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Abstract

Nonlinear dynamic monopoly is considered, when the �rm does not
have an analytic form of its pro�t function, but it can observe its value
at any time. This is the case when the price function is unknown. In
applying gradient dynamics, the marginal pro�t is approximated by �nite
di¤erences based on two past pro�t observations. Stability conditions are
derived �rst with discrete time scales, which are also applied in special
cases. Two models of continuous dynamics are then introduced. The �rst
is a natural modi�cation of the discrete model, and the other includes
an inertia coe¢ cient with the derivative. In each case a delay di¤erential
equation is obtained with two delays. Stability conditions are derived and
the stability switching curves are constructed and illustrated.
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1 Introduction

It is well-known that a monopolist in an elementary textbook of microeconomics
is assumed to be rational in the sense that it has the perfect information on the
market and instantaneous responses to changing circumstances. Accordingly,
such a monopolist can choose the levels of price and output that maximizes
its overall pro�t and can adjust its decisions in no time if some exogeneous
changes occur. It is also well-known that the decision makers in real world are
boundedly rational and thus have to make a decision under limited information
and delayed responses.1 We can say this behavioral di¤erence in other words.
The rational monopolist can jump to the optimal point of output and price
in one shot without any adjustments. In consequence, output as well as price
will not change over time (i.e., no dynamic consideration is necessary) unless
environmental phenomenon changes. The boundedly rational monopolist, on
the other hand, can make a mistake. It might produce a di¤erent amount of
output and set a di¤erent value of price other than the optimal ones. Noticing
the mistake and revising the decision, it experiences time delays in collecting
past data of price and output associated with uncertainty, information and
implementation delays. Output (and price) will vary in every subsequent time
period. The main purpose of this paper is to shed light on such an adjustment
or dynamic process of output of the boundedly rational monopolist.
In the existing literature, the gradient method is often adopted to describe

the adjustment process of the boundedly rational monopolist toward the pro�t
maximizing output. Accordingly, the monopolist increases the output level if
its marginal pro�t is positive, decreases if negative and maintains the same
output level if zero. Two types of models are known to introduce the method,
discrete-time models and continuous-time models. It is demonstrated that the
former could generate choatic dynamics if the involved nonlinearities are strong
enough. Among others, we mention Puu (1995) that follows Baumol and Quandt
(1964) constructing a model of monopoly with a linear cost function and a cubic
price function with in�ection points. Naimzada and Ricchiuti (2008) replace
Puu�s price function with a cubic function having no in�ection points. Askar
(2013) assumes a general concave price function. Elsadany and Awad (2015)
introduce a log-concave function. In a continuous-time framework, Matsumoto
and Szidarovszky (2012, 2014) build a monopoly model, focusing on the e¤ects
caused by time delays and show the delay e¤ect can be a source of complex
dynamics as well as simple dynamics. In those studies, it is assumed that the
form of the demand function could be known or estimated correctly by using the
past history of output and price.2 In this study, the form of the price function
is considered unknown.
The rest of this paper is organized as follows. Section 2 considers the learning

process in a discrete-time model. Section 3 considers the same subject in a

1Clower (1959) calls the former knowledgeable monopolist and the latter ignorant monop-
olist.

2Even if the price function is known, it might be possible that a monopolist is endowed
with limited computational skills to solve the pro�t maximization problem.
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continuous-time framework. Section 4 constructs a continuous-time model with
inertia. Finally, the concluding remarks and future research directions are given
in Section 5.

2 Model

Consider a monopoly that produces one good. Let x denote its output and
�(x) its pro�t. In the dynamic monopoly models, the �rm adjusts its output in
proportion to its marginal pro�t, which is usually called the gradient adjustment.
In applying best response dynamics the best output selection is used at each
time period, however by knowing the best choice, the �rm will make this choice
at all times, so there is no need to dynamic adjustments. It is assumed that the
�rm does not have the analytic form of its pro�t, it can only observe it at each
time. Therefore the marginal pro�t cannot be computed, only its estimates can
be assessed.

3 Discrete time dynamics

If discrete time scales are assumed, then the following model can be considered:

x(t) = x(t� �1) +K
�(x(t� �1))� �(x(t� �2))
x(t� �1)� x(t� �2)

(�1 � �2) (1)

where t � �1 and t � �2 are earlier time periods with known pro�t values, so
�1 and �2 are nonnegative integers. In estimating �0(x(t)), it is logical to select
the earlier time periods as close to t as possible, so model (1) becomes

x(t) = x(t� 1) +K�(x(t� 1))� �(x(t� 2))
x(t� 1)� x(t� 2) (2)

where K > 0 is the adjustment coe¢ cient. The asymptotical behavior of this
nonlinear model can be obtained by linearization around the steady state x�.
At the steady state x(t) = x(t� �1) = x(t� �2) = x�; and from (1), we have

x(t) = x(t� �1) +K�0(z)

with z being between x(t � �1) and x(t � �2). At the steady state z has to be
also x�; therefore

x� = x� +K�0(x�);

implying that x� is a stationary point of the pro�t function. In order to guaran-
tee that the �rst order condition at x� provides maximum, we make the following
assumption,

Assumption 1. �00(x�) < 0.
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Notice that

@x(t)

@x(t� 1) = 1+K
�0(x(t� 1)) [x(t� 1)� x(t� 2)]� [�(x(t� 1))� �(x(t� 2))]

(x(t� 1)� x(t� 2))2

where the numerator can be written as

�0(x(t�1)) (x(t� 1)� x(t� 2))+
�
�0(x(t� 1)) (x(t� 2)� x(t� 1)) + �

00(z)

2
(x(t� 2)� x(t� 1))2

�
where z is between x(t� 1) and x(t� 2). Therefore

@x(t)

@x(t� 1) = 1 +K
�00(z)

2
:

At the equilibrium z = x�, therefore this derivative becomes

@x(t)

@x(t� 1) = 1 +K
�00(x�)

2
:

Similarly,
@x(t)

@x(t� 2) = K
�00(x�)

2

at the steady state.
By introducing the notation

A = K
�00(x�)

2
;

the linearized equation becomes

x(t) = (A+ 1)x(t� 1) +Ax(t� 2) (3)

with characteristic equation

�2 � (A+ 1)��A = 0: (4)

The steady state is locally asymptotically stable if

�(A+ 1)�A+ 1 > 0

�A < 1

which can be simpli�ed as �1 < A < 0:

Proposition 1 The steady state of dynamic equation (2) is locally asymptoti-
cally stable if �1 < A < 0 and locally unstable if A < �1
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Next we will show two examples with di¤erent forms of the price function
where this general stability condition applies. Askar (2013) assumes a general
concave price function,

p = a� bx�; � 2 Z+: (5)

With a marginal cost c, the pro�t function is

�(x) = (p� c)x = (a� c)x� bx1+�

and its second derivative at the equilibrium point x� is

�00(x�) = ��b(1 + �)
�

a� c
(1 + �)b

���1
�

where x� solves �0(x�) = 0. Apparently the pro�t function satis�es the second-
order condition for pro�t maximization �00(x�) < 0; the stability condition is,
according to Proposition 1,

�A = �K
2
�00(x�) =

K

2
�b(1 + �)

�
a� c
(1 + �)b

���1
�

< 1 (6)

that is identical with the condition given in his Proposition. The price function
assumed by Naimzada and Ricciuti (2008) is (5) with � = 3 and the correspond-
ing stability condition is obtained from (6) as

12Kb

�
a� c
4b

� 2
3

< 2

that is, needless to say, the same as the one given in their Proposition. Elsadany
and Awad (2016) consider the case in which the price function is log-concave,

p = a� b lnx:

The pro�t function is
�(x) = (a� c)x� bx lnx

and its second-derivative at the equilibrium x� is

�00(x�) = � b

x�

where x� solves �0(x�) = 0. They adopt the growth rate dynamics with the
gradient method in which the adjustment coe¢ cient K should be replaced by
Kx(t� 1) in (2). Hence the stability condition is

�A = �Kx
�

2
�00(x�) =

Kb

2
< 1

which is the same as the stability condition given in their Theorem 1.
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We now consider the stability conditions of the more general delay di¤erence
equation,

x(t) = �x(t�m) + �x(t� k) (7)

where k and m are coprime intergers, k > m > 0; � = A+ 1 and � = A < 0. If
we assume �1 < A < 0; then

j�j+ j�j = jA+ 1j+ jAj = 1:

Under this special condition, according to Corollary 3.1 of µCermák and Jánský
(2015), the steady state of (7) is asumptotically stable if �k�m < 0 for any such
k and m. Since A+ 1 > 0 and A < 0; it is clear that

�k�m = (A+ 1)kAm < 0 if m is odd.

We then have the following result with m = 1.

Proposition 2 If �1 < A < 0; then the steady state of the following delay
di¤erence equation is locally asymptotically stable for any k � 2;

x(t) = x(t� 1) +K�(x(t� 1))� �(x(t� k))
x(t� 1)� x(t� k) :

4 Continuous time dynamics I

Considering continuous time scales, the direction _x(t) of the output change is
determined, and in this case x(t) might be already known. Equation (1) can be
modi�ed as

_x(t) = K
�(x(t� �1))� �(x(t� �2))
x(t� �1)� x(t� �2)

(8)

where the case of �1 = 0 is possible. Similar to the discrete case, at the steady
state

@ _x(t)

@x(t� �1)
= K

�00(x�)

2
= A

and
@ _x(t)

@x(t� �2)
= K

�00(x�)

2
= A:

So the linearized model has the form

_x(t) = Ax(t� �1) +Ax(t� �2): (9)

with characteristic equation

��Ae���1 �Ae���2 = 0: (10)

Case 0: �1 = 0; �2 = 0:
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Consider �rst the no-delay case as a benchmark. The characteristic equation
(10) with �1 = �2 = 0 is

� = 2A:

The steady state is locally asymptotically stable since A < 0.

Case 1: �1 = 0; �2 > 0

Consider now the special case of �1 = 0. Then equation (10) is reduced to a
one-delay equation,

��A�Ae���2 = 0: (11)

As is already seen, the steady state is locally asymptotically stable at �2 = 0. As
the value of �2 increases, stability might be lost, when � = i! (! > 0). Assuming
positive value of ! does not restrict generality, since if � is an eigenvalue, then
its complex conjugate is also an eigenvalue. Substituting this value of � into
equation (11), we have

i! �A�A (cos!�2 � i sin!�2) = 0.

The separation of the real and imaginary parts gives

A+A cos!�2 = 0;

! +A sin!�2 = 0:

The �rst equation implies that cos!�2 = �1; so sin!�2 = 0 which contradicts
the second equation. Therefore there is no stability switch.3

Proposition 3 If �1 = 0; then the steady state is locally asymptotically stable
with all �2 > 0.

Case 2: �1 > 0; �2 > 0

In the general case of �1 > 0 and �2 > 0, equation (10) can be rewritten as

P0(�) + P1(�)e
���1 + P2(�)e

���2 = 0 (12)

with
P0(�) = � and P1(�) = P2(�) = �A:

Before looking for stability switching curves, the following conditions should be
veri�ed (Gu et al. (2005)):

(i) deg[P0(�)] � max fdeg [P1(�)] ;deg [P2(�)]g :

(ii) P0(0) + P1(0) + P2(0) 6= 0:
3Mathematically, we have the same result if �1 > 0 and �2 = 0: However this symmetric

case is assumed away by assumption �1 < �2.
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(iii) The polynomials P0(�); P1(�) and P2(�) do not have any common roots.

(iv) lim�!1

�����P1(�)P0(�)

����+ ����P2(�)P0(�)

����� < 1:
Equation (12) satis�es these conditions. Since deg[P0(�)] = 1 and deg[P1(�)] =deg[P2(�)] =

0; condition (i) is satis�ed. Condition (ii) is satis�ed as P0(0)+P1(0)+P2(0) =
�2A 6= 0: Condition (iii) is apparently satis�ed as P0(�); P1(�) and P2(�) have
no common roots. Condition (iv) also holds, since�����P1(�)P0(�)

����+ ����P2(�)P0(�)

����� = �2Aj�j ! 0 as �!1:

Dividing equation (12) by �, we get

1 + a1(�)e
���1 + a2(�)e

���2 = 0; (13)

where new functions are

a1(�) =
�A
�

and a2(�) =
�A
�
:

We examine the stability switches of the non-trivial solution of dynamic equation
(9) as the delays (�1; �2) vary. The modi�ed characteristic equation (13) must
have a pair of pure conjugate imaginary roots and stability switch occurs for
the corresponding critical delays. So let � = i!; ! > 0 and substitute it into
equation (13),

1 + a1(i!)e
�i!�1 + a2(i!)e

�i!�2 = 0 (14)

where

a1(i!) = a2(i!) = i
A

!
:

We now solve equation (14). To this purpose, we treat the three terms in the
left hand side of equation (14) as three vectors in the complex plane with the
magnitudes, 1; ja1(i!)j and ja2(i!)j where the absolute values are

ja1(i!)j = ja2(i!)j = �
A

!
:

The right hand side of equation (14) is zero, implying that if we put these
vectors head to tail, then they form a triangle as illustrated in Figure 1. Similar
triangle can be formed under the real axis. Since the sum of lengths of the
two line segments is not shorter than that of the remaining line segment in a
triangle, these absolute values satisfy the following inequality conditions

1 � ja1(i!)j+ ja2(i!)j ; (15)

and
�1 � ja1(i!)j � ja2(i!)j � 1 (16)

8



Figure 1. Triangle representation of equation (11)

Relation (16) is clearly satis�ed, and (15) requires that

�2A
!
� 1 or 0 < ! � �2A: (17)

By using the cosine rule,

�1 = �2 = cos�1

 
1 + ja1(i!)j2 � ja2(i!)j2

2 ja1(i!)j

!

= cos�1
�
� !

2A

�
:

(18)

Notice also that
�1 = �2 2

�
0;
�

2

�
and

arg[a1(i!)] = arg [a2(i!)] = arg

�
i
A

!

�
=
3�

2
:

So the stability switching curves are given as

��1 =
1

!

�
3�

2
+ (2u� 1)� � �1

�
(19)

and

��2 =
1

!

�
3�

2
+ (2v � 1)� � �2

�
(20)

where both �1 and �2 are positive with all nonnegative integer values of u
and v: Hence we have in�nitely many stability switching curves. Some stability
switching curves are illustrated in Figure 2, where the points (�+1 ; �

�
2 ) are shown

in red color and the points (��1 ; �
+
2 ) in blue.

9



Figure 2. Stability switching curves for
u; v = 0; 1; 2

5 Continuous time dynamics II

An alternative model can be formulated from (1), if we rewrite it as

x(t)�x(t�1) = �x(t�1)+
�
x(t� �1) +K

�(x(t� �1))� �(x(t� �2))
x(t� �1)� x(t� �2)

�
(�1 < �2) :

(21)
By using x(t) � x(t � 1) = � _x(t) where � > 0 is the inertia coe¢ cient, and
replacing t� 1 with t with new values of �1 and �2; we have

� _x(t) = �x(t) +
�
x(t� �1) +K

�(x(t� �1))� �(x(t� �2))
x(t� �1)� x(t� �2)

�
: (22)

This is a nonlinear delay di¤erential equation, which is reduced to the di¤erence
equation (1) if � = 0. Its linearized version is the following:

� _x(t) = �x(t) + (1 +A)x(t� �1) +Ax(t� �2)

with characteristic equation

��+ 1� (1 +A)e���1 �Ae���2 = 0: (23)

Without delay �1 = �2 = 0;

� =
2A

�
< 0

and the steady state is locally asymptotically stable.
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In the case of delays we get again equation (13) with

a1(�) = �
1 +A

��+ 1
and a2(�) = �

A

��+ 1
:

So

a1(i!) = �
1 +A

i�! + 1
=
�(1 +A) + i�!(1 +A)

1 + (�!)
2

and

a2(i!) = �
A

i�! + 1
=
�A+ i�!A
1 + (�!)

2

implying that

ja1(i!)j2 =
(1 +A)2 + [�!(1 +A)]

2h
1 + (�!)

2
i2 =

(1 +A)2

1 + (�!)
2

and

ja2(i!)j2 =
A2 + (�!A)

2h
1 + (�!)

2
i2 = A2

1 + (�!)
2 :

Conditions (15) and (16) have now the forms

j1 +Ajq
1 + (�!)

2
+

�Aq
1 + (�!)

2
� 1 (24)

and

�1 � j1 +Aj+Aq
1 + (�!)

2
� 1 (25)

Now we have to consider two cases:

(i) �1 � A � 0

In this case (24) gives

1 �
q
1 + (�!)

2

which is impossible, so there is no stability switch.

Proposition 4 If �1 � A � 0, then the steady state is locally asymptotically
stable with all �1 � 0 and �2 � 0:

(ii) A < �1
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This condition is equivalent to A+ 1 < 0; then (24) gives

�2A� 1 �
q
1 + (�!)

2

or

!2 � 4A(A+ 1)

�2

showing that this condition holds if

0 < ! � 2

�

p
A(A+ 1): (26)

Similarly, condition (25) has the form

�1 � �A� 1 +Aq
1 + (�!)

2
� 1

which always holds.

Proposition 5 If A < �1, then stability switch might occur with all ! values
satisfying relation (26).

Similarly to the previously discussed model, based on Figure 1, the applica-
tion of the low of cosine presents,

�1(!) = cos
�1

 
1 + ja1(i!)j2 � ja2(i!)j2

2 ja1(i!)j

!
= cos�1

0@ (�!)
2
+ 2(1 +A)

2 j1 +Aj
q
1 + (�!)

2

1A
(27)

and

�2(!) = cos
�1

 
1 + ja2(i!)j2 � ja1(i!)j2

2 ja2(i!)j

!
= cos�1

0@ (�!)
2 � 2A

2 jAj
q
1 + (�!)

2

1A :
(28)

Notice that �1 2 [0; �] and �2 2 [0; �=2] ; furthermore, the arguments of a1(i!)
and a2(i!) are

arg [a1(i!)] = � tan�1 (�!) + 2�

and
arg [a2(i!)] = � tan�1 (�!) + 2�:

The arguments and the internal angles just obtained satisfy the following rela-
tions

��1 = � �
�
arg
�
a1(i!)e

�i!�1
�
+ 2u�

	
(u is integer)

and
��2 = � �

�
arg
�
a2(i!)e

�i!�2
�
+ 2v�

	
(v is integer):
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Using the formula arg
�
ai(i!)e

�i!�1
�
= arg [ai(i!)] + arg

�
e�i!� i

�
for i = 1; 2;

we can solve these equations for the delays, �1 and �2;

��1 =
1

!
(arg [a1(i!)] + (2u� 1)� � �1(!)) (29)

and
��2 =

1

!
(arg [a2(i!)] + (2v � 1)� � �2(!)) (30)

where u and v are integers such that both �1 and �2 are nonnegative. Similarly
to the previous case, there are in�nitely many stability switching curves. Some
curves are illustrated in Figure 3, where the points (�+1 ; �

�
2 ) are shown in red

color and the points (��1 ; �
+
2 ) in blue.

Figure 3. Stability switching curves for
u; v = 1; 2; 3

Finally some special cases are discussed. We have already mentioned that
the steady state is locally asymptotically stable if �1 = �2 = 0. Assume next
that �1 = 0 and �2 > 0. The characteristic equation becomes

��+ 1� (1 +A)�Ae���2 = 0: (31)

At a stability switch, � = i!, so

i�! + 1� (1 +A)�A (cos!�2 � i sin!�2) = 0:

Separation of the real and imaginary parts yields

�A�A cos!�2 = 0;

�! +A sin!�2 = 0;

13



where the �rst equation gives cos!�2 = �1, implying sin!�2 = 0. It contradicts
the second equation.4

Proposition 6 If �1 = 0; then the steady state is locally asymptotically stable
for all �2 � 0:

Assume �nally that �1 = �2 = � > 0. Similarly to the previous case it is
easy to see that there is no stability switch. Then a one-delay characteristic
equation is obtained:

��+ 1� (1 + 2A)e��� = 0: (32)

Needless to say, the steady state is locally asymptotically stable at � = 0 (that
is, when there are no delays). At any stability switch, � = i! (! > 0): So

i�! + 1� (1 + 2A) (cos!� � i sin!�) = 0:

By separating the real and imaginary parts,

1� (1 + 2A) cos!� = 0;

�! + (1 + 2A) sin!� = 0;

so

!2 =
4A(A+ 1)

�2
> 0

and therefore
! =

2

�

p
A(A+ 1) (33)

and the critical values of the delay are

�n =
1

!

�
cos�1

�
1

1 + 2A

�
� 2n�

�
for n = 0; 1; 2; ::: (34)

The direction of the stability switch is obtained by selecting � as the bifurcation
parameter and considering � as function of � : � = �(�). Implicitly di¤erentiating
(32) with respect to � yields

��0 � (1 + 2A)e���
�
��0� � �

�
= 0

so

�0 =
�(1 + 2A)e����
� + (1 + 2A)e����

=
��(��+ 1)
(��+ 1)� + �

=
��2� � �
� + � + ���

4Mathematically, we can examine the case of �1 > 0 and �2 = 0 in which the characteristic
equation is the following:

��+ 1� (1 +A)e���1 �A = 0
Similarly to the previous case it is easy to see that there is no stability switch. However this
case violates the assumption �1 � �2:
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where equation (32) is used. At � = i!;

Re
�
�0
�
= Re

�
!2� � i!

� + � + i��!
� � + � � i��!
� + � � i��!

�
=

(!�)
2

(� + �)
2
+ (��!)

2 > 0

so the real part of �0 is positive. Therefore at each critical value at least one
pair of eigenvalues changes the sign of its real part from negative to positive, so
stability is lost at �0 and stability cannot be regained with larger values of � .

Proposition 7 If �1 = �2 = � ; then the steady state is locally asymptotically
stable for � < �0, destabilized via Hopf bifurcation at � = �0 and stability cannot
be regained with larger values of � :

Figure 4 shows �0 as function of � with �xed value of A = �3=2. Clearly
with any value of A the graph is always an increasing linear function. The
stability region in the (�; �) space is under this line.

Figure 4. �0 as function of �

Figure 5 shows �0 as function of A with �xed � = 1. The stability region in
the (A; �) space is under this curve.
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Figure 5. �0 as function of A < �1

6 Concluding Remarks

In this paper gradient adjustment process was introduced in a monopoly, when
the �rm does not have an analytic form of its pro�t function, but is able to
observe the actual pro�t at any time. The marginal pro�t was approximated
with a simple �nite di¤erence formula based on two past pro�t observations
leading to dynamic models with two time delays. Assuming discrete time scales
�rst, a general stability condition was derived and applied to special cases giving
the same special stability conditions which are known from the literature. Two
di¤erent continuous dynamics were then introduced and analyzed. The �rst
was a simple modi�cation of the discrete model, the other included an inertia
coe¢ cient with the derivative of the output trajectory. Without delays both
systems are locally asymptotically stable, and stability can be lost with increas-
ing positive values of the delays. The stability switching curves were derived
and illustrated in both cases.
In approximating the marginal pro�t a very simple di¤erentiation formula

was used. However more sophisticated formulas could provide better approxi-
mations with increased numbers of delays. It is an interesting task to see how
the more sophisticated di¤erentiation formulas alter the stability conditions.
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