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Abstract

Dynamic asymmetric contest games are examined under the
assumption that the assessed value of the prize by each agent
depends on the total e¤ort of all agents, and each agent has only
delayed information about the e¤orts of the competitors. As-
suming gradient dynamics with continuous time scales, �rst the
resulting one-delay model is investigated. Then assuming addi-
tional delayed information about the �rms�own e¤orts, a two-
delay model is constructed and analyzed. In both cases, �rst the
characteristic equation is derived in the general case, and then
two special cases are considered. First symmetric �rms are as-
sumed and then general duopolies are examined. Conditions are
derived for the local stability of the equilibrium including stability
thresholds and stability switching curves.
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1 Introduction

Contest games are the mathematical models of situations when several
agents compete to win a given prize. The value of the prize might be
exogenously given as in Perez-Castrillo and Verdies (1992), Szidarovszky
and Okuguchi (1997), Cornes and Harley (2005) and Yamazaki (2008).
However in many cases the prize should depend on the total e¤ort of
all agents, like in research and development, war or armament buildup
when more joint e¤ort makes the value of the prize higher. There are
cases when more total e¤ort might decrease the value. The studies of
Chung (1996), Okuguchi (2005), Corchon (2007), Sha¤er (2006) among
others considered the possibility of total e¤ort dependent value. Contest
games are closely related to other types of games including hyperbolic
oligopolies (Bischi et al., 2010), market share attraction games (Hanssens
et al.,1990), rent seeking games (Tullock, 1980) among others. In the
earlier studies mainly the existence and uniqueness of the pure Nash
equilibrium was the main focus. The �rst attempt to examine dynamic
contest games was done in Okuguchi and Szidarovszky (1999) where the
local asymptotical stability of the pure Nash equilibrium was studied
via linearization. Bischi et al. (2010) gives a detailed analysis of meth-
ods of nonlinear dynamics in di¤erent oligopoly models including hyper-
bolic price functions, which are equivalent with contest games. More
recently Matsumoto and Szidarovszky (2018) present a comprehensive
summary of the most recent results of di¤erent versions of nonlinear
dynamic oligopolies. These models assume the availability of instan-
taneous information about the e¤orts of all agents, however collecting
information, data analysis, �nding most appropriate decisions and their
implementation need time. There is a huge literature on delay di¤er-
ential equations and systems, they are summarized in Matsumoto and
Szidarovszky (2018), where delayed nonlinear oligopolies are discusses
as well, including the hyperbolic case. In this paper dynamic contest
games are investigated. First, delays are assumed in the total e¤ort of
the competitors of each �rm. The resulting one-delay model is discussed
�rst. Then additional delay is introduced in the �rms�own e¤orts lead-
ing to a two-delay model. In both cases the characteristic equations are
derived in the general case. Two special cases, symmetric agents and
general 2-agent cases will be then analyzed in detail.
The paper is developed as follows. The basic model is introduced in

Section 2. One-delay dynamics is examined in Section 3, and the two-
delay model is studied in Section 4. Section 5 presents conclusions and
o¤ers further research directions.
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2 Basic Model

Assume n agents bid for a valuable asset, where yi denotes the e¤ort
of agent i. Asset value assesment Ri by agent i depends on the total
e¤ort of all agents. The cost function of agent i is denoted by gi. For all
agents, the following assumptios are made:

Assumption 1. Ri(�) > 0 and R00i (�) � 0 for all feasible total e¤ots
� of the �rms.

Assumption 2. gi(0) = 0, g0i (yi) > 0 and g
00
i (yi) > 0 for all feasible

e¤ots yi of �rm i.

Hirai and Szidarovszky (2013) proved that under these conditions
there is a unique pure Nash equilibrium. Assume that the total e¤ort of
the rest of the agents �i =

P
j 6=i yj is known only with same delay � i for

each agent i. The payo¤ of agent i is

�i(t) = Ri (yi(t) + �i(t� � i))
yi(t)

yi(t) + �i(t� � i)
� gi (yi(t)) : (1)

Di¤erentiating (1) with respect to yi(t) yields

@�i(t)

@yi(t)
= R0i (yi(t) + �i(t� � i))

yi(t)
yi(t)+�i(t�� i)

+Ri (yi(t) + �i(t� � i))
�i(t�� i)

[yi(t)+�i(t�� i)]2
�g0i (yi(t)) :

Let us denote the left hand side of the last equation by f (yi(t); �i(t� � i)) :

3 General Dynamics with One Delay

Based on gradient adjustments the general dynamic equation is

_yi(t) = Kifi (yi(t); �i(t� � i)) : (2)

Notice that (arguments of Ri, R0i and R
00
i are not shown)

@fi(t)

@yi(t)
= R00i

yi(t)

yi(t) + �i(t� � i)
+2R0i

�i(t� � i)
[yi(t) + �i(t� � i)]

2+Ri�
�
� 2�i(t� � i)
[yi(t) + �i(t� � i)]

3

�
�g00i (yi(t))

and

@fi(t)

@�i(t� � i)
= R00i

yi(t)

yi(t) + �i(t� � i)
+R0i

�i(t� � i)� yi(t)
[yi(t) + �i(t� � i)]

2+Ri�
�
yi(t)� �i(t� � i)
[yi(t) + �i(t� � i)]

3

�
:

Let Si and Ti denote these derivatives. The common denominator of Ti
is [yi(t) + �i(t� � i)]

3 and the numerator is

R00i yi(t) [yi(t) + �i(t� � i)]
2+[�i(t� � i)� yi(t)]�[R0i [yi(t) + �i(t� � i)]�Ri] :
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It is easy to see that

Ri(0) = Ri (yi(t) + �i(t� � i))�
R0i(yi(t)+�i(t�� i))

1!
[yi(t) + �i(t� � i)]+

R00i (~�)
2!

[yi(t) + �i(t� � i)]
2 > 0

for ~� 2 (0; yi(t)+�i(t�� i)); implying thatR0i [yi(t) + �i(t� � i)]�Ri < 0;
so the numerator of Ti is negative if �i(t�� i) > yi(t) meaning that there
is no dominant agent. This is assumed in the following discussions.
Notice that

Si = Ti + ui

with

ui =
R0i [yi(t) + �i(t� � i)]�Ri

[yi(t) + �i(t� � i)]
2 � g00i (yi(t)) < 0:

Therefore Si < 0 as well. The linearized equation (2) can be written as

_yi"(t) = KiSiyi"(t) +KiTi�i"(t� � i) (3)

where Si and Ti are on their equilibrium levels and yi" and �i" are their
di¤erences from equilibrium levels. To get the characteristic polynomial,
assume that

yi"(t) = e
�tui.

Then from (3)

�e�tui = KiSie
�tui +KiTi

X
j 6=i

e�(t�� i)uj

leading to the characteristic equation

'(�) = det

0BBBBBB@
K1S1 � � K1T1e

���1 � � �K1T1e
���1

K2T2e
���2 K2S2 � � � � �K2T2e

���2

�
�
�

�
�
�

�
�
�
�

KnTne
���nKnTne

���n � � � KnSn � �

1CCCCCCA = 0: (4)

This equation is impossible to be solved in general. Therefore, we will
consider two special cases: symmetric n agents, and nonsymmetric case
of n = 2.

3.1 Symmetric agents
Assume � 1 = � 2 = ::: = �n = � and introduce notation,

a =

0BBBBBB@
K1T1
K2T2
�
�
�

KnTn

1CCCCCCA e
��� ; b =

0BBBBBB@
1
1
�
�
�
1

1CCCCCCA
4



and

D = diag
�
K1S1 � ��K1T1e

��� ; :::; KnSn � ��KnTne
����

to have

'(�)= det
�
D + abT

�
= det (D) det

�
I +D�1abT

�
=
Qn
i=1

�
KiSi � ��KiTie

���� �1 +Pn
i=1

KiTie
���

KiSi � ��KiTie���

�
:

(5)
In addition, assume that K1 = K2 = ::: = Kn = K; S1 = S2 = ::: =
Sn = S and T1 = T2 = ::: = Tn = T which is the case if the equilibrium
is symmetric and the agents believe in the same price and cost functions,
gi(yi) and Ri(yi(t) + �i(t� � i)). We have now two possibilities. Either

KS � ��KTe��� = 0 (6)

or
KS � ��KTe��� + nKTe��� = 0: (7)

We �rst investigate equation (6), since equation (7) is obtained by re-
placing T with �T = T (1� n): We will return to equation (7) later.
Without delay � = 0; so from (6),

� = KS �KT = K(S � T ) = Ku < 0

implying stability. Stability switch may occur if � = i! (! > 0) which
is substituted into equation (6) to get

KS � i! �KT (cos!� � i sin!�) = 0:

Separation of the real and imaginary parts gives

KT cos!� = KS (8)

and
KT sin!� = !: (9)

By adding the squares of these equations, we have

K2T 2 = K2S2 + !2

showing that
!2 = K2

�
T 2 � S2

�
: (10)
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Both T and S are negative and S < T implying that jSj > jT j ; so there
is no positive solution for !:
In the case of equation (7), T is replaced with �T = T (1 � n) >

0: Without delay, from (7), � = KS + (n� 1)KT < 0. From (10),

!2 = K2
�
�T 2 � S2

�
= K2

�
T 2(1� n)2 � S2

�
: (11)

So positive solution exists if jT (n� 1)j > jSj or T (n�1) < S. Otherwise
no stability switch occurs. From (11),

! = K
p
T 2(1� n)2 � S2

and since �T > 0 and S < 0; from (8) and (9), we see that sin!� > 0
and cos!� < 0. The critical values of delay are

�m =
1

!

�
cos�1

�
S

T (1� n)

�
+ 2m�

�
for m = 0; 1; 2; :::

The direction of stability switching can be obtained by considering
� as function of the bifurcation parameter � , � = �(�). Implicitly di¤er-
entiating equation (7) to get

� _�+ (n� 1)KTe���
�
� _�� � �

�
= 0:

Therefore from (7),

_� =
(KS � �)�

1� (KS � �) � :

If � = i!, then

_� =
!2 + i!KS

(1�KS�) + i!� �
(1�KS�)� i!�
(1�KS�)� i!�

with real part having same sign as

!2 (1�KS�) + !2KS� = !2 > 0 (12)

showing that stability is lost at the smallest critical value,

� 0 =
1

K
p
T 2(1� n)2 � S2

�
cos�1

�
S

T (1� n)

��
(13)

since in this case sin!� is positive and cos!� is negative, and stability
cannot be regained later.
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3.2 Asymmetric two agents
Consider the general case of two agents. In this case, (4) is modi�ed as

'(�) = det

0@ K1S1 � � K1T1e
���1

K2T2e
���2 K2S2 � �

1A :
The left hand side is expanded to

�2 � (K1S1 +K2S2)��K1K2T1T2e
��(�1+�2) +K1K2S1S2 = 0: (14)

This is a single-delay equation with � = � 1 + � 2. Without delay � = 0
and from (14)

�2 � (K1S1 +K2S2)�+K1K2 (S1S2 � T1T2) = 0: (15)

Notice that S1; S2 < 0 and jS1j > jT1j ; jS2j > jT2j ; implying that S1S2 >
T1T2; so both the linear coe¢ cient and the constant term are positive. So
without delay the equilibrium is locally asymptotically stable. Stability
switch might occurs if � = i! with ! > 0, which is then substituted into
equation (14) to have

!2� i! (K1S1 +K2S2)+K1K2S1S2�K1K2T1T2 (cos!� � i sin!�) = 0:

Separation of the real and imaginary parts shows that

K1K2T1T2 cos!� = !
2 +K1K2S1S2

and
K1K2T1T2 sin!� = ! (K1S1 +K2S2) :

Adding the squares of these equations gives

!4+
�
(K1S1 +K2S2)

2 + 2K1K2S1S2
�
!2+(K1K2S1S2)

2�(K1K2T1T2)
2 = 0:
(16)

Since S1S2 > T1T2, both the linear coe¢ cient and the constant term are
positive implying that no ! > 0 exists. So the equilibrium is asymptot-
ically stable for all � 1 > 0 and � 2 > 0.

4 Two-delay model

Assume agent i has delay � 1i on its own e¤ective e¤ort and delay �
2
i

on the e¤ective e¤orts of the competitors. Then equation (3) has the
modi�ed form,

_yi"(t) = KiSiyi"(t� � 1i ) +KiTi�i"(t� � 2i ) (17)
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The exponential solution forms yk"(t) = e�tuk give

�e�tui = KiSie
�(t��1i )ui +KiTi

X
j 6=i

e�(t��
2
i )uj

leading to the characteristic equation,

'(�) = det

0BBBBBB@
K1S1e

���11 � � K1T1e
���21 � � � K1T1e

���21

K2T2e
���22 K2S2e

���12 � � � � � K2T2e
���22

�
�
�

�
�
�

�
�
�
�

KnTne
���2n KnTne

���2n � � �KnSne
���1n � �

1CCCCCCA = 0:

(18)
This equation is more complex than in the case of a single delay, so we
discuss two special cases.

4.1 Symmetric agents
AssumeKi = K; Si = S; Ti = T; �

1
k = �

1 and � 2k = �
2 for k = 1; 2; :::; n.

Similarly to the derivation of equations (6) and (7), we can see that there
are two possibilities. Either

KSe���
1 � ��KTe���2 = 0 (19)

or
KSe���

1 � �+ (n� 1)KTe���2 = 0: (20)

For these equations we follow the procedure o¤ered by Gu et al. (2005).
Consider �rst equation (19), which can be rewritten as

1 + a1(�)e
���1 + a2(�)e

���2 = 0

with

a1(�) = �
KS

�
and a2(�) =

KT

�
:

So

a1(i!) = i
KS

!
and a2(i!) = �i

KT

!
;

ja1(i!)j = �
KS

!
and ja2(i!)j = �

KT

!
;

and
arg (a1(i!)) =

3�

2
and arg (a2(i!)) =

�

2
:

Then the range of ! de�ned by relations

ja1(i!)j+ ja2(i!)j � 1

8



and
�1 � ja1(i!)j � ja2(i!)j � 1

implies in our case that

K(T � S) � ! � �K(S + T ) (21)

since S < T . De�ne

�1 = cos
�1

 
1 + ja1(i!)j2 � ja2(i!)j2

2 ja1(i!)j

!
= cos�1

�
!2 +K2S2 �K2T 2

�2KS!

�
(22)

and

�2 = cos
�1

 
1 + ja2(i!)j2 � ja1(i!)j2

2 ja2(i!)j

!
= cos�1

�
!2 +K2T 2 �K2S2

�2KT!

�
(23)

and the points on the stability switching curves are given as

� 1�n (!) =
1

!

�
3�

2
+ (2n� 1)� � �1

�
(24)

and
� 2�m (!) =

1

!

��
2
+ (2m� 1)� � �2

�
: (25)

The stability switching curves are formed by the set of points (� 1�n (!); �
2�
m (!))

when ! runs through interval de�ned in (21), which are illustrated in
Figure 1 with m = 0; 1; 2; 3 and n = 1; 2; 3. The red segments are
the points (� 1+n (!); �

2�
m (!)) and the blue segments represent the points

(� 1�n (!); �
2+
m (!)).

9



Figure 1. Stability switching
curves with

K = 0:8; S = �3=2 and T = �1

For determing the directions of stability switching we �rst compute
quantities,

X1 = a1(i!)e
�i!�1 = i

KS

!

�
cos!� 1 � i sin!� 1

�
and

X2 = a2(i!)e
�i!�2 = �iKT

!

�
cos!� 2 � i sin!� 2

�
from which

R1 = Re (X1) =
KS

!
sin!� 1;

R2 = Re (X2) = �
KT

!
sin!� 2;

I1 = Im (X1) =
KS

!
cos!� 1;

I2 = Im (X2) = �
KT

!
cos!� 2

and compute

R2I1 �R1I2= �
K2ST

!2
(sin!� 2 cos!� 1 � cos!� 2 sin!� 1)

= �K
2ST

!2
sin (! (� 2 � � 1)) ;

(26)
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the sign of which is the same as that of sin (! (� 1 � � 2)) : From Gu et al.
(2005, Proposition 6.1) or Matsumoto and Szidarovszky (2018, Theorem
A.2), we can apply the following result. Let ! be a point in interval
(21) and a point (� 1�n (!); �

2�
m (!)) on the stability switching curve and

assume we are moving along the curve in increasing direction of !. Then
as (� 1; � 2) moves from the region on the right to the region on the left of
the corresponding curve, then a pair of eigenvalues cross the imaginary
axis to the right if R2I1 � R1I2 > 0, otherwise the crossing is in the
opposite direction.
The case of equation (20) is very similar, T has to be replaced

by �(n � 1)T in (22) and (23), furthermore arg (a1(i!)) = 3�=2 but
arg (a2(i!)) becomes 3�=2. In addition, ja2(i!)j becomes �(n�1)TK=!
and (21) changes to

K j(n� 1)T � Sj � ! � �K [S + (n� 1)T ] :

4.2 General case of n = 2
In case of n = 2, (18) implies that

'(�) =
�
K1S1e

���11 � �
��
K2S2e

���12 � �
�
�K1K2T1T2e

��(�21+�22) = 0:

(27)
This equation has four delayed terms with � 11; �

1
2; �

1
1 + �

1
2 and �

2
1 + �

2
2

which is analytically untractable. Theorefore we make the simplifying
assumption that

� 11 = �
1
2 = �

2
1 = �

2
2 = � :

Then

'(�) = �2 � (K1S1 +K2S2)�e
��� +K1K2 (S1S2 � T1T2) e�2�� = 0:

Multiplying both sides by e�� to get

�2e�� � (K1S1 +K2S2)�+K1K2 (S1S2 � T1T2) e��� = 0: (28)

Without delay

�2 � (K1S1 +K2S2)�+K1K2 (S1S2 � T1T2) = 0:

Since Si < Ti � 0; S1S2 > T1T2 so all coe¢ cients are positive, equi-
librium is stable. Stability switching occurs when � = i!; then (28)
becomes

�!2 (cos!� + i sin!�)�i! (K1S1 +K2S2)+K1K2 (S1S2 � T1T2) (cos!� � i sin!�) = 0:

11



Separating the real and imigainary parts,�
�!2 +K1K2 (S1S2 � T1T2)

�
cos!� = 0 (29)

and �
�!2 �K1K2 (S1S2 � T1T2)

�
sin!� = ! (K1S1 +K2S2) : (30)

Consider �rst equation (29), where we have two possibilities, �!2 +
K1K2 (S1S2 � T1T2) = 0 and cos!� = 0:

Case (i)

�!2 +K1K2 (S1S2 � T1T2) = 0 so

! =
p
K1K2 (S1S2 � T1T2)

where the expression under the square root is positive. Then from (30)

�2!2 sin!� = ! (K1S1 +K2S2) :

Since ! 6= 0;
�2! sin!� = K1S1 +K2S2:

We can easilty show that there is no solution, since

j�2!j < jK1S1 +K2S2j ;

which follows from the following:

4!2 � (K1S1 +K2S2)
2

= 4K1K2 (S1S2 � T1T2)�K2
1S

2
1 � 2K1K2S1S2 �K2

2S
2
2

= �4K1K2T1T2 � (K1S1 �K2S2)
2 < 0:

Case (ii)

cos!� = 0; and from (30), sin!� > 0; necessarily sin!� = 1: Then
from (30),

!2 + (K1S1 +K2S2)! +K1K2 (S1S2 � T1T2) = 0: (31)

The discriminant is

� = (K1S1 �K2S2)
2 + 4K1K2T1T2 > 0: (32)

12



Furthermore,

(K1S1 +K2S2)
2 �� = 4K1K2 (S1S2 � T1T2) > 0: (33)

Therefore there are two positive solutions,

!� =
� (K1S1 +K2S2)�

p
�

2
with !+ > !�: (34)

The critical values for � are

��m =
1

!�

��
2
+ 2m�

�
for m = 0; 1; 2; ::: (35)

The direction of the stability switches can be obtained by considering �
as function of � ; � = �(�); and impilicitly di¤erentiating equation (28)
with respect to � :

2��0e��+�2 (�0� + �) e���(K1S1 +K2S2)�
0�K1K2 (S1S2 � T1T2) e��� (�0� + �) = 0.

The multiplier of �0 equals

� (K1S1 +K2S2) + (2�+ �
2�)e�t �K1K2 (S1S2 � T1T2) �e���

and the constant term is�
�2e�� �K1K2 (S1S2 � T1T2) e���

�
�:

So
1

�0
=

K1S1 +K2S2 � 2�e���
�2e�� �K1K2 (S1S2 � T1T2) e���

�
�
� �
�
: (36)

At � = i!;
�� = i!� = i

��
2
+ 2m�

�
so e�� = i and e��� = �i: As the real part is concerned, only the �rst
term counts, the numerator of which becomes

K1S1 +K2S2 � 2i!(i) = K1S1 +K2S2 + 2! (37)

the denominator is

�i!3i�K1K2 (S1S2 � T1T2) (�i)i! = !
�
!2 �K1K2 (S1S2 � T1T2)

�
:

(38)
Both are real values. Notice �rst that

K1S1 +K2S2 + 2!� = �
p
�

13



which is positive if ! = !+ and negative if ! = !�.
Similarly, (37) has the same sign as

!2 �K1K2 (S1S2 � T1T2) =
p
�

2

�
� (K1S1 +K2S2) +

p
�
�

where !2 from (34) is substituted to get the �nal form. Using (33), we
see that this is positive at !+ and negative at !�. Hence Re(�

0) > 0 at
all critical values. Hence the equilibrium is locally asymptotically stable
for � < �+0 (the smalles critical value), at � = �+0 stability is lost via
Hopf bifurcation, and stability cannot be regained later.

5 Conclusions

In this paper dynamic contest games were introduced and examined
when the assessment of the value of the prize by each agent depends on
the total e¤ort of all agents. First delays are assumed in the total e¤ort
of the competitors of each agent, then a one-delay model is obtained.
By introducing additional delays in the �rms�own e¤orts a two-delay
model is obtained in the cases of symmetric �rms and the 2-agent cases.
The stability threshold for the one-delay case and the stability switching
curves for the two-delay case are analytically determined. For analytic
simplicity simpli�ed models were mathematically investigated. In our
further studies we will consider ways to relax these conditions to reach
more realistic models and stability results.
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