the matching outcome was reported. About 45.3% students (115 out 
of 254) responded to the questionnaire. 
 Nearly 87.8% students (101 out of 115) answered that they are aware that this 
matching process is based on the DA mechanism, 57.4% students (58 out of 101) read 
books or searched the Internet about the DA mechanism, 65.5% students (38 out of 58) 
answered that they understood the DA mechanism, its working, and properties.  
 Nearly 54.8% students (63 out of 115) answered that strategy-proofness was 
attractive, and 50.4% students (58 out of 115) responded that eliminating justified envy 
is desirable.  
 About 41.7% students (48 out of 115) said that they had submitted true 
preferences in full length, that is, ranked all the supervisors according to their true 
preferences. Moreover, 55.7% students (64 out of 115) submitted true preferences for 
supervisors whom they had ranked relatively higher. Only 2.6% students (3 out of 115) 
did not submit their true preferences intentionally. In fact, they avoided their first-choice 
supervisors. Probably they avoided popular supervisors and misrepresented their second 
choice as their first choice. 
 
Other strategic problems 
In this matching process, before submitting their preferences, students had the 
opportunity to interview with supervisors for two weeks. For all students, their 
preferences for supervisors are usually incomplete information. This is partly because 
they had never attended the lecture some supervisors taught. Thus, during this interview 
period, recognizing each supervisor’s personality and educational and research 
objective, students formed their “true” preferences. In this sense, preferences are 
endogenous (see Antler, 2015). 

Nearly 97.4% students (112 out of 115) interviewed with at least one 
supervisor. Students who interviewed with five or more supervisors were only 8.0% (9 
out of 112). About 75.0% students (84 out of 112) interviewed with two to four 
supervisors, but 17.0% students (19 out of 112) interviewed with only one supervisor. 
Though students were forced to submit their preferences for all supervisors in the same 
course to avoid being unmatched, this result suggests that non-negligible number of 
supervisors were unacceptable to students. In other words, students’ preference was 
virtually truncated, that is, supervisors whom they had ranked as the first or a relatively 
high choice were only reliable. It is well known that truncated preferences may cause 
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undesirable outcomes. Of course, as some students and supervisors knew each other, it 
may be that students needed not search for other supervisors for achieving better 
matching during the interview period.  

Another concern is that students’ preference may be affected by supervisors’ 
persuasion during this interview period. In fact, we realized through informal talks with 
students that some supervisors made a credible threat to students that if they did not 
rank the supervisor as their first-choice, they would not accept them at all. As fulfilling 
maximal quota was a major concern for some supervisors (gathering enough number of 
staff members in the laboratory was necessary to run the ongoing research project), they 
had made such threats. These threats were really “credible” because supervisors could 
submit their priority orderings after knowing students’ had submitted their 
preferences.10 This may be the reason that a large number of students were matched 
with their first choice.  

Nonetheless, it is not clear if the truncated preference and/or credible threat 
distorted the matching outcome. As a matter of fact, 80.0% students (92 out of 115) 
answered that they had decided on submitted rankings according to their own 
preferences. About 15.7% students (18 out of 115) worried about the competition for 
popular supervisors, and 13.9% students (16 out of 115) answered that whether or not 
known senior students have already been assigned to and/or mutual friends also applied 
to the same supervisor was another factor of their choice, as in resident matching with 
couples (Kojima and Kamada, 2013). Only 6.1% students (7 out of 115) randomly 
decided.  

These data seem to suggest that most students submitted their true preferences. 
 
 
5. Discussion and conclusion 
We have reported about a recent reform in the matching mechanism between students 
and supervisors in a Japanese university. The proposed mechanism, DAMin, can 
eliminate justified envy among students with the same type, but does not satisfy 

 
10 The chief of education committee and one of the authors (Kawagoe) of this study 
strongly recommend that supervisors should submit their priority orderings without 
knowing students’ preferences for avoiding any strategic effect. However, a non-
negligible number of supervisors claimed that they could not rank all students in the 
same course without knowing their preferences. In a personal communication with 
Fuhito Kojima, we were informed that he had ever heard of Alvin Roth also facing a 
similar situation when he consulted the matching process for freshmen in a certain 
university. 
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strategy-proofness and feasibility. As for strategy-proofness, experimental evidence 
from laboratory experiments (Chen and Sönmez, 2006; Featherstone and Niederle, 
2008; Pais and Pintér, 2008; Kawagoe et al., 2018) and field data (e.g., Echenique, 
Wilson and Yariv, 2013; Chen and Kesten, 2017) suggest that a non-negligible number 
of students mispresent their preferences. Thus, it is still debatable if lack of strategy-
proofness is detrimental.  

Although the fact that DAMin does not satisfy feasibility may be critical, in 
actual matching outcomes in 2016, feasibility constraint was satisfied. This result may 
be explained fully by extending our model to a large economic environment.11  

During our discussion with the university education committee, a member 
raised a question if submitting cardinal preferences may be better than ordinal 
preferences to measure the strength of the preferences. The school choice problem with 
cardinal preferences studied so far is in the context of resolving the problem caused by 
tie-breaking.12 What causes matching process with type-specific quotas by allowing 
cardinal preferences is not clear at this moment.  

Another concern relates to the lattice structure of stable matching. As DAMin 
is based on student-proposing DA, the resulting matching is student-optimal. However, 
a non-negligible number of supervisors seemed to feel uneasy about this. One of the 
reasons why endogenous reduction sequence was adopted in DAMin was to improve 
supervisors’ welfare, as discussed in Remark 2 in subsection 3.2. If reflecting a 
supervisor’s welfare as well as student’s is desirable, median matching or fractional 
matching may be the candidate to achieve, although they are not strategy-proof. 
However, we consider that reflecting a supervisor’s welfare is an important objective at 
a matching mechanism between students and supervisors because as supervisors are 
long-run players, they have more concern for the matching outcome than students. We 
look forward to future research answering these questions.  
 
  

 
11 For example, see Kojima and Pathak (2009).  
12 For example, see Abdulkadiroglu, Che and Yasuda (2015) . 
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Appendix A.  
 
Proposition 1. DAMin eliminates justified envy among same type students.  
 
Proof. Without loss of generality, consider DA with 𝑈8	(𝑘 = 1,… , 𝑟). Denote the 
matching produced by DA with 𝑈8 as 𝜇. Assume that a student 𝑠7 envies another 
student 𝑠C, who is the same type as his: 𝜇<𝑠C?	𝑃16	𝜇(𝑠7) and 𝜏(𝑠7) = 𝜏<𝑠C? = 𝜃. Let 
step 𝑟 be the step in the DA algorithm at which student 𝑠7 is rejected from 𝜇(𝑠C). In 
step 𝑟, 𝑠7 is rejected because type 𝜃 specific minimal quota is filled with 𝐿Y<1Z?,o 
students of type 𝜃 ranked higher than 𝑠7 according to ≻Y<1Z?, and the remaining seats 

are also filled with 𝑞Y<1Z?
8 − ∑ 𝐿Y<1Z?,oo∈t  students of any type ranked higher than 

𝑠7according to ≻Y(1Z). In future steps, a student accepted in step 𝑟 can be rejected from 
type 𝜃 specific minimal quota only if a higher ranked student of type 𝜃 applies, and 
the same is true for students in the remaining seats. Thus, at the end of the algorithm, all 
students assigned to 𝜇(𝑠C) either in type 𝜃 specific minimal quota or in the remaining 
seats must be ranked higher than 𝑠7. Since 𝜏<𝑠C? = 𝜃 as well, this implies that 
𝑠C ≻Y<1Z? 𝑠7, that is, 𝑠7 does not have any justified envy against 𝑠C.  

                          Q.E.D. 
 
Proposition 2. For any preference profile, DAMin may not be a feasible matching.  
 
Proof. We prove the statement with the following example. There are five students 𝑆 =
	{𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�} and there are two types 𝛩 = {𝜃&, 𝜃(}. So, the students are divided as 
𝑆o2 = {𝑠&, 𝑠(} and 𝑆o3 = {𝑠�, 𝑠�, 𝑠�}. There are three supervisors 𝑇 = 	 {𝑡&, 𝑡(, 𝑡�}, and 
they are divided as 𝑇o2 = {𝑡&, 𝑡(} and 𝐶o3 = {𝑡�}. Total quotas, and type-specific 
minimal and maximal quotas are as follows. 

(𝑞, 𝐿, 𝑈) =	 	{<𝑞=2, 𝐿=2,o2, 𝑈=2,o2? = (2, 1, 1),
<𝑞=3, 𝐿=3,o2, 𝑈=3,o2? = (2, 1, 2),
<𝑞=�, 𝐿=�,o3, 𝑈=�,o3? = (1, 1, 1)}.

 

Under true preference profiles for each student 
𝑃12: 𝑡(𝑡&𝑡�, 
𝑃13: 𝑡(𝑡&	𝑡�, 
𝑃1�: 𝑡&𝑡(𝑡�, 
𝑃1�: 𝑡&𝑡(𝑡�, 
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𝑃1�: 𝑡�𝑡&𝑡(, 
and priority orderings for each supervisor 

≻=2: 𝑠�𝑠�𝑠(𝑠&𝑠�	,  
≻=3: 𝑠&𝑠(𝑠�𝑠�𝑠�,  
≻=�: 𝑠(𝑠�𝑠�𝑠�𝑠&, 

the resulting in final matching with DAMin as follows. 

𝜇 = 	 �
𝑡& 𝑡( 𝑡�

𝑠�, 𝑠� 𝑠&, 𝑠( 𝑠�
�. 

However, 𝜇 is not feasible because no type 𝜃& student is assigned to type 𝜃& 
supervisor 𝑐&.  

Q.E.D. 
 
Proposition 3. For any 𝑃, DAMin is not strategy-proof. 
 
Proof. We prove the statement with the following example. There are five students 𝑆 =
	{𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�} and there are two types 𝛩 = {𝜃&, 𝜃(}. Thus, the students are divided 
as 𝑆o2 = {𝑠&, 𝑠(, 𝑠�, 𝑠�} and 𝑆o3 = {𝑠�}. There are three supervisors 𝑇 = 	 {𝑡&, 𝑡(, 	𝑡�}, 
and they are divided as 𝑇o2 = {𝑡&, 𝑡(} and 𝑇o3 = {𝑡�}. Total quotas, and type-specific 
minimal and maximal quotas are as follows. 

(𝑞, 𝐿, 𝑈) =	 	{<𝑞=2, 𝐿=2,o2, 𝑈=2,o2? = (2, 1, 2),
<𝑞=3, 𝐿=3,o2, 𝑈=3,o2? = (1, 1, 1),
<𝑞=�, 𝐿=�,o3, 𝑈=�,o3? = (2, 1, 2)}.

 

Under true preference profiles for each student 
𝑃12: 𝑡&𝑡(𝑡�,  
𝑃13: 𝑡&𝑡(	𝑡�,  
𝑃1�: 𝑡�𝑡&𝑡(,  
𝑃1�: 𝑡&𝑡�𝑡(,  
𝑃1�: 𝑡�𝑡&𝑡(, 

and priority orderings for each supervisor 
≻=2: 𝑠(𝑠&𝑠�𝑠�𝑠�	,  
≻=3: 𝑠&𝑠�𝑠(𝑠�𝑠�,  
≻=�: 𝑠�𝑠�𝑠�𝑠(𝑠&, 

the resulting final matching with DAMin is as follows. 

𝜇(𝑃) = 	 �
𝑡& 𝑡( 𝑡� 𝑠�
𝑠(	 𝑠& 𝑠�, 𝑠� 𝑠�

�. 
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Consider that student 𝑠� states the following preference instead (any other student 
reveals true preference.). 

𝑃′1�: 𝑡(	𝑡&	𝑡�.  
Then, the resulting final matching with DAMin is as follows. 

𝜇(𝑃h1�, 𝑃1�
f ) = 	 �

𝑡& 𝑡( 𝑡�
𝑠&, 𝑠(	 𝑠� 𝑠�, 𝑠�

�. 

In this matching outcome, student 𝑠� is strictly better off than in 𝜇(𝑃). Thus, student 
𝑠� has an incentive to misrepresent her true preference.  

Q.E.D. 
Proposition 4. DAMin is not necessarily Pareto dominated by DA.  
 
We prove the statement with the following example. There are five students 𝑆 =
	{𝑠&, 𝑠(, 𝑠�, 𝑠�} and there are two types 𝛩 = {𝜃&, 𝜃(}. So, the students are divided as 
𝑆o2 = 	 {𝑠&, 𝑠(, 𝑠�} and 𝑆o3 = {𝑠�}. There are three supervisors 𝑇 = 	 {𝑡&, 𝑡(, 	𝑡�}, and 
they are divided as 𝑇o2 = {𝑡&, 𝑡(} and 𝑇o3 = {𝑡�}. Total quotas, and type-specific 
minimal and maximal quotas are as follows. 

(𝑞, 𝐿, 𝑈) =	 	{<𝑞=2, 𝐿=2,o2, 𝑈=2,o2? = (2, 1, 2),
<𝑞=3, 𝐿=3,o2, 𝑈=3,o2? = (1, 1, 1),
<𝑞=�, 𝐿=�,o3, 𝑈=�,o3? = (2, 1, 2)}.

 

Under true preference profiles for each student 
𝑃12: 𝑡&𝑡(𝑡�,  
	𝑃13: 𝑡&𝑡(	𝑡�,  
𝑃1�: 𝑡(𝑡&𝑡�,  
𝑃1�: 𝑡�𝑡&𝑡(,  

and priority orderings for each supervisor 
≻=2: 𝑠(𝑠&𝑠�𝑠�	,  
≻=3: 𝑠&𝑠�𝑠(𝑠�,  
≻=�: 𝑠�𝑠�𝑠(𝑠&, 

the resulting final matching with DAMin is as follows. 

𝜇§¨¥7*(𝑃) = 	 �
𝑡& 𝑡( 𝑡�

𝑠&, 𝑠(	 𝑠� 𝑠�
�. 

the resulting final matching with the original DA is as follows. 

𝜇§¨(𝑃) = 	�
𝑡& 𝑡( 𝑡�

𝑠&, 𝑠(	 𝑠� 𝑠�
�. 

Thus, both matching outcomes are the same. Therefore, we conclude that DAMin is not 



30 
 

Pareto dominated by the original DA.                                   Q.E.D. 
 
Proposition 5. The DAMin is not necessarily cardinally dominated by DA. 
 
Proof. We prove this statement using an example. There are three students 𝑆 =
	{𝑠&, 𝑠(, 𝑠�} and there is one type 𝛩 = {𝜃&}; thus, assuming that every student is the 
same type, 𝑆o2 = {𝑠&, 𝑠(, 𝑠�}. There are two supervisors 𝑇 = 	 {𝑡&, 𝑡(}, and their types 
are the same as students, 𝑇o2 = {𝑡&, 𝑡(}. Total quotas, type-specific minimal and 
maximal quotas are as follows. 

(𝑞, 𝐿, 𝑈) = {<𝑞=2, 𝐿=2,o2, 𝑈=2,o2? = (3, 1, 3),
<𝑞=3, 𝐿=3,o2, 𝑈=3,o2? = (2, 1, 2)}.

 

Under preference profiles for each student 
𝑃12: 𝑡&𝑡(,  
	𝑃13: 𝑡&𝑡(,  
𝑃1�: 𝑡&𝑡(,  

and priority orderings for each supervisor; 
≻=2: 𝑠&𝑠(𝑠�,  
≻=3: 𝑠�𝑠&𝑠(,  

the resulting final matching with the original DA is as follows. 

𝜇(𝑃) = £
𝑡& 𝑡(

𝑠&, 𝑠(, 𝑠� ∅¤ 

The sum of ranks of the student and supervisor at final assignment in this case is 9. The 
resulting final matching with DAMin either with endogenous or exogenous sequence is 
as follows. 

𝜇′(𝑃) = �
𝑡& 𝑡(

𝑠&, 𝑠( 𝑠�
� 

The sum of ranks of the student and supervisor at final assignment in this case is 8.  
Q.E.D. 

 
Proposition 6. If a school’s priority structures are essentially homogeneous, then 
DAMin is cardinally dominated by DA.  
 
Proof. Let 𝛼 be the sum of ranks of the student and supervisor under the original DA 
matching outcome. If the matching outcome satisfied minimum quotas for all 
supervisors, then the sum of ranks of the student and supervisor under the 
DAMin	matching outcome would be 𝛼.  
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Next, we consider a case in which the matching outcome does not satisfy minimum 
quotas for some supervisors. We divide 𝛼 into two: 𝛼 = 𝛼� + 𝛼s		. Let 𝛼� be the 
sum of ranks of student, and 𝛼s be the sum of ranks of supervisor. By the DA 
procedure, 𝛼� becomes necessarily larger than the sum of ranks of student 𝛼′�. We 
prove 𝛼s becomes necessarily bigger than the sum of ranks of supervisor. 𝛼fs. To run 
the proof, we assume that 𝛼fs < 𝛼s. Thus, some supervisor is matched with better 
students under the DAMin than under the DA. Let the student and the supervisor be 𝑠& 
and 𝑡&, respectively. By the DA procedure, 𝑠& is matched with a better supervisor 
under the DA than under the DAMin. Supervisor 𝑡& has two cases: in case 1, 𝑡& is not 
satisfied with the minimum quota; in case 2, 𝑡& is matched with a student worse than 
𝑠&. By assuming the priority structure, both cases also become 𝛼fs = 𝛼s. This is a 
contradiction. Thus, we consider the following relation:  

𝛼 = 𝛼� 	+ 𝛼s 	< 𝛼f� 	+ 𝛼fs 	= 𝛼′.  
Q.E.D. 

 
Proposition 7. There is no Pareto domination relationship between DAMin with an 
endogenous sequence and the one with an exogenous sequence for any matching 
market. 
 
Proof. We prove the statement by the following example. 
There are five students 𝑆 = 	 {𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�} and there are two types 𝛩 = {𝜃&, 𝜃(}. 
So, the students are divided as 𝑆o2 = {𝑠&, 𝑠(, 𝑠�} and 𝑆o3 = {𝑠�, 𝑠�}. There are three 
supervisors 𝑇 = 	 {𝑡&, 𝑡(, 𝑡�}, and they are divided as 𝑇o2 = {𝑡&, 𝑡(} and 𝑇o3 = {𝑡�}. 
The total quotas and type-specific minimal and maximal quotas are as follows. 

(𝑞, 𝐿, 𝑈) =	 	{<𝑞=2, 𝐿=2,o2, 𝑈=2,o2? = (2, 1, 2),
<𝑞=3, 𝐿=3,o2, 𝑈=3,o2? = (2, 1, 1),
<𝑞=�, 𝐿=�,o3, 𝑈=�,o3? = (2, 2, 2)}.

 

Under true preference profiles for each student 
𝑃12: 𝑡&𝑡(𝑡�,  
	𝑃13: 𝑡(𝑡&	𝑡�,  
𝑃1�: 𝑡&𝑡&𝑡&,  
𝑃1�: 𝑡�𝑡&𝑡(,  
𝑃1�: 𝑡�𝑡&𝑡(, 

and the priority orderings for each supervisor 
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≻=2: 𝑠(𝑠&𝑠�𝑠�𝑠�	,  
≻=3: 𝑠(𝑠�𝑠&𝑠�𝑠�,  
≻=�: 𝑠�𝑠�𝑠�𝑠(𝑠&, 

the resulting final matching with DAMin with an endogenous reduction sequence is as 
follows. 

𝜇(𝑃) = 	 �
𝑡& 𝑡( 𝑡�
𝑠&𝑠�	 𝑠( 𝑠�, 𝑠�

�. 

For DAMin with an exogenous reduction sequence, suppose that the sequence is given 
as {𝑈& = (2, 1, 2), 𝑈( = (1, 1,1)	}. Then, the resulting final matching is as follows. 

𝜇(𝑃) = 	 �
𝑡& 𝑡( 𝑡�
𝑠&𝑠�	 𝑠( 𝑠�, 𝑠�

�. 

Both matchings are the same. Thus, there is no Pareto domination among both types of 
DAMin.  
 

Q.E.D. 
 
 
Proposition 8. There is no cardinal domination relationship between both types of 
DAMin. 
 
Proof. We show the statement with the following example. There are six students 𝑆 =
	{𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�, 𝑠ª} and there are two types 𝛩 = {𝜃&, 𝜃(}. So, the students are divided 
as 𝑆o2 = 	 {𝑠&, 𝑠(, 𝑠�, 𝑠ª} and 𝑆o3 = {𝑠�, 𝑠�}. There are three supervisors 𝑇 =
	{𝑡&, 𝑡(, 	𝑡�}, and they are divided as 𝑇o2 = {𝑡&} and 𝑇o3 = {𝑡(, 𝑡�}. Total quotas, and 
type-specific minimal and maximal quotas are as follows. 

(𝑞, 𝐿, 𝑈) =	 	{<𝑞=2, 𝐿=2,o2, 𝑈=2,o2? = (4, 1, 3),
<𝑞=3, 𝐿=3,o2, 𝑈=3,o2? = (2, 1, 2),
<𝑞=�, 𝐿=�,o3, 𝑈=�,o3? = (2, 1, 2)}.

 

Under true preference profiles for each student 
𝑃12: 𝑡&𝑡(𝑡�,  
	𝑃13: 𝑡&𝑡�𝑡(,  
𝑃1�: 𝑡&𝑡(𝑡�,  
𝑃1�: 𝑡�𝑡(𝑡&,  
𝑃1�: 𝑡�𝑡(𝑡&, 
𝑃1¬: 𝑡&𝑡(𝑡�, 



33 
 

 
and priority orderings for each supervisor 

≻=2: 𝑠ª𝑠&𝑠�𝑠(𝑠�𝑠�	,  
≻=3: 𝑠�𝑠�𝑠(𝑠&	𝑠ª𝑠�,  
≻=�: 𝑠�𝑠(𝑠�𝑠&𝑠�𝑠ª, 

the resulting final matching with DAMin with endogenous sequence 𝜇* is as follows. 
Note that the priority structures have a cyclic structure. 

𝜇* = 	�
𝑡& 𝑡( 𝑡�

𝑠&, 𝑠�	, 𝑠ª 𝑠� 𝑠(, 𝑠�
�. 

The sum of ranks of the student and supervisor is 18.  
 
For DAMin with an exogenous reduction sequence, suppose that the sequence is given 
as {𝑈& = (3, 2, 2), 𝑈( = (3, 2, 1)	}. Then, the resulting final matching with DAMin 
with an endogenous sequence 𝜇®: 

𝜇® = 	 �
𝑡& 𝑡( 𝑡�

𝑠&, 𝑠(, 𝑠�, 𝑠ª	 𝑠� 𝑠�
�. 

The sum of ranks of the student and supervisor is 24. 
 
On the other hand, the following example shows that the sum of ranks of the student 
and supervisor under DAMin with an exogenous one is lower than those under DAMin 
with an endogenous sequence.  
 
There are six students 𝑆 = 	 {𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�, 𝑠ª} and there is one type 𝛩 = {𝜃&}. So, 
the students are divided as 𝑆o2 = 	 {𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�, 𝑠ª}. There are three supervisors 𝑇 =
	{𝑡&, 𝑡(, 	𝑡�}, and they are divided as 𝑇o2 = {𝑡&, 𝑡(, 𝑡�}. The total quotas and type-
specific minimal and maximal quotas are as follows. 

(𝑞, 𝐿, 𝑈) =	 	{<𝑞=2, 𝐿=2,o2, 𝑈=2,o2? = (3, 1, 3),
<𝑞=3, 𝐿=3,o2, 𝑈=3,o2? = (2, 1, 2),
<𝑞=�, 𝐿=�,o2, 𝑈=�,o2? = (3, 1, 3)}.

 

Under true preference profiles for each student 
𝑃12: 𝑡&𝑡(𝑡�,  
	𝑃13: 𝑡�𝑡&𝑡(,  
𝑃1�: 𝑡&𝑡(𝑡�,  
𝑃1�: 𝑡�𝑡(𝑡&,  
𝑃1�: 𝑡�𝑡(𝑡&, 
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𝑃1¬: 𝑡&𝑡(𝑡�, 
and priority orderings for each supervisor 

≻=2: 𝑠ª𝑠&𝑠�𝑠(𝑠�𝑠�	,  
≻=3: 𝑠�𝑠�𝑠(𝑠&	𝑠ª𝑠�,  
≻=�: 𝑠�𝑠(𝑠�𝑠&𝑠�𝑠ª, 

the resulting final matching with DAMin with an endogenous sequence 𝜇* is as 
follows. Note that the priority structures have a cyclic structure. 

𝜇* = 	 �
𝑡& 𝑡( 𝑡�

𝑠&, 𝑠ª 𝑠� 𝑠(, 𝑠�, 𝑠�
�.   

The sum of ranks of the student and supervisor is 23. For DAMin with an exogenous 
reduction sequence, suppose that the sequence is given as {𝑈& = (3, 2, 3), 𝑈( =
(3, 2, 2)	}. Then, the resulting final matching with DAMin with an endogenous 
sequence 𝜇®: 

𝜇® = 	 �
𝑡& 𝑡( 𝑡�

𝑠&, 𝑠�, 𝑠ª	 𝑠� 𝑠(, 𝑠�
�. 

     
The sum of students’ and supervisors’ rank is 19. 
 

Q.E.D. 
 
Proposition 9. There are no cardinally dominant relationships between DAMin and 
ESDA for any matching market. 
 
Proof. We show the statement with the following example. There are five students 𝑆 =
	{𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�} and there is one type 𝛩 = {𝜃&}. So, the students are divided as 𝑆o2 =
{𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�}. There are three supervisors 𝑇 = 	 {𝑡&, 𝑡(, 	𝑡�}, and they are divided as 
𝑇o2 = {𝑡&, 𝑡(, 𝑡�}. Total quotas, type-specific minimal and maximal quotas are as 
follows. 

(𝑞, 𝐿, 𝑈) =	 	{<𝑞=2, 𝐿=2,o2, 𝑈=2,o2? = (3, 1, 3),
<𝑞=3, 𝐿=3,o2, 𝑈=3,o2? = (2, 1, 2),
<𝑞=�, 𝐿=�,o2, 𝑈=�,o2? = (2, 1, 2)}.

 

Under true preference profiles for each student 
𝑃12: 𝑡&𝑡(𝑡�,  
	𝑃13: 𝑡&𝑡(𝑡�,  
𝑃1�: 𝑡&𝑡(𝑡�,  
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𝑃1�: 𝑡(𝑡�𝑡&,  
𝑃1�: 𝑡(𝑡&𝑡�, 

and priority orderings for each supervisor 
≻=2: 𝑠&𝑠(𝑠�𝑠�𝑠�,  
≻=3: 𝑠�𝑠�𝑠�𝑠(𝑠&,  
≻=�: 𝑠&𝑠(𝑠�𝑠�𝑠�, 

the resulting final matching with DAMin 𝜇¥7* is as follows: 

𝜇¥7* = 	 �
𝑡& 𝑡( 𝑡�

𝑠&, 𝑠( 𝑠�, 𝑠� 𝑠�
�. 

The sum of ranks of the student and supervisor is 16. The resulting final matching with 
ESDA, 𝜇¦�§¨ is as follows: 

𝜇¦�§¨ = 	 �
𝑡& 𝑡( 𝑡�

𝑠&, 𝑠(, 𝑠� 𝑠� 𝑠�
�. 

   
The sum of ranks of the student and supervisor is 17.  
 
On the other hand, the following example is that ESDA cardinally dominates DAMin.  
There are five students 𝑆 = 	 {𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�} and there is one type 𝛩 = {𝜃&}. So, the 
students are divided as 𝑆o2 = 	 {𝑠&, 𝑠(, 𝑠�, 𝑠�, 𝑠�}. There are three supervisors 𝑇 =
	{𝑡&, 𝑡(, 	𝑡�}, and they are divided as 𝑇o2 = {𝑡&, 𝑡(, 𝑡�}. The total quotas and type-
specific minimal and maximal quotas are as follows: 

(𝑞, 𝐿, 𝑈) =	 	{<𝑞=2, 𝐿=2,o2, 𝑈=2,o2? = (3, 1, 3),
<𝑞=3, 𝐿=3,o2, 𝑈=3,o2? = (2, 1, 2),
<𝑞=�, 𝐿=�,o2, 𝑈=�,o2? = (2, 1, 2)}.

 

Under true preference profiles for each student 
𝑃12: 𝑡&𝑡(𝑡�,  
	𝑃13: 𝑡&𝑡(𝑡�,  
𝑃1�: 𝑡&𝑡(𝑡�,  
𝑃1�: 𝑡(𝑡�𝑡&,  
𝑃1�: 𝑡(𝑡&𝑡�, 

and priority orderings for each supervisor 
≻=2: 𝑠&𝑠(𝑠�𝑠�𝑠�,  
≻=3: 𝑠�𝑠�𝑠�𝑠(𝑠&,  
≻=�: 𝑠�𝑠&𝑠(𝑠�𝑠�, 

the resulting final matching with DAMin 𝜇¥7* is as follows: 
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𝜇¥7* = 	 �
𝑡& 𝑡( 𝑡�

𝑠&, 𝑠( 𝑠�, 𝑠� 𝑠�
�. 

The sum of ranks of the student and supervisor is 17. The resulting final matching with 
ESDA, 𝜇¦�§¨ is as follows: 

𝜇¦�§¨ = 	 �
𝑡& 𝑡( 𝑡�

𝑠&, 𝑠(, 𝑠� 𝑠� 𝑠�
�. 

The sum of ranks of the student and supervisor is 14. 
Q.E.D. 
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