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Abstract

A growth model with a special production function augmented with

physical capital and human capital is modified and used to explain the

birth of cyclical dynamics. Crucial feature of the model is the assumption

that there are a gestation delay and a maturation delay in constructing

physical capital and human capital, respectively. Dynamics is described

by a continuous time system of delay differential equations. Stability

switching curves are analytically derived on which stability of the model

is lost. Its shape is numerically verified and it is confirmed that the two-

delay model can generate a wide variety of dynamics from simple dynamics

to complex dynamics.

Keywords: Extended Solow model, Delayed dynamics, Two delays,

Asymptotic behavior

1 Introduction

Most classical models in mathematical economics assume that instantaneous

data are always available to all participants and they are able to react immedi-

ately. However, in real economies this is only an approximation of reality, since

collecting data, their analysis, decision making and implementation need time.

This is the reason why models including time delays became one of the major

research fields recently.

This study examines dynamics of an extended Solow model (Solow, 1956)

augmented with physical and human capitals incorporating time delays due to

gestation time in physical capital and maturation time in human capital. It
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will be shown that the delays could destabilize an otherwise stable model and

generate persistent oscillations that might be compatible with actually observed

data.

Gori et al. (2016) offer survey of related studies and consider an extended

Solow model with physical and human capitals that is exactly the same as what

we study. There are similarities as well as dissimilarities. Approaching the main

purpose to see how the two delays affect stability of the model is different. We

make two-dimensional analysis in which both delays vary continuously, whereas

they adopt a repeated one-dimensional analysis in which one delay is assumed

to be positive and fixed and the other delay varies. Their analysis is based on

an assumption that a mixed polynomial-trigonometric equation (Eq.(22)) has

finitely many roots. This assumption makes their analysis incomplete unless the

assumption is justified. We can also derive the directions of the stability switches

based on analytic representations of the stability switching curves. We focus

mainly on the symmetric case with only limited attention to the asymmetric

case while they do not look into the symmetric case. The analytical results

obtained in the symmetric case could be bases for analyzing the asymmetric

case. Due to these differences, we can arrive at new results. Hence our study

might complement their study. Further, this paper is a continuation of the

earlier studies giving a complete stability analysis with analytic representations

of the stability switching curves and the directions of the stability switches. We

also examine a special case which was not studied earlier.

The rest of the paper is organized as follows. Section 2 reviews a special

version of the extended Solow model. Section 3 introduces delays in physical and

human capitals and investigates the effects caused by two delays on dynamics.

Section 4 numerically validates the analytical results obtained in the previous

sections. Finally concluding remarks are given in Section 5.

2 Extended Growth Model

Before proceeding the analysis, we first review the continuous-time Solow model.

Only for the sake of simplicity, a special Cobb-Douglas production function is

adopted,

Y (t) = K(t)α [A(t)L(t)]
1−α

, 0 < α < 1 (1)

where t denotes time, Y (t) represents output, L(t) labor, K(t) the physical

capital stock and A(t) the labor-augment technology. The physical capital ac-

cumulation is described by

K̇(t) = sY (t)− δK(t) (2)

where the dot over a variable means a time-derivative, s is the saving rate,

0 < s < 1, and δ the depreciation rate, δ > 0. Dividing the accumulation

equation by effective labor A(t)L(t) transforms it to a per capita form

k̇(t) = sk(t)α − (n+ g + δ)k(t) (3)
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where

k(t) =
K(t)

A(t)L(t)
, y(t) =

Y (t)

A(t)L(t)
= k(t)α

and the constant growth rates of labor and technology are n and g, respectively.

A positive steady state is given as

k∗S =
µ

s

n+ g + δ

¶ 1
1−α

.

At the steady state, the stock of physical capital and output are growing at the

constant rate n+ g,

K̇(t)

K(t)
=
Ẏ (t)

Y (t)
= n+ g.

It is to be noticed that both growth rates are exogenously given and thus the

growth of per capita output occurs only due to exogenous technology change.

Mankiw, Romer and Weil (1992, MRW henceforth), assumes an extended

Cobb-Douglas production function to have three factors,

Y (t) = K(t)αH(t)β [A(t)L(t)]
1−α−β

where 1 − α − β > 0, α > 0 and β > 0. H is the stock of human capital.

Physical capital and human capital are formed by saving an sk-fraction and an

sh-fraction of output with sk > 0, sh > 0 and sk + sh < 1. The accumulation

of these per capita capital stocks is determined by

k̇(t) = skk(t)
αh(t)β − (n+ g + δ)k(t)

ḣ(t) = shk(t)
αh(t)β − (n+ g + δ)h(t)

(4)

where k(t) is already defined and h(t) is the stock of human capital per capita

defined by

h(t) =
H(t)

A(t)L(t)
.

A steady state is given as

k∗ =

Ã
s
1−β
k s

β
h

n+ g + δ

! 1
1−α−β

,

h∗ =
µ
sαks

1−α
h

n+ g + δ

¶ 1
1−α−β

.

(5)

Nonnegative values of k∗ and h∗ lead the following conditions at the steady
state at which k̇(t) = ḣ(t) = 0,

sk (k
∗)α−1 (h∗)β = c,

sh (k
∗)α (h∗)β−1 = c

(6)

3



with n + g + δ = c. It is well-known that the dynamic system (4) converges

to the steady state under the assumption of diminishing returns to scale (i.e.,

α+ β < 1):

Theorem 1 The positive stationary point (h∗, k∗) of extended Solow model (4)
is locally asymptotically stable.

3 Stability Switching Curves

In á la Solow models, dynamics has two phases. In the first phase, the economy

starting at any initial state sooner or later converges to the steady state. On

a transition path to the steady state, per capita growth rate is non-zero and

becomes zero when it arrives at the steady state. In the second phase the

long-run dynamics is conducted by the population growth and the technological

development. We focus on the evolution of the economy in the first phase. To

this end, we assume the following to get rid of the exogenous shocks.

Assumption 1: n = g = 0.

We now turn attention to a delay version of MRW’s stock accumulation

system of physical and human capitals

k̇(t) = skk(t− τk)
αh(t− τh)

β − δk(t− τk)

ḣ(t) = shk(t− τk)
αh(t− τh)

β − δh(t− τh)

(7)

with τk ≥ 0 and τh ≥ 0. Using the relations in (6) yields the linearized delay
system,

k̇(t) = δ(α− 1)k(t− τk) + βδ
sk

sh
h(t− τk),

ḣ(t) = αδ
sh

sk
k(t− τh) + δ(β − 1)h(t− τh).

(8)

The corresponding characteristic equation is

P0(λ) + P1(λ)e
−λτk + P2(λ)e−λτh + P3(λ)e−λ(τk+τh) = 0 (9)

where
P0(λ) = λ2,

P1(λ) = δ(1− α)λ,

P2(λ) = δ(1− β)λ,

P3(λ) = δ2 (1− α− β) .
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As a benchmark, we start with the no-delay case in which τk = τh = 0. The

characteristic equation (9) is now written as

λ2 + δ [(1− α) + (1− β)]λ+ δ2 (1− α− β) = 0. (10)

Since the linear coefficient and the constant term are both positive, the roots are

either real negative or complex with negative real parts implying asymptotical

stability. Since one-delay models are discussed earlier in the literature in detail,

we concentrate only on the two-delay symmetric case when α = β with α < 1/2.

Assumption 2: α = β.

We now suppose that τk > 0 and τh > 0 and find all pure complex roots of

the characteristic equation of (9). We can also assume that λ = iω with ω > 0.

Substituting this solution into (9) presents the following form of the character-

istic equation,

P0(iω) + P1(iω)e
−iωτk + P2(iω)e−iωτh + P3(iω)e−iω(τk+τh) = 0 (11)

where
P0(iω) = −ω2,

P1(iω) = iδ(1− α)ω,

P2(iω) = iδ(1− α)ω,

P3(iω) = δ2 (1− 2α) .
Applying the method developed by Matsumoto and Szidarovszky (2018)

based on Lin and Wang (2012), we can derive the set of points (τk, τh) for

which the delay dynamic system (7) might lose stability. Equation (11) can be

written as

P0(iω) + P1(iω)e
−iωτk +

¡
P2(iω) + P3(iω)e

−iωτk¢ e−iωτh = 0. (12)

Since
¯̄
e−λωτh

¯̄
= 1, equation (12) has solution if and only if¯̄
P0(iω) + P1(iω)e

−iωτk ¯̄ = ¯̄P2(iω) + P3(iω)e−iωτk ¯̄
or equivalently, ¡

P0(iω) + P1(iω)e
−iωτk¢ ¡P̄0(iω) + P̄1(iω)eiωτk¢

=
¡
P2(iω) + P3(iω)e

−iωτk¢ ¡P̄2(iω) + P̄3(iω)eiωτk¢
where over-bar indicates complex conjugate. After some calculations, the last

equation can be rewritten as

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2Ak(ω) cosωτk − 2Bk(ω) sinωτk (13)
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where the argument of Pi is omitted for the sake of notational simplicity and

Ak(ω) = Re
¡
P2P̄3 − P0P̄1

¢
and Bk(ω) = Im

¡
P2P̄3 − P0P̄1

¢
.

Using Pi(iω) for i = 0, 1, 2, 3, we can obtain

P2P̄3 − P0P̄1 = iδω(1− α)
£
δ2(1− 2α)− ω2

¤
.

Hence

Ak(ω) = 0

and

Bk(ω) = δω
£
δ2(1− α)(1− 2α)− ω2(1− α)

¤
.

The sign of Bk(ω) is indeterminate. The corresponding values of τh as functions

of τk can be obtained from equation (12) as

e−iωτh = −P0(iω) + P1(iω)e
−iωτk

P2(iω) + P3(iω)e−iωτk
(14)

where the absolute value of the right hand side has to be the unity.

An explicit form of τh satisfying equation (14) is derived as follows. Due to

the Euler’s formula, (14) can be rewritten as

cosωτh − i sinωτh = a− ib
c+ id

(15)

where

a = ω2 − δω(1− α) sinωτk, b = δω(1− α) cosωτk

and

c = δ2(1− 2α) cosωτk, d = δω(1− α)− δ2(1− 2α) sinωτk.
The right hand side is next developed. Multiplying the denominator and the

numerator of (15) by the conjugate of the denominator, the denominator, after

arranging the terms, becomes

D = δ2
£
δ2(1− 2α)2 + ω2(1− α)2 − 2δω(1− α)(1− 2α) sinωτk

¤
which is always positive as D = c2+d2. The new numerator can be denoted by

M + iN where the real part is

M = − (δω)2 α2 cosωτk
and the imaginary part is

N = −δω ©δ2(1− α)(1− 2α) + ω2(1− α)− δω
£
2(1− 2α) + α2

¤
sinωτk

ª
.

Comparing the left hand side of (15) with M/D + iN/D presents

cosωτh =
M

D
and sinωτh = −N

D
. (16)

Denoting the left hand side of equation (13) by f(ω), we confirm solutions

of (13), that is, f(ω) = −2Bk(ω) sinωτk. Dividing the remaining of this section
into two, we examine the case of Bk(ω) = 0 in the first part and then proceed

to the case of Bk(ω) 6= 0 in the second.
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3.1 Bk(ω) = 0

Let ωk be the positive solution of Bk(ω) = 0,

ωk = δ
√
1− 2α > 0.

Substituting Pi(iω) for i = 0, 1, 2, 3 into f(ω) gives

f(ω) = ω4 − δ4(1− 2α)2.

Solving f(ω) = 0 for ω2 presents the positive solution,

ω2+ = δ2(1− 2α) > 0.

The critical value and the positive solution become identical,

ω2k = ω2+ = δ2(1− 2α) > 0.

In the symmetric case, fk(ω) = 0 for ω = ωk at which, therefore, the value of

τk is arbitrary and the corresponding values of τh can be obtained from (16).

The graphs of M/D and −N/D are illustrated for τk ∈
£
0, 20
√
3π/ω

¤
with

the parameter values of α = 1/3 and δ = 1/10 in Figure 1.1 The red M/D

curve intersects the horizontal axis twice at which cosωτk = 0, implying that

ωτk = π/2 at point B and ωτk = 3π/2 at point D,

τBk =
π

2ωk
' 24.72 and τDk =

3π

2ωk
' 81.62.

It is also seen that the blue −N/D curve intersects the horizontal axis twice at

which N = 0 or

sinωτk =
δ2(1− α)(1− 2α) + ω2k(1− α)

δωk [2(1− 2α) + α2]

=
2(1− α)

√
1− 2α

(α− 2)2 − 2 < 1 for 0 < α <
1

2
.

Since sinωτk takes the maximum value at ωτk = π/2, sinωτAk = 4
√
3/7 and

cosωτAk > 0 at point A and sinωτBk = 4
√
3/7 and cosωτBk < 0 at point

B, implying that

τAk =
1

ωk
sin−1

Ã
4
√
3

7

!
' 24.72 and τCk =

1

ωk

"
π − sin−1

Ã
4
√
3

7

!#
' 29.69.

1MRW presumes that α is about one third and β is between one third and one half.
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Figure 1. Graphs of M/D (red) and −N/D (blue)

The interval [0, 2π/ωk] is divided into five subintervals by those points. It

is observed that cosωτh < 0 and sinωτh > 0 for τk ∈ (0, τAk ). Hence solving
cosωkτh =M/D and sinωkτh = −N/D for τh yields

τ ch(τk) =
1

ωk
cos−1

µ
M

D

¶
and τ sh(τk) =

1

ωk

∙
π − sin−1

µ
−N
D

¶¸
. (17)

where the superscripts c and s stand for cos and sin, respectively. In the same

way, cosωkτh < 0 and sinωkτh < 0 for τh ∈ (τAk , τBk ) that present

τ ch(τk) =
1

ωk

∙
2π − cos−1

µ
M

D

¶¸
and τsh(τk) =

1

ωk

∙
π − sin−1

µ
−N
D

¶¸
.

(18)

For τk ∈ (τBk , τCk ), cosωkτk > 0 and sinωkτk < 0 gives

τ ch(τk) =
1

ωk

∙
2π − cos−1

µ
M

D

¶¸
and τ sh(τk) =

1

ωk

∙
2π + sin−1

µ
−N
D

¶¸
.

(19)

For τk ∈ (τCk , τDk ), cosωhτk > 0 and sinωhτk > 0 generating

τ ch(τk) =
1

ωk
cos−1

µ
M

D

¶
and τ sh(τk) =

1

ωk
sin−1

µ
−N
D

¶
. (20)

Finally, we have cosωhτk < 0 and sinωhτk > 0 for τk ∈ (τDk , 2π/ωk) in which
case the signs of the trigonometric functions are the same as in the first case.

Hence, from (17)

τ ch(τk) =
1

ωk
cos−1

µ
M

D

¶
and τ sh(τk) =

1

ωk

∙
π − sin−1

µ
−N
D

¶¸
. (21)

Since τsh(τk) = τ ch(τk) holds for any τk ∈ [0, 2π/ω], the solution can be denoted
by τh(τk).
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The locus of (τk, τh(τk)) for τk ∈ [0, 2π/ω] constructs the stability switching
curve that is illustrated by two black-red curves in Figure 2. More precisely, the

upper convex-shaped curve consists of three segments, each of which is described

by the black segment (17), the red segment, (18) and the black segment, (19)

whereas the lower concave-shaped curve is described by the red segment (20)

and the black segment, (21). The results obtained are summarized as follows:

Lemma 1 If Bk(ω) = 0 in the symmetric case, then the stability switching

curve is described by the locus of (τk, τh(τk)) where

τh(τk) =
1

ωk
cos−1

µ
M

D

¶
for τk ∈ (0, τAk ) ∪ (τCk , τDk ) ∪ (τDk , 2π/ωk)

and

τh(τk) =
1

ωk

∙
2π − cos−1

µ
M

D

¶¸
for for τk ∈ (τAk , τBk ) ∪ (τBk , τCk ).

Two issues should be noticed. First, in the symmetric case and Bk(ω) = 0,

Lemma 4 of Gori et a. (2016) is a special case of this Lemma 1. In particular,

their critical value of delay, τ2,j of their equation (17) with j = 0 is equal to

τh(0) =
1

ωk
cos−1

µ
−1
7

¶
' 29.6898.

This value corresponds to the τh-value of the intercept of the vertical axis with

the convex-shaped black curve in Figure 2. Second, if Bk(ω) = 0 and α 6=
β, then no stability switching occurs, so the positive steady state is locally

asymptotically stable for all positive values of τk and τh.

Figure 2. Stability switching curve with Bk(ω) = 0
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3.2 |Bk(ω)|2 > 0
We have already shown that Ak(ω) = 0 for any ω ≥ 0 and Bk(ω) 6= 0 for

ω 6= ωk. Then there exists ϕk(ω) such that

ϕk(ω) = arg
£
P2P̄3 − P0P̄1

¤
=

⎧⎪⎪⎨⎪⎪⎩
π

2
if Bk(ω) > 0 or ω < ωk,

3π

2
if Bk(ω) < 0 or ω > ωk,

implying that

sin [ϕk(ω)] =
Bk(ω)p
Bk(ω)2

= ±1 and cos [ϕk(ω)] =
Ak(ω)p
Bk(ω)2

= 0.

Using these relations and the addition theorem, equation (13) can be reduced

to

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2
p
Bk(ω)2 cos [ϕk(ω) + ωτk] (22)

that can be rewritten as

|P0|2 + |P1|2 − |P2|2 − |P3|2
2
p
Bk(ω)2

= cos [ϕk(ω) + ωτk] ≤ 1.

Hence a sufficient and necessary condition for the existence of τk ≥ 0 satisfying
the above equation is¯̄̄

|P0|2 + |P1|2 − |P2|2 − |P3|2
¯̄̄
≤ 2

p
Bk(ω)2

or

F (ω) =
h
|P0|2 + |P1|2 − |P2|2 − |P3|2

i2
− 4Bk(ω)2 ≤ 0.

With the notation of x = ω2, the right hand side of F (ω) is reduced to the

following form,

F (x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (23)

where the coefficients are defined as

a3 = −4δ2(1− α)2,

a2 = 2δ
4(1− 2α) £4(1− α)2 + (1− 2α)¤ ,

a1 = −4δ6 (1− 2α)2 (1− α)2,

a0 = δ8 (1− 2α)4 .

The factored form of (23) becomes

F (x) =
¡
x− δ2

¢ ³
x− δ2 (1− 2α)2

´
η(x) (24)
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where

η(x) = x2 − 2δ2(1− 2α)x− δ4 (1− 2α)2 .
Solving F (x) = 0 yields four real solutions,

x1 = δ2 > 0,

x2 = δ2 (1− 2α)2 > 0,

x3 = x4 = δ2(1− 2α),
implying that x2 < x3 = x4 < x1, so ω2 < ω3 = ω4 < ω1. It is also clear that

F (ω) ≤ 0 if ω2 ≤ ω ≤ ω1.

Let us define ψk(ω) by

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2
p
Bk(ω)2 cos [ψk(ω)] (25)

or

ψk(ω) = cos
−1
"
|P0|2 + |P1|2 − |P2|2 − |P3|2

2
p
Bk(ω)2

#
.

Comparing the right hand side of (22) with that of (25) presents

τ±k,m(ω) =
1

ω
[±ψk(ω)− ϕk(ω) + 2mπ] . (26)

Returning to (11), we can see that it can be alternatively written as

P0 + P2e
−iωτh +

¡
P1 + P3e

−iωτh¢ e−iωτk = 0. (27)

The similarity of (27) to (12) is clear. Hence, in the similar way to deriving

τ±k,m(ω), we can define the critical values of τh as

τ±h,n(ω) =
1

ω
[±ψh(ω)− ϕh(ω) + 2nπ] . (28)

It is easy to show that

Ah(ω) = Re
£
P1P̄3 − P0P̄2

¤
= 0,

Bh(ω) = Im
£
P1P̄3 − P0P̄2

¤
= δω(1− α)

£
δ2(1− 2α)− ω2

¤
,

ψh(ω) = cos
−1
"
|P0|2 − |P1|2 + |P2|2 − |P3|2

2
p
Bh(ω)2

#
and

ϕh(ω) = arg
£
P1P̄3 − P0P̄2

¤
=

⎧⎪⎪⎨⎪⎪⎩
π

2
if Bh(ω) > 0 or ω < ωh,

3π

2
if Bh(ω) < 0 or ω > ωh

11



with ωh being the positive solution of Bh(ω) = 0,

ωh = δ
√
1− 2α.

In case of Bh(ω) = 0, we solve (27) to have

e−iωτk = −P0 + P2e
−iωτh

P1 + P3e−iωτh
. (29)

Two remarks should be addressed. First, as in the same way as to derive τh(τk)

from equation (14), we can obtain τk(τh) and the stability switching curve

(τk(τh), τh) from equation (29). And second, noticing that (14) and (29) are

different equations derived from the same equation (12), we can see that the

stability switching curve (τk(τh), τh) is identical with the stability switching

curve (τh(τk), τk). In case of Bh(ω) 6= 0, we can define critical values of τh. To
define ψh(ω), we need a condition similar to F (ω) ≤ 0, that is,

G(ω) =
h
|P0|2 − |P1|2 + |P2|2 − |P3|2

i2
− 4Bh(ω)2 ≤ 0.

It can be shown that inequlities F (ω) ≤ 0 and G(ω) ≤ 0 define the same domain
for ω.

In the symmetric case,

ωk = ωh = ω3 = ω4 = δ
√
1− 2α.

Hence, for ω < ωk = ωh, ϕk(ω) = ϕh(ω) = π/2.2 The blue and red curves in

Figure 3 are the stability switching curves and described, respectively, by³
τ+k,0(ω), τ

−
h,1(ω)

´
for ω ∈ [ω2,ω3] (30)

and ³
τ−k,0(ω), τ

+
h,1(ω)

´
for ω ∈ [ω2,ω3]. (31)

In the same way, for ω > ωk = ωh, ϕk(ω) = ϕh(ω) = 3π/2. The green and

orange curves are also the stability switching curves and described, respectively,

by ³
τ+k,1(ω), τ

−
h,1(ω)

´
for ω ∈ [ω4,ω1] (32)

and ³
τ−k,1(ω), τ

+
h,1(ω)

´
for ω ∈ [ω4,ω1]. (33)

As can be seen in Figure 3, these loci construct egg-shaped closed curves. The

blue segment of the closed curve in the bottom-left is obtained for m = 1 and

2As before we take α = β = 1/3 and δ = 1/10 under which ω1 = 1/10, ω2 = 1/30 ' 0.0333
and for j = 3, 4, k, h,

ωj =
1

10
√
3
' 0.0577.
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n = 0, the red one is for m = 0 and n = 1, the green and orange ones are for

m = n = 1. Since equations (26) and (28) indicate that m is a horizontal shift

parameter and n is a vertical shift parameter, increasing the value of m shifts

the closed curve rightward, increasing the value of n shifts the closed curve

upward, increasing both values makes the shift in the diagonal direction with

some distortion. Notice that there are infinitely many closed curves since m and

n can take infinitely many values. The result obtained so far is summarized as

follows:

Lemma 2 From (26) and (28) in the symmetric case the following pairs of

delays, n³
τ±k,m(ω), τ

∓
h,n(ω)

´
| ω ∈ Ω

o
for m,n = 0, 1, 2, ...

construct the set of all stability switching curves on the (τk, τh) plane for equa-

tions (7) when Bk(ω) 6= 0.

Figure 3. Stability switching curves for m,n = 0, 1, 2

The stability switching curve is obtained by placing Figure 2 over the lower-

left part of Figure 3 that is illustrated in Figure 4. It has already been confirmed

that the stationary point without delays is locally asymptotically stable. Since

the stability region must includes the origin (i.e., τk = τh = 0), it might be the

region surrounded by the two black, orange and green curves. If a pair of the

delay is selected from this region, then the steady state of the delay system (7)

is locally asymptotically stable as the real parts of the characteristic roots are

negative for τk and τh. If a pair of (τk, τh) crosses one of the boundary seg-

ments, then the real part of a characteristic root becomes positive and thus the

stationary state loses stability. Applying the stability switching index obtained

in the Appendix, we can verify the stability switching direction along these

colored critical curves. We examine the pair on the green and orange curves,

the lower part of the egg-shaped ellipse. Since those curves are described by

13



(32) and (33), substituting τ+k,1(ω) and τ
−
k,1(ω) into τk of (A-7) and numerically

calculating the corresponding indices yields the following,

Q[ω,ωτ+k,1(ω)] = QG(ω) < 0 for ω ∈ (ω4,ω1) for the green curve,
Q[ω,ωτ−k,1(ω)] = QO(ω) > 0 for ω ∈ (ω4,ω1) for the orange curve

where the subscripts G and O stand for "Green" and "Orange." According to

Theorem 3, in crossing either the orange curve or the green curve from inside to

outside of the closed curve at least one pair of eigenvalues changes its real part

from positive to negative. On the other hand, since the index Q becomes zero

along the black convex- and concave-shaped curves, neither direction of stability

switch nor Hopf bifurcation can be proved.3 However, numerical simulations

indicate the loss of stability and the birth of a limit cycle as will be seen later

when the pair of the delays crosses the black curve.

Figure 4. Stability switching curve for

One more result is added. There are two small lens-shaped regions in the

lower-right and upper-left parts of Figure 4: one surrounded by the red and the

concave black curves between points c and c0 and the other is by the blue and
the convex black curves between points b and b0. It will be numerically checked
in the next section that the steady state is locally asymptotically stable in these

regions. Since the steady state is unstable in the adjacent regions, the stability

regain occurs when the pair of the delays crosses the boundary of these lens-

shaped regions. The lower-right lens-shaped region is enlarged in Figure 5. We

will return to the dotted line later. We summarize this as follows.

Theorem 2 In the symmetric case, the steady state is locally asymptotically

stable in the following two regions, one is between the two curves,

τh(τk) for τk ∈ (0, τAk ) and
³
τ+k,0(ω), τ

−
h,1(ω)

´
for ω ∈ (ω2,ω3)

3The second derivative of λ can be used and check the sign change of its real part. However

it would lead to very complicated expressions.
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and the other is between the two curves

τh(τk) for τk ∈ (τCk , τDk ) and
³
τ−k,0(ω), τ

+
h,1(ω)

´
for ω ∈ (ω2,ω3)

Figure 5 The lenze-shaped stability region

3.3 Two Delay Model: Asymmetric Case

In this section, the notations of the Appendix are used. We now turn attention

briefly to the asymmetric case in which α = 3/10 and β = 1/3, leading to α < β

under which no possibility of Bk(0) = 0. The corresponding stability switching

curves obtained under |Bk(ω)|2 > 0 are distorted due the parameter asymmetry
and seen in Figure 6 where RG, RO and RB denote the R-regions of the green,

orange and blue curve, respectively. LG, LO and LB denote the L-regions. The

blue, green and orange curves are described by (30), (31) and (32) with the new

parameter value of α and β and the same values of the other parameters. The

stability switching indices can be obtained similarly to the symmetric case, and

along these curves are

Q[ω,ωτ+k,0(ω)] = QB(ω) < 0 for ω ∈ (ω2,ω4) for the blue curve,

Q[ω,ωτ+k,1(ω)] = QG(ω) < 0 for ω ∈ (ω3,ω1) for the green curve,
Q[ω,ωτ−k,1(ω)] = QO(ω) > 0 for ω ∈ (ω3,ω1) for the orange curve

where it should be noticed that ω4 < ω3 under α < β. According to Theorem

6 given in the Appendix, we now determine the directions of stability switches.

The sign of real part of an eigenvalue changes to negative from positive if a

pair of (τk, τh) crosses the blue and green curves in the arrowed directions, and

changes to positive from negative through the orange curve. Summarizing the

results, we have
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Theorem 3 Assuming a pair of (τk, τh) moves in the crossing curve in in-

creasing direction of ω, then the stability regions are

1) the left hand side denoted as LG of the green curve,

2) the right hand side denoted as RO of the orange curve,

3) the left hand side denoted as LB of the blue curve.

Figure 6 Distorted stability switching curve.

4 Numerical Simulations

We numerically justify the validity of the analytical results obtained in the pre-

vious sections. Numerical simulations are done with the symmetric parameter

values,

α = 1/3, δ = 1/10 and sh = sk = 1/3.

Given constant initial functions,

k(t) = k∗ + k0 and h(t) = h∗ + h0 for t ≤ 0,

we run the delay system (7) for 0 ≤ t ≤ T . Usually data obtained for t ≤ 0.9T
are discarded to take away the effects caused by the initial disturbances. k∗ and
h∗ are the steady state given in (5), k0 and h0 are to be determined.4

Figure 7 is an enlargement of the lower-right part of Figure 4. It is confirmed

that the steady state is locally unstable for (τk, τh) belonging to the region

between the black-red curve and the blue curve, However trajectories (τk, τh)

on the blue curve become sooner or later economically infeasible. The black

curve between point c and the point on the abscissa axis is divided into ten

small segments. We select one point and fix the value of τh at the ordinate

of the selected point. We simulate the system (7) with respect to τk along the

4Different values of T , k0 and h0 may be chosen in different simulations.

16



horizontal line at the ordinate. We start from a point whose abscissa is a little bit

smaller than the abscissa of the dividing point and increase the value of τk until

abscissa of the corresponding blue point. The same procedure is repeated along

the dotted black curve between c and c0. Similar analysis can be performed on
the upper-left part of Figure 4.

Figure 7 Feasible instability region

In the region between the black curve and the blue curve, the steady state is

unstable and cyclic dynamics involving complicated dynamics could arise. Two

examples are given in Figure 8. T = 20, 000, k0 = 0.1 and h0 = −0.1 are
common in both simulations.5 In Figure 8(A), which is essentially the same as

Figure 3 of Gori et al. (2016), we select point e with τek ' 31.67 and τeh ' 9.66.
We repeatedly run the model by increasing τk from τmk to τMk (the abscissa of

point e0) with an increment of (τMk − τmk )/500 along the lower dotted line in

Figure 8 where

τmk = τek − 1 and τMk = τe
0
k = 40.85.

It is observed in Figure 8(A) that the steady state is asymptotically stable

for τk ∈ [τmk , τek) since the left hand side of point e is the stability region, loses
stability at τek of point e and then bifurcates to complicated dynamics via period

doubling cascade, finally become economically infeasible at τe
0
k of point e

0.
In Figure 8(B), the fixed value of τh is increased to τ

f
h ' 19.43, the ordinate

of point f , and τk is increased from τ
f
k to τ

f 00

k with an increment of (τ
f 00

k −τfk)/500
along the upper dotted line in Figure 6 where

τ
f
k ' 37.77 and τ

f 00

k ' 40.99.
5 It might be possible to have another critical value of τk if we change the value of

T. However the change could be only minor and the qualitative property of the blue curve

would not be affected.
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The steady state is locally unstable for τk < τ
f
k . It is seen in Figure 8(B)

that it becomes asymptotically stable for τ ∈ (τfk , τf
0

k ) where τ
f 0

k ' 38.66 is the
ordinate of point f” that the crossing point of the dotted line with the red curve

of Figure 7. Notice that point f 0 is seen on the red curve between points c and
c0 in Figure 5. Although not shown, it is numerically verified that the steady
state is locally asymptotically stable for any (τk, τh) in the lens-shaped region

in Figure 5 that proves Theorem 4. The steady state loses stability at τ
f 0

k and

bifurcates to a limit cycle for larger values of τk until τ
f 00

k at which economical

feasibility is lost. Comparing these two simulations shows that complicated

dynamics can be born when the difference between two delays are large and

only limit cycle can be observed when the difference is smaller.

(A) With a smaller value of τh (B) With a larger value of τh

Figure 8. Bifurcation diagrams

5 Concluding Remarks

A delay extended Solow model was developed in which a special Cobb-Douglas

production function had three factors, physical capital, human capital and labor.

Output was used for investment in physical capital as well as for human capital

and consumption. A crucial element of the model was the assumption that

construction of the new capitals was delayed due to a gestation time in physical

capital and a maturation time in human capital. The stability switching curve

on which stability is lost was analytically derived. The theoretical results were

numerically confirmed and the study suggests that the delays could be source of

endogenous fluctuations. One drawback of the model is that it could not prevent

unstable trajectories from being negative maybe due to insufficient nonlinearities

of the model.
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Appendix

In this Appendix, we provide the stability switching index, Q. When a pair

of (τk, τh) crosses the stability switching curve, we can determine the sign of

Q and the direction of the stability loss or gain according to the sign of Q. To

this end, we first define a direction of the curve. We call the direction of the

curve positive if it corresponds to increasing values of ω. When we head in the

positive direction of the curve, then the region on our left-hand or right-hand

side is called the region on the left (or the L-region) or the region on the right

(or the R-region).

Given Pj(iω) for j = 0, 1, 2, 3, R` and I` for ` = 1, 2 denote the real and

imaginary parts of

P1(iω)e
−iωτk + P3(iω)e−iω(τk+πh) (A-1)

and

P2(iω)e
−iωτh + P3(iω)e−iω(τk+πh), (A-2)

respectively.

For ` = 1, it is rewritten as

iδω(1−α) [cos (ωτk)− i sin (ωτk)]+δ2(1−2α) [cos (ωτk + ωτh)− i sin (ωτk + ωτh)] .

The real part is

R1 = δω(1− α) sin(ωτk) + δ2(1− 2α) cos (ωτk + ωτh)

that is, with the relations in (16),

R1 = δω(1− α) sin(ωτk) + δ2(1− 2α)
∙
M

D
cos(ωτk) +

N

D
sin(ωτk)

¸
. (A-3)

Similarly we can have R2 if τk, τh are interchanged,

R2 = δω(1− α) sin(ωτh) + δ2(1− 2α)
∙
M

D
cos(ωτh) +

N

D
sin(ωτh)

¸
(A-4)

where sin(ωτh) = −N/D and the second part is symmetric in τk, τh.

The imaginary part of (A-1) is

I1 = δω(1− α) cos(ωτk)− δ2(1− 2α) sin (ωτk + ωτh)

that can, with the relations in (16), be transformed to

I1 = δω(1− α) cos(ωτk)− δ2(1− 2α)
∙
M

D
sin(ωτk)− N

D
cos(ωτk)

¸
. (A-5)

In the similar way,

I2 = δω(1− α) cos(ωτh)− δ2(1− 2α)
∙
M

D
sin(ωτh)− N

D
cos(ωτh)

¸
(A-6)
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where cos(ωτh) =M/D. Hence the stability switching index is defined as

Q(ω,ωτk) = R2I1 −R1I2
that can be, after arranging the terms, written as

Q (ω,ωτk)

= −N
D
(δω)

2
(1− α)2 cos(ωτk) +

N

D
Bδω(1− α) + δω(1− α)A cos(ωτk)

−M
D
(δω)

2
(1− α)2 sin(ωτk)− M

D
Aδω(1− α) + δω(1− α)B sin(ωτk)

(A-7)

where

A = δ2(1− 2α)
∙
M

D
cos(ωτk) +

N

D
sin(ωτk)

¸
,

B = δ2(1− 2α)
∙
M

D
sin(ωτk)− N

D
cos(ωτk)

¸
.

We have the following result on the direction of any stability switch along the

stability switching curves:

Theorem 4 (Theorem 3 of Matsumoto and Szidarovszky (2018)) Assume iω is

a simple pure complex eigenvalue and point (τk, τh) is on the crossing curve. As

point (τk, τh) moves from the right to the left, then a pair of eigenvalues crosses

the imaginary axis to the right if Q (ω,ωτk) > 0 and the direction is opposite if

Q (ω,ωτk) < 0.
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