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Abstract 
This study theoretically and experimentally explores asymmetric volunteers’ dilemma 
(VOD) games where costs for volunteering is different among players. Diekmann (1993) 
conjectures that an S-equilibrium, in which a player with less costs contributes, is more 
likely to be played if it is risk dominant. We re-examined this hypothesis experimentally, 
as well as via Diekmann’s data, to find that even though an S-equilibrium is risk dominant, 
it does not necessarily hold. Conducting an econometric comparison among models 
including inequality aversion, level-k, and quantal response equilibrium (QRE), we find 
that the QRE model fits the data best.   
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1. Introduction 
Natural disasters often devastate a country and ravage the lives of many. Still fresh in our 
memories are the huge earthquake and the resulting tsunami that hit the North-eastern 
part of Japan in 2011, as well as the ensuing tragic accident of the Fukushima Daiichi 
Nuclear Power Plant. The associated social and economic losses were huge, and the 
recovery from them has taken a long time. Such incidences make us acutely aware of the 
importance of volunteers, as we hear many stories about people who help others even at 
the risk of their own lives. However, the question of what kind of people volunteer and 
what their motivations still remain unanswered. 

Given that, by definition, no monetary rewards are given to volunteers, 
pecuniary incentives do not explain why they are so engaged. Sympathy or empathy is a 
strong candidate to serve as an explanans. If someone was hurt, we would feel, more or 
less, uneasy; we will be urged to take some action and gain relief if the victim is, 
ultimately, saved. However, this explanation is also not conclusive. Since volunteering is 
a costly action, even empathetic people might think of free-riding on others, anticipating 
that someone else may do the job.  

A famous parable in the New Testament best illustrates this complicated 
situation (The Parable of the Good Samaritan, Luke 10:25-37). Aware of an injured 
fellow citizen who fell on the street, a priest and a Levite passed him by. Then a Samaritan, 
who is, of course, a stranger, took action and saved him. The priest and the Levite, while 
feeling uncomfortable, ultimately, free-rode on the Samaritan’s helping behavior. This 
story is even impressive given that the Israelites and the Samaritans were in an adversarial 
relationship in those days. This meant that helping an Israelite was costlier for the 
Samaritan not only in monetary terms but also politically and psychologically. Even today, 
we see that many people help victims from very distant areas rather than nearby ones, and 
it is often the case that they themselves were once victims in other disasters. How can we 
understand such a phenomenon?  

This study attempts to address this issue in terms of game theory as well as 
behavioral game theory1. The situations cited above are well captured by a game called 

                                         
1 Some studies deals with essentially the same problem outside of game theory. Darly and Latané 
(1968) examine the helping behavior of people witnessing an accident or crime, as best exemplified 
by the murder case of Kitty Genovese. It is said that her life could have been saved if only one of the 
bystanders had paid a small amount of cost (such as making an emergency call to the police). A large 
amount of evidence has also been accumulated by political scientists and psychologists to investigate 
factors affecting the “bystander effect” and the effect of the group size on the tendency to cooperate 
or contribute in similar situations (Latané and Nida, 1981). 
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Volunteer’s Dilemma (VOD) game, which was first formulated by Diekmann (1985) to 
elucidate “social dilemmas” or “social traps,” which are broader than those covered by 
the prisoner’s dilemma.  

While symmetric versions of VOD conduce to the elucidation of such 
interesting issues like the so-called “bystander effect,”2 asymmetric versions of VOD are 
useful for exploring the issue of who most likely contribute (help) in the aforementioned 
situations. Diekmann (1993) introduced asymmetry in terms of costs of contribution 
among players and showed, theoretically, that in the completely mixed strategy 
equilibrium, a player with more costs volunteers more often (the behavior of the good 
Samaritan is, thus, explained!). 

While this theoretical prediction seems to support some observations, we are 
still puzzled with this conclusion. For example, if we consider a bystander’s rescue 
decisions in emergencies, is it not the case that the one with the least cost will help the 
victim? This intuition, naturally, leads us to further investigations. With the same 
motivation of study, Diekmann (1993) and Healy and Pate (2009) conducted laboratory 
experiments and confirmed that the converse of the prediction by the mixed strategy 
equilibrium was really the case; a player with less cost volunteers more often. But, how 
can one provide a theoretical justification for such experimental findings? Diekmann 
(1993) suggested in a footnote an explanation based on risk dominance proposed by 
Harsanyi and Selten (1988), but his ‘analysis’ seems to be incomplete. 

Thus, we first provide a rigorous theoretical analysis of the game based on risk 
dominance. We confirm Diekmann (1993)’s above-mentioned conjecture and give some 
characterizations of equilibria in a more general setting by utilizing an extension of the 
risk dominance concept to general n-person games (Güth 1990). Then, we analyze the 
game with other-regarding preference and bounded rationality. We use inequality 
aversion (Fehr and Schmidt, 1999), level-k model (Stahl and Wilson 1995; Crawford et 
al. 2013), and Quantal response equilibrium (QRE: McKelvey and Palfrey 1995) as 
representative models. 

Based on these analyses, S-equilibrium (where a player with less costs 
volunteers) is shown to be risk dominant for any treatment of Diekmann (1993)’s. 
However, depending on parameter values of the games (QRE’s prediction depends on its 
noise parameter), the inequality aversion and the level-k model give different predictions 
than risk dominance. Thus, if Diekmann (1993)’s conjecture were right, as S-equilibrium 
was risk dominant in every treatment, we would observe S-equilibrium more frequently 

                                         
2 Kawagoe et al. (2018) characterize all the symmetric equilibria of this class of games. 
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in his data. Our analysis showed that predictions by both mixed strategy and risk 
dominance were rejected. Other models captured important characteristics of the results, 
but no model explained all the data consistently. Finally, we, then, conducted an 
econometric horse race to determine which model better fits the data. The estimation 
results showed that QRE best explains Diekmann (1993)’s data. Thus, Diekmann 
(1993)’s conjecture that a player with less cost volunteers more often was falsified. 

We, then, extended his experiment by adding a treatment to differentiate the 
prediction by inequality aversion from other models. We also added a more complicated 
three-person version of the game. Diekmann (1993)’s conjecture was also falsified in our 
experiment, and it was confirmed, again, that QRE best fits the data. Thus, Diekmann 
(1993)’s conjecture is not supported by his and our results. 

Of course, this does not mean free-riding among volunteering players with less 
cost is dominant in the data. Rather, in some treatments, the majority of players with less 
cost volunteer more often. What we show, empirically, is that the condition that S-
equilibrium is risk dominant is not a source of volunteering by players with less cost. 
Inequality aversion also fails. No single theory can explain the data. Roughly speaking, 
the fact that QRE was the best fit means that the subject behaviors might be a combination 
of mixed strategy equilibrium and random play, while its proportion depends on the 
parameters of the game. However, the understanding of volunteering decision by players 
with less cost needs a more careful scrutiny. 

The organization of the study is as follows. In the next section, we formulate 
the VOD game with an asymmetric cost structure and present several candidate models 
that may explain the behavior of subjects in the experiments. This part includes extensive 
mathematical characterizations of the models with some new results. Section 3 re-
examines the data reported by Diekmann (1993) with those models. In Section 4, we turn 
to the analyses of our experiments. We conclude in the final section. 
 
2. Model 
In the VOD game, if at least one of n players volunteers, certain public goods are provided. 
The benefit from the public goods for player i is denoted as 𝑉" , and the cost of 
volunteering for player i is 𝐾". When public goods are not provided, the payoff for player 
i is 𝐿". Assume 𝑉" − 𝐿" > 𝐾" > 0 for all i. Thus, without any strategic considerations, 
all players have an incentive to volunteer. Each player chooses between volunteering (C) 
and not volunteering (N). Obviously, there are multiple pure strategy Nash equilibria 
where one and only one player chooses C, and the rest of the players choose N. Note that 
a strategy profile where all players choose 𝑁 is not a Nash equilibrium.  
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2.1 Mixed strategy equilibria 
Next, we consider the mixed strategy equilibria of the game. The probability that player 
𝑖 chooses C is denoted by 𝑝",	and the probability of choosing N is denoted by 𝑞" = 1 −
𝑝". Then, the expected payoff of choosing C for player 𝑖 is 

𝐸"(𝐶) = 𝑉" − 𝐾", 
while the expected payoff of choosing N is 

𝐸"(𝑁) = 𝑉" 41 −5𝑞6
67"

8 + 𝐿"5𝑞6
67"

. 

If player 𝑖 chooses C with a probability of one, then 𝐸6(𝑁) > 𝐸6(𝐶) for any 
other player 𝑗 ≠ 𝑖 by 𝐾6 > 0. Furthermore, if all the other players than 𝑖 choose N 
with a probability of one, then 𝐸"(𝐶) > 𝐸"(𝑁) by 𝑉" − 𝐿" > 𝐾". Therefore, in a mixed 
strategy equilibrium, 𝑞" = 0 if and only if 𝑞6 = 1 for any 𝑗 ≠ 𝑖. This implies that if a 
player takes a completely mixed strategy (mixed strategy with full support) in a mixed 
strategy equilibrium, then there are no other players who choose C with a probability of 
one in this equilibrium. 

Thus, the volunteer’s dilemma game may have three kinds of mixed strategy 
equilibria. The first is that only one player chooses C and the rest of players choose N 
with a probability of one (that is, a pure strategy Nash equilibrium). The second is that 
some players (two or more players) take completely mixed strategies, and the rest of the 
players choose N with a probability of one. The third is the completely mixed strategy 
equilibrium (mixed strategy equilibrium where all players take completely mixed 
strategies).  

Diekmann (1993) only considers the first and the last types of mixed strategy 
equilibrium and shows that the completely mixed strategy equilibrium always exists in a 
symmetric case (𝑉" = 𝑉, 𝐾" = 𝐾, and 𝐿" = 0 for any 𝑖 = 1,2, . . 𝑛) and in the case with 
𝑛 = 2. However, the completely mixed strategy equilibrium does not always exist in 
more general cases. Hence, we identify the completely mixed strategies of the players in 
a mixed strategy equilibrium (which is not necessary completely mixed). 

Given any mixed strategy profile 𝜃, let 𝐶(𝜃) be a set of players who do not 
choose 𝑁 with a probability of one in 𝜃. Then, we have the following proposition.  
 
Proposition 1. Suppose that player 𝑖  takes a completely mixed strategy in a mixed 
strategy equilibrium 𝜃 (𝑖 ∈ 𝐶(𝜃)). Then  
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𝑞" = A
𝑉" − 𝐿"
𝐾"

B C 5 D
𝐾6

𝑉6 − 𝐿6
E

6∈F(G)

H

I
#F(G)KI

	. (1) 

where #𝐶(𝜃) is the number of 𝐶(𝜃). 
 
Proof. In Appendix A. 
 

It follows from this proposition that the completely mixed strategy equilibrium 
is unique if it exists, and the strategies of the players are given by equation (1) if 𝐶(𝜃) 
is the set of all players. 

Hereafter, we consider a special case in which there are only two different 
values for benefit 𝑉"  and cost 𝐾" , and characterize the set of the mixed strategy 
equilibria. Following Diekmann (1993), we call the players with low cost “strong players” 
(hereafter S-player) and the players with high cost “weak players” (hereafter W-player). 
That is, the cost for an S-player 𝐾L is strictly smaller than that for a W-player 𝐾M (𝐾L <
𝐾M). Here, let 𝑉L and 𝑉M be the benefit for an S-player and a W-player, respectively. 
𝐿L and 𝐿M are defined similarly. We also, then, assume that these parameters satisfy the 
inequality 

𝑉L − 𝐿L
𝐾L

>
𝑉M − 𝐿M
𝐾M

,	 (2) 

which implies that the marginal per capita cost for volunteering for an S-player is less 
than the one for a W-player. Diekmann (1993) considers the case where 𝐾L < 𝐾M , 
0 < 𝑉M ≤ 𝑉L , and 𝐿L = 𝐿M = 0, which satisfies condition (2). Moreover, as for the 
number of S-players, m, only the case of m = 1 is considered. We generalize those 
analyses to an arbitrary 𝑚 ≤ 𝑛. 

Note that Proposition 1 implies that if two players are of the same type, and 
they take completely mixed strategies in equilibrium, then their probabilities of 
volunteering are the same. Furthermore, by condition (2), we have the following. 
 
Corollary 1. Suppose that an S-player 𝑖  and a W-player 𝑗  take completely mixed 
strategies in a mixed strategy equilibrium, then the probability that S-player 𝑖  will 
volunteer is less than that of a W-player 𝑗; that is, 𝑞" > 𝑞6. 

 
As mentioned above, Diekmann (1993) shows that the completely mixed 

strategy equilibrium always exists in a symmetric case (𝑚 = 𝑛 or 𝑚 = 0) and in the 
case with 𝑛 = 2. The following proposition gives the necessary and sufficient condition 
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for the existence of the completely mixed strategy equilibrium when	𝑛 ≥ 2 and 1 ≤
𝑚 ≤ 𝑛. 
 
Proposition 2. For any 𝑛 ≥ 2 and 1 ≤ 𝑚 ≤ 𝑛, the volunteer’s dilemma game has the 
completely mixed strategy equilibrium if and only if 

A
𝑉M − 𝐿M
𝐾M

B
RKS

> A
𝑉L − 𝐿L
𝐾L

B
RKSKI

	. (3) 

 
Proof. In Appendix A. 
  

For any 𝑛 ≥ 2  and 𝑚 ≤ 𝑛 , let Θ(𝑛,𝑚)  be the set of mixed strategy 
equilibria of the VOD game, where the number of players is 𝑛 and the number of S-
players is 𝑚. By the above arguments, we can easily identify all mixed strategy profiles 
in Θ(2,1) (and also Θ(2,2) and Θ(2,0)), which has only two kinds of Nash equilibria. 
One is that one player chooses C and the other player chooses N with a probability of one, 
and the other is the completely mixed strategy equilibrium in which the strategies of the 
players are given by (1) with #𝐶(𝜃) = 2. By the following proposition, we can also 
identify Θ(𝑛,𝑚) where 𝑛 > 2, inductively. 
 
Proposition 3. Suppose that 𝜃 ∈ 𝛩(𝑛,𝑚) is the completely mixed strategy equilibrium, 
and 𝑞L(𝑛,𝑚) and 𝑞M(𝑛,𝑚) are the probabilities of choosing 𝑁 by an S-player and a 
W-player in 𝜃, respectively. For any two non-negative integers, 𝑙 and ℎ, consider the 
volunteer’s dilemma game where the number of players is 𝑛 + 𝑙 + ℎ, and the number of 
S-players is 𝑚 + 𝑙. In this game, a mixed strategy profile 𝜃′such that 𝑙 S-players and 
ℎ W-players are choosing 𝑁 with a probability of one, 𝑚 S-players take 𝑞L(𝑛,𝑚), 
and 𝑛 −𝑚 W-players take 𝑞M(𝑛,𝑚) is a mixed strategy equilibrium; that is, 𝜃′ ∈
𝛩(𝑛 + 𝑙 + ℎ,𝑚 + 𝑙). 
 
Proof. In Appendix A. 
  

For example, Θ(3,1)  consists of two or three kinds of mixed strategy 
equilibria. First is that a player chooses C and the other two players choose N with a 
probability of one. Second is that a W- (an S-) player chooses N with a probability of one, 
and the other two players take completely mixed strategies in the completely mixed 
strategy equilibrium in Θ(2,1)  (Θ(2,0) ). Third is the completely mixed strategy 



8 
 
 

equilibrium in which two W-players take 𝑞M(3,1) and the S-player takes 𝑞L(3,1) if (3) 
is satisfied for 𝑛 = 3 and 𝑚 = 1. 

We now focus on the completely mixed strategy equilibrium. As in the above 
proposition, let 𝑞L(𝑛,𝑚) and 𝑞M(𝑛,𝑚) be the probabilities of choosing 𝑁 of S-player 
and W-player in the completely mixed strategy equilibrium in Θ(𝑛,𝑚), respectively. The 
following proposition states how these probabilities change with the group size and the 
number of S-players in it. Goeree et al. (2017) explored the relationship between group 
size and volunteering, where the Nash equilibrium predicts the probability of volunteering 
to be a decreasing function of group size and that the probability of a no-volunteer 
outcome increases with the number of players. The following propositions considers their 
results in more detail. Thus, it shows that the probability of a volunteer outcome increases 
with the number of S-players, and the probability of a no-volunteer outcome increases 
with the number of W-players.  
 
Proposition 4. Suppose that 𝛩(𝑛,𝑚), 𝛩(𝑛 + 1,𝑚), and 𝛩(𝑛 + 1,𝑚 + 1) have the 
completely mixed strategy equilibria. Then  
  (i) 𝑞L(𝑛 + 1,𝑚) > 𝑞L(𝑛,𝑚),  
  (ii) 𝑞M(𝑛 + 1,𝑚) > 𝑞M(𝑛,𝑚),  
  (iii) 𝑞L(𝑛 + 1,𝑚) > 𝑞L(𝑛 + 1,𝑚 + 1), and  
  (iv) 𝑞M(𝑛 + 1,𝑚) > 𝑞M(𝑛 + 1,𝑚 + 1). 
 
Proof. In Appendix A. 
 
2.2 Equilibrium selection based on risk dominance 
In the volunteer’s dilemma, there are two kinds of pure strategy Nash equilibria: S-
equilibrium where only one of the S-players chooses C and W-equilibrium where only 
one of the W-players chooses C. For the case of m = 1, Diekmann (1993) suggests that S-
equilibrium is only a risk dominant equilibrium. Suppose, for example, m = 1 and n = 2. 
Then, the game becomes as follows (Table 1). 
 

Table 1. Asymmetric volunteer’s dilemma when m = 1 and n = 2 
Weak 

Strong  

C N 

C 𝑉L − 𝐾L, 𝑉M −𝐾M 𝑉L − 𝐾L, 𝑉M 

N 𝑉L, 𝑉M − 𝐾M 𝐿L, 𝐿M 
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In this game, there are two pure strategy Nash equilibria, (C, N) and (N, C), since 𝑉" −
𝐿" > 𝐾" for all i. If (C, N) risk dominates (N, C), the product of deviation loss for (C, N) 
is greater than that for (N, C) (Harsanyi and Selten, 1988). This implies 

(𝑉L − 𝐿L − 𝐾L)𝐾M > 𝐾L(𝑉M − 𝐿M − 𝐾M). 
Note that this condition is equivalent to condition (2). Thus, we have the following 
proposition. 
 
Proposition 5. In the case of 𝑛 = 2 and 𝑚 = 1, S-equilibrium is risk dominant. 
 

We now consider a risk dominant equilibrium in the case of many players. Here 
we consider Güth (1990)’s notion of unilateral deviation stability (UDS). UDS satisfies 
Harsanyi and Selten’s axioms for characterizing risk dominance.3 Suppose that an 𝑛-
person game has several strict pure Nash equilibria. Take two of them, 𝑠 = (𝑠I,⋯ , 𝑠R) 
and 𝑡 = (𝑡I,⋯ , 𝑡R) . Let M(𝑠, 𝑡)  be a set of players whose equilibrium strategy is 
different in 𝑠 and 𝑡. For players 𝑖 and 𝑗 in M(𝑠, 𝑡), construct a comparison game 
𝐺"6(𝑠, 𝑡), where the set of strategies is 𝑣 = (𝑠_, 𝑡_) for 	𝑘 = 	𝑖, 𝑗, and the payoff function 
is also restricted by this set of strategies (players other than 𝑖  and 𝑗  use the same 
strategies in both 𝑠  and 𝑡  by the assumption of M(𝑠, 𝑡) .). Thus, 𝐺"6(𝑠, 𝑡)  can be 
represented by the following game in Table 2. 
 

Table 2. Comparison game 𝐺"6(𝑠, 𝑡) 
 𝒔𝒋 𝒕𝒋 

𝒔𝒊 𝜋"(𝑠), 𝜋6(𝑠) 𝜋"f𝑠", 𝑡6g, 𝜋6(𝑠", 𝑡6) 

𝒕𝒊 𝜋"f𝑡", 𝑠6g, 𝜋6(𝑡", 𝑠6) 𝜋"(𝑡), 𝜋6(𝑡) 

 
The relative strength of equilibrium 𝑠 against 𝑡, 𝑅"6(𝑠, 𝑡), is defined as follows. 

𝑅"6(𝑠, 𝑡) =
i𝜋6(𝑠) − 𝜋6(𝑠", 𝑡6)ji𝜋"(𝑠) − 𝜋"(𝑡", 𝑠6)j
i𝜋6(𝑡) − 𝜋6(𝑡", 𝑠6)ji𝜋"(𝑡) − 𝜋"(𝑠", 𝑡6)j

 

Thus, the product of losses resulting from the unilateral deviation of players 𝑖 and 𝑗 
from equilibrium 𝑠 and 𝑡 is compared. Finally, the aggregated value of 𝑅"6(𝑠, 𝑡) for 
any pair of players in M(s, t) is given by 

                                         
3 The notion of p-dominance, introduced by Morris, Rob, and Shin (1995), generalizes the notion of 
risk dominance in Harsanyi and Selten (1988) differently than Güth (1990); that is, 1/2-dominance 
coincides with the latter in symmetric 2x2 games. Peski (2010), also, proposes a related concept for 
n-person symmetric games based on 1/2-dominance. However, the game we study is not symmetric; 
we did not use these concepts. 
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𝑅∗(𝑠, 𝑡) = 5 𝑅"6(𝑠, 𝑡)
",6∈n(o,p)

"q6

 

Then, if 𝑅∗(𝑠, 𝑡) > 1, equilibrium 𝑠  risk dominates 𝑡 . With this notion, we have a 
generalization of Proposition 5. 
 
Proposition 5’. In the case of 𝑛 ≥ 2 and 1 ≤ 𝑚 < 𝑛, S-equilibrium risk dominates W-
equilibrium in the sense of unilateral deviation stability. 
 
Proof. In Appendix A. 
 
2.3 Alternative theories 
In what follows, we also examine the explanatory power of alternative theories that take 
into account the possibility that agents have a non-selfish motivation or act irrationally. 
In fact, we will see that the explanatory power of both mixed strategy equilibria and risk 
dominance is not satisfactory concerning the explanation of the experimental data, 
Diekmann (1993)’s and ours. Among many alternative models so far proposed for 
defining non-selfish motivation, we choose inequality aversion (Fehr and Schmidt, 1999) 
as the most appropriate in the present context. As for irrational behavior, we investigate 
the level-k model (Stahl and Wilson 1995; Crawford et al. 2013) and the Quantal response 
equilibrium (QRE: McKelvey and Palfrey 1995), which are both simple, but known to 
have been very successful in the experimental economics literature. 
 
A. Inequity aversion 
The concept of inequity aversion (resistance to inequitable outcomes) in explaining 
experimental regularities was developed in Fehr and Schmidt (1999).4 They postulated 
that people make decisions to minimize inequity in outcomes. Specifically, consider a 
setting where player 𝑖 (𝑖 = 1,2,⋯ , 𝑛) receives a pecuniary payoff 𝑥". Then the utility of 
an inequity averse player 𝑖 for the allocation (𝑥I,𝑥s,… , 𝑥R) is given by 

𝑈"f𝑥I,𝑥s,…𝑥Rg = 𝑥" −
𝛼

𝑛 − 1w𝑚𝑎𝑥i𝑥6 − 𝑥", 0j
67"

−
𝛽

𝑛 − 1w𝑚𝑎𝑥i𝑥" − 𝑥6, 0j
67"

, (4) 

                                         
4 Bolton and Ockenfels (2000), also, proposed a similar kind of concept. One of the distinguished 
features in Fehr and Schmidt (1999)’s model as compared to Bolton and Ockenfels (2000)’s is that it 
allows a distinction between advantageous and disadvantageous inequalities. As this feature plays a 
role in explaining our data, we adopted Fehr and Schmidt (1999)’s model. 
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where 𝛼  is player 𝑖’s disutility of having less than the others and 𝛽  is player 𝑖’s 
disutility of having more than the others. Fehr and Schmidt (1999) assume that 0 ≤ 𝛽 <
1, and 𝛽 ≤ 𝛼. 

If there is a player having the above utility function, S-equilibrium or W-
equilibrium would no longer be a Nash equilibrium, and other outcomes would be a Nash 
equilibrium depending on values of the parameters	𝛼 and 𝛽. We will list equilibrium 
conditions for each outcome later in examining Diekmann (1993)’s data. 

However, the following proposition implies that the outcome that every player 
chooses C, All-C, cannot be an equilibrium irrespective of the values of the parameters. 
 
Proposition 6. Suppose that player 𝑖 is an inequity averse player. Then player 𝑖 never 
chooses C when all other players choose C. 
 
Proof. In Appendix A. 
 
B. Level-k model 
Level-k model is a non-equilibrium model that reflects strategic thinking by boundedly 
rational players. It assumes that each player adopts a strategy that corresponds to some 
level of strategic thinking. Level-k models have so far been applied to many games, and 
have succeeded in explaining a number of anomalous behaviors found in the laboratory 
(for a survey, see Crawford et al., 2013).  

Assume that L0 player, who is the least rational among the players, chooses C 
and N with probability 1/2, respectively. In the level-k model, L𝑘 player chooses the best 
response to the actions taken by L(𝑘 − 1)  players. The outcome the level-k model 
predicts also depends on the payoff structure of the game; we will show its predictions 
later in analyzing Diekmann (1993)’s data. 
 
C. Quantal response equilibrium (QRE) 
QRE is an equilibrium concept based on boundedly rational strategic behavior, assuming 
that players play a noisy best response (McKelvey and Palfrey, 1995). For player 𝑖, the 
stochastic best response in terms of his choice probability of C is given by 
 

𝑝" =
exp	(𝜆 ∙ 𝐸"(𝐶))

exp	(𝜆 ∙ 𝐸"(𝐶)) + exp	(𝜆 ∙ 𝐸"(𝑁))
=

1
1 + exp	[𝜆 ∙ {𝐸"(𝑁) − 𝐸"(𝐶)}]

	,  
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where parameter λ ∈ [0,∞)  represents the degree of rationality such that 𝜆 = 0 
implies complete randomizing over pure strategies. QRE is a fixed point of this mapping. 
If 𝜆 = 0, then 𝑝" = 1/2 for any	𝑖, which is usually called the centroid of the simplex of 
the strategy space.  

McKelvey and Palfrey (1995) showed that for any normal-form game, (i) the 
correspondence QRE(λ) is upper hemi-continuous, (ii) the number of QREs is odd for 
generic values of λ, and, (iii) generically, the graph fλ, QRE(λ)g contains a unique 
branch which starts at the centroid and converges to a unique Nash equilibrium as λ 
approaches infinity. The limiting point of this principal branch is called limiting (logit) 
QRE. Thus, limiting QRE can serve as an equilibrium selection criterion in generic cases.  

Turocy (2005) showed that with the homotopy method (under an intuitive 
monotonicity assumption), the limiting QRE is the risk dominant equilibrium in generic 
2x2 games with two strict Nash equilibrium. 

However, the cases with more than two players may be problematic. It is easy 
to see that these games have multiple S-equilibria, depending on which S-player finally 
contribute. Thus, the principal branch of the QRE graph that starts from the centroid may 
bifurcate somewhere on the way, meaning that these cases are not generic. This actually 
happens in our case. However, in the statistical estimation that follows, the log-likelihood 
function is maximized well before the bifurcation occurs. 
 
3. Re-examination of Diekmann’s experiments 
 
3.1 The experiments 
We begin with the reexamination of Diekmann (1993)’s experiments. Diekmann (1993) 
concludes that the predictions of the risk-dominance theory accord better with his data 
than that of the mixed-strategy equilibrium. Thus, unlike the mixed strategy equilibrium 
prediction which states that a player with less cost contributes less often, an S-player in 
the experiment contributes a significantly higher proportion.  

However, once we closely consider his experimental result, it seems the 
explanatory power of the risk-dominance theory is not so high. Therefore, it is worthwhile 
to reexamine the data with econometric comparisons, including the alternative theories, 
which was not available when his research was conducted. This was explained in the 
previous section. 

His experiment consists of ten different sessions, including symmetric and 
asymmetric versions of VOD. The total of 328 subjects were recruited and allotted 
randomly into the sessions. However, as a result of the preliminary test, twenty-seven 
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subjects were excluded from the proper experiment. In what follows, we will only focus 
on the part of his experiment that concerns asymmetric VOD.  

Table 3 shows the sessions in his experiment that corresponds to asymmetric 
versions of VOD. It is important to notice that the subjects really played the game; that 
is, they were not matched with one another to play the games. Instead, subjects were 
simply asked to make a decision as a W-player or an S-player before the experiment ended. 
Each subject could participate in only one session. How the game outcome was 
determined, and, thus, how the rewards were determined, is not reported in the study. 
 

Table 3 Diekmann's experimental games (Sessions) 
Games D-1 D-2 D-3 D-4 
Sessions B D C E F G I J 
# of players 2 2 2 2 2 2 5 5 
# of S-players 1 1 1 1 1 1 1 1 
V(common) 100 100 100 100 100 100 100 100 

𝑲𝑺 40 40 10 10 20 20 40 40 
𝑲𝑾 50 50 50 50 80 80 50 50 

Subjects’ role W S W S W S W S 

# of subjects 29 30 32 39 27 32 27 27 
 

We classify each session by games and give each game a name, from D-1 to D-
4. Note that Sessions D-1 to D-3 are two-player games, and only Session D-4 is a five-
player game. In every session, the number of S-players is one. Note also that for parameter 
values 𝑉,𝐾L and 𝐾M (𝐿L = 𝐿M = 0), the condition in Proposition 5 and 5’ is satisfied; 
that is, S-equilibrium is risk dominant. 
 
3.2 Hypotheses 
Testing Diekmann’s conjecture is the primary purpose here. As S-equilibrium is risk 
dominant in all the session, it is expected that S-equilibrium should be observed most 
frequently. If it is not the case, our next task is to judge whether the mixed strategy 
equilibrium prediction is observed in his experiment.  

As shown in Corollary 1, if players adopt completely mixed strategies, the 
probability that an S-player volunteers is less than that of a W-player. However, it is 
counterintuitive because the marginal per capita cost for volunteering, 𝐾L/(𝑉L − 𝐿L), for 
an S-player is less than the one for a W-player, 𝐾M/(𝑉M − 𝐿M). 
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Thus, our first hypothesis concerns whether S-equilibrium is attained in the 
laboratory. 
 
Hypothesis 1. S-equilibrium is more frequently observed than W-equilibrium. 
 
Of course, subjects in the experiment may not always play rationally. Sometimes they 
deviate from the equilibrium either consciously or unconsciously. The former results from 
different motivations subjects have; for example, other-regarding preferences. The latter 
is due to the subjects’ misunderstanding or confusion, lack of concentration, among others. 
Thus, we cannot expect that a particular equilibrium is played with a probability of one. 
If it is the case, a mixed strategy might predict the subjects’ behavior better than the ones 
predicted by risk dominance.  

Therefore, is the subjects’ choice frequency of volunteering close to the mixed 
strategy equilibrium prediction in Section 2? This is our second hypothesis to be tested. 
 
Hypothesis 2. A subject’s choice frequency of volunteering coincides with the mixed 
strategy equilibrium. 
 
 Table 4 summarizes completely mixed strategy equilibria in Diekmann (1993)’s 
experiment.5 
 
Table 4 Symmetric mixed strategy equilibrium prediction for Diekmann's Games 

 D-1 D-2 D-3 D-4 
𝑷𝑺 0.500 0.500 0.200 0.006 

𝑷𝑾 0.600 0.900 0.800 0.205 

 

As both hypotheses are mutually inconsistent, it is an easy task to judge which 
theory, mixed strategy equilibrium and risk dominance, predicts better subject behavior 
in the experiment. 

                                         
5 Strictly speaking, there are two types of mixed strategy equilibria other than pure strategy Nash 
equilibria. The first type is completely mixed strategy equilibria in which all players choose C and N 
with non-zero probabilities. The second type is mixed strategy equilibria where some players choose 
N with a probability of 1 and the other players choose the completely mixed strategies. As the latter 
exists only in D-4 (five-person game) and our objective is to differentiate counter intuitive 
completely mixed strategy prediction from that of risk dominance, we use the former in testing 
Hypothesis 2. 
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If the date supports neither hypothesis, we have to resort to different theories 
other than rational ones such as mixed strategy equilibrium and risk dominance. Thus, to 
obtain theoretical predictions by inequity aversion for each experimental session, we 
assume that all players have the same utility function given by (4). Then, for each session, 
either S-equilibrium, W-equilibrium, or All-N can be a Nash equilibrium depending on 
the values of the parameters. The ranges of the values of 𝛼 and 𝛽 that each outcome 
will be a Nash equilibrium for each session are summarized in Table 5.  
 

Table 5. The prediction of inequality aversion 
 D-1 D-2 D-3 D-4 

S-eq. 𝛼 ≤ 3/2 
𝛼 ≤ 9, 
𝛽 ≤ 5 

𝛼 ≤ 4, 
𝛽 ≤ 4 

𝛼 ≤ 6 

W-eq. 
𝛼 ≤ 1, 
𝛽 ≤ 4/5 

𝛼 ≤ 1, 
𝛽 ≤ 1/5 

𝛼 ≤ 1, 
𝛽 ≤ 1/4 

𝛼 ≤ 8, 
𝛽 ≤ 16/5 

All-N α ≥ 1 α ≥ 9 α ≥ 4 α ≥ 6 
 
As for the level-k model, the best responses of L𝑘 S-player and L𝑘 W-player to the 
actions of L(𝑘 − 1) players up to 𝑘 = 4 are summarized in Table 6. 

Table 6. Best response of Lk to L(k-1)6 
  

D-1 D-2 D-3 D-4 

L1 
S C C C N 
W C,N C,N N N 

L2 
S 𝐶 C C C 

W N N N C 

L3 
S C C C N 
W N N N N 

L4 
S C C C C 
W N N N C 

 
We, then, econometrically measure the goodness-of-fit of these alternative theories, 
including QRE. 

                                         
6 “C, N” means that both strategies are indifferent. The identification of a higher-level 
strategy assumed that both are played with equal probability. 
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3.3 Results 
Table 7 shows Diekman’s experimental data, where n is the number of groups, 𝑛L and 
𝑛M are the number of C chosen by an S-player and a W-player, respectively, and 𝑓L and 
𝑓M  are the choice frequency of C by an S-player and a W-player respectively. If 
Diekmann’s conjecture is right, as S-equilibrium is risk dominant in every session, we 
have to observe 𝑓L > 𝑓M. In two-person game sessions (D-1, D-2 and D-3) 𝑓L > 𝑓M is 
observed  (chi squared test, p < 0.05 except Session D-3). However, in Session D-4, a 
five-player game, we have a counter fact: 𝑓L = 0.30 < 𝑓M = 0.56 (chi squared test, p 

＜0.05). Thus, we conclude that Diekmann’s conjecture is only applicable to two-person 
games. Therefore, Hypothesis 1 is only partially confirmed. 
 

Table 7. Choice Frequencies of Each Strategy 

 D-1 D-2 D-3 D-4 
𝒏𝑺 20 37 27 8 

𝒏𝑾 13 6 2 15 

𝒇𝑺 0.67 0.95 0.84 0.30 
𝒇𝑾 0.45 0.19 0.07 0.56 

 
 As for mixed strategy equilibrium, when we compare Tables 4 and 7, there are 
huge discrepancies between them. Significant differences are visible in D-2, D-3, and D-
4 Sessions. The null hypothesis stating that the choice frequency of C and the probabilities 
obtained from the completely mixed strategy equilibrium are equal is rejected for S-
players in Sessions D-2, D-3, and D-4 (binomial test, p < 0.01 for each). On the contrary, 
W-players chose C less frequently than the mixed strategy equilibrium. The null 
hypothesis stating that the choice frequency of C and the probabilities obtained from 
completely mixed strategy equilibrium are equal is rejected for W-players in Sessions D-
2, D-3, and D-4 (binomial test, p < 0.01 for each). Thus, the mixed strategy equilibrium 
prediction also fails. 7 
  Furthermore, to find the model that best fits Diekmann (1993)’s data among alternative 
theories, we will resort to an econometric horse race; that is, conducting maximum 
likelihood estimation for obtaining the parameter values such as 𝛼, 𝛽, and 𝜆 in these 
models and comparing explanatory powers among them. 

                                         
7 Note that in Session D-1, the null hypothesis is not rejected (binomial test, p < 0.05 for S-players 
and W-players). 
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Moreover, to make a comparison, we need to make the models “statistical” in 
the sense that they “contain adjustable parameters” (Sober 2008, p.79). Recall that the 
level-k analysis in Section 2.3B usually gives a “point prediction” with a probability of 
one assigned to a specific strategy. This can be problematic when we conduct an 
econometric comparison because the value of the log-likelihood of a probability of zero 
is minus infinity. Thus, we decided to introduce the same kind of noises across all the 
models, which may be simply interpreted as the errors in the implementation of the 
actions agents choose. Specifically, we assume that the choice probability of C for each 
player 𝑖 is given by the following logit form, 

𝑝" =
exp	 A𝐸𝑈"(𝐶)𝜇 B

exp		 A𝐸𝑈"(𝐶)𝜇 B + exp	 A𝐸𝑈"(𝑁)𝜇 B
, 𝑖 = 1,2,… , 𝑛, (5) 

where 𝜇 is the noise parameter, and 𝐸𝑈"(𝐶) (𝐸𝑈"(𝑁)) is the expected utility of player 
𝑖 for choosing C (𝑁). In the model of inequality aversion, player 𝑖’s expected utility is 
calculated by (4); that is, the utility of an inequality averse player. In the level-k model, 
if player 𝑖 is L𝑘 player, his expected utility is the expected payoff when all other players 
are L(𝑘 − 1) players. In our estimation of QRE, we also use 𝜇 = 1/λ for ease of 
comparison. 

In each model, the probabilities of each player’s choices are obtained in a fixed 
point of the above 𝑛 equations for any given values of parameters. Let 𝜔 be the vector 
of parameters for each model (for example, 𝜔 = (𝜇, 𝛼, 𝛽)  in inequality aversion), 
𝑝L
�6(𝜔) be the choice probability of the S-player, and 𝑛L

�6 be the number of S-players 
who chose C in game D-	𝑗. 𝑝M

�6(𝜔), 𝑛M
�6, and notations for the other sessions are defined 

similarly. Then, for each model, the maximum likelihood estimates are obtained by 
maximizing the following log likelihood function with respect to 𝜔. 

𝐿𝑜𝑔𝐿�(𝜔) =w𝑛L
�6ln	f𝑝L

�6(𝜔)g
�

6�I

+wf𝑔L
�6 − 𝑛L

�6gln	f1 − 𝑝L
�6(𝜔)g

�

6�I

+w𝑛M
�6ln	f𝑝M

�6(𝜔)g
�

6�I

+wf𝑔�
�6 − 𝑛M

�6gln	f1 − 𝑝M
�6(𝜔)g

�

6�I

, 

where 𝑔L
�6 (𝑔M

�6) is the number of the S-players (W-players) in D-	𝑗. Since the subjects 
in Diekmann (1993) were not matched with one another to play the games, 𝑔L

�6 is not 
necessarily the same as 𝑔M

�6. For example, 𝑔L�I = 30, whereas 𝑔M�I = 29. 
  

Table 8. Estimated parameters based on Diekmann (1993) 
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 Symmetric 

mixed 

strategy 

Inequality 

aversion 
Level-1 Level-2 QRE 

𝜶 ----- 0.145 ----- ----- ----- 
𝜷 ----- 0.778 ----- ----- ----- 
𝝁 ----- 30.829** 28.590** 78.750** 32.755** 

LogL -280.382 -124.989 -143.165 -157.774 -125.957 
AIC 560.764 255.978 288.330 317.548 253.915 

**, *, and + denote significance at the 1%, 5%, and 10% levels, respectively. 
 

Table 8 shows the estimated parameters.8 In Level-k, we estimate two types of 
models. In Level-1, it is assumed that all players are L1 players. Another model is Level-
2 where all players are assumed to be L2-players. The log likelihood for symmetric mixed 
strategy equilibrium (in Table 4) is also shown in this table. For model comparisons, the 
following Akaike information criterion (AIC) is used, 

AIC = −2𝐿𝑜𝑔𝐿 + 2𝑘, 
where k is the number of parameters in the model. The smaller the value of AIC, the better 
the model fit the data. 

First, note that parameters 𝛼 and 𝛽 in the inequality aversion model are not 
significant. Thus, altruistic motivation does not play a role in explaining the data. Then, 
among the rest of the models, the value of AIC for QRE is minimum. Thus, we conclude 
that QRE is the best fit model in the data reported in Diekmann (1993). This result and 
the fact that S-equilibrium is frequently observed for two-person games are mutually 
consistent because limiting QRE converges to risk dominant S-equilibrium in two-person 
games according to Turocy (2005).  
 
4. Our Experiment 
In the previous section, we showed that Diekmann’s conjecture (which states that when 
S-equilibrium is risk dominant, it is frequently observed) is only confirmed in two-
person games. However, our theoretical analysis in Section 2 proved that S-equilibrium 
was risk dominant in the five-person game in his experiment. Thus, the explanatory 
power of the risk dominance theory is not universal. Rather, QRE is the best fit model 
in his data. Interestingly, inequality aversion also fails. As Diekmann’s experiment is 
not an experiment in the exact sense, and for generalizing our findings, we need to run a 

                                         
8 Our estimation procedures follow the method described in Chapter 16 in Moffatt (2016). 
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proper experiment with more variations. Thus, we decided to conduct our own 
experiment.  
 
4.1 Design and procedures 
The experiments were conducted in November 2016 at Chuo University in Japan. The 
subjects were undergraduates of the university and were recruited via a university e-mail 
list. Most of them were not from the Economics Department; only a few knew of game 
theory, and none had previously participated in any experiment. 

The games we used in the experiment were two-person and three-person 
Volunteer’s dilemma games. In the two-person game, one player was an S-player, and 
the other was a W-player. In the three-person game, we had two variations: In one, there 
were one S-player and two W-players; In the other, there were two S-players and one W-
player. We call the two-person game session as Session A, the first variation of the three-
person game session as Session B, and the second variation of the three-person game 
session as Session C. 

In every session, 𝐿L = 𝐿M = 0, and the cost for volunteering is common for 
players of the same type; that is, 𝐾L = 200 and 𝐾M = 400. There were three sessions 
for each of two-person and three-person games, which have different pair of benefits (for 
S- and W-players) from the public goods. Note that the condition (2) assumed in the 
model in Section 2 is always satisfied with these parameter values. Thus, S-equilibrium 
is always risk dominant. Table 9 summarizes the details of each Session. 

The experiments were conducted manually. Each subject was randomly 
assigned to a seat in the room. There was sufficient physical distance between seats to 
prevent eye contact, and no oral communication was allowed among the subjects. The 
experimental instructions were distributed, and the experimenter read them aloud in front 
of the subjects. 
 

Table 9. Summary of experimental sessions 
Session A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 

# of players 2 2 2 3 3 3 3 3 3 

# of S-player 1 1 1 1 1 1 2 2 2 

𝑽𝑺 600 600 350 1000 1000 600 1000 1000 600 

𝑽𝑾 1000 600 600 1800 1000 1000 1800 1000 1000 
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Some subjects played the two-person game first and, then, without knowing the 
results, played three-person game. The others played the three-person game first and, then, 
the two-person game. Each game was played only once in each session.  

A total of 30 subjects participated in each two-person game session, forming 15 groups. 
A total of 36 subjects participated in each three-person game with one S-player session, 
and 12 groups were created. For the three-person game with two S-players session, the 
number of participants differs in each session due to no-show subjects: 13 groups in two 
sessions and 10 groups in one session. 

At the end of the experiment, the total payoffs each participant earned in both 
games was paid in cash. The conversion rate was one-to-one: each point earned was 
exchanged for JPY 1 at the end of the experiments. No participation fee was paid to each 
subject. For the one-hour experiment, the average reward was around JPY1,276 
(approximately 10 US dollars at the time). Details of the experimental procedure and 
instructions are given in Appendix B. 

Table 10 summarizes the type-1 symmetric mixed strategy equilibrium 
predictions in our experiment, where the same type of players choose C with the same 
probability. 

 
Table 10. Symmetric mixed strategy equilibrium prediction in the experiment. 

Eq. Session A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 

1 𝑝L 0.600 0.333 0.333 0.503 0.106 0.307 0.529 0.368 0.368 

 𝑝M 0.667 0.667 0.429 0.553 0.553 0.423 0.576 0.684 0.473 

2 𝑝L --- --- --- 0.000 0.000 0.000 0.800 0.800 0.667 

 𝑝M --- --- --- 0.778 0.600 0.600 0.000 0.000 0.000 

 
4.2 Results 
Table 11 summarizes our experimental data, where n is the number of groups, 𝑛L and 
𝑛M are the number of C chosen by an S-player and a W-player, respectively, and 𝑓L and 
𝑓M are the choice frequency of C by an S-player and a W-player, respectively.9 Note 
that in Sessions B-1, B-2, and B-3, there are one S-player and two W-players in a group, 
and that in Sessions C-1, C-2, and C-3, there are two S-players and one W-player in a 
group. 
 
 

                                         
9 Raw data is given in Appendix B. 
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Table 11. Choice frequencies of each strategy. 
Session A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 

𝒏 15 15 15 12 12 12 13 13 10 

𝒏𝑺 12 13 5 4 9 4 13 14 9 

𝒏𝑾 6 2 7 13 9 11 8 3 5 

𝒇𝑺 0.800 0.867 0.333 0.333 0.750 0.333 0.500 0.538 0.450 

𝒇𝑾 0.400 0.133 0.467 0.542 0.375 0.458 0.615 0.231 0.500 

 
Figure 1 shows the difference between the probabilities obtained from the completely 
mixed strategy equilibrium and the choice frequencies. In most Sessions, S-players chose 
C more frequently than the mixed strategy equilibrium. Significant differences are visible 
in Sessions A-2 and B-2, and, in fact, the null hypothesis which states that the choice 
frequency of C and the probabilities obtained from the completely mixed strategy 
equilibrium are equal is rejected for S-players in Sessions A-2 and B-2 (binomial test, p 
< 0.01 for each).  

Moreover, S-players chose C most often in the second treatment in every 
Session (86.7%, 75.0%, and 53.8% in Session A-2, B-2, and C-2 respectively). This fact 
contradicts the mixed strategy equilibrium prediction since the lowest probabilities 
(33.3%, 10.6%, and 36.8% in Session A-2, B-2, and C-2 respectively) should be assigned 
in the equilibrium to the second treatment among the three treatments. 
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(b) W-player 

 
Figure 1. Difference between mixed strategy and the choice frequencies. 

 
 On the contrary, W-players chose C less frequently than the mixed 

strategy equilibrium. The null hypothesis stating that the choice frequency of C and the 
probabilities obtained from completely mixed strategy equilibrium are equal is rejected 
for W-players in Sessions A-1, A-2, and C-2 (binomial test, p < 0.01 for each). Especially, 
W-players chose C least often in the second treatment in every Session (13.3%, 37.5%, 
and 23.1% in Session A-2, B-2, and C-2 respectively). However, in the mixed strategy 
equilibrium prediction, the highest probabilities (66.7%, 55.3%, and 68.4% in Session A-
2, B-2, and C-2 respectively) should be assigned to the second treatment among the three 
treatments. 
 From these, we conclude that the mixed strategy equilibrium prediction fails in 
our data. Thus, we reject Hypothesis 2. 

Then, how about equilibrium selection from risk dominance? We count the 
number of occurrences for each equilibrium and summarize them in Table 12. Here we 
count it as an S-equilibrium (W-equilibrium) when exactly one S-player (W-player) 
choose C and the other players choose N. Otherwise, the subjects made coordination 
failures, which are either over-cooperation where more than one player chooses C 
including every player choosing C (“All-C”) or played mutually non-cooperatively by 
choosing N (“All-N”). This is never an equilibrium in our setting. 
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Table 12. The percentage of each outcome in the experiment. 

Session A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 
S-eq. 60.0 73.3 13.3 8.3 41.7 8.3 15.4 30.8 30.0 
W-eq. 13.3 0.0 26.7 41.7 0.0 25.0 15.4 15.4 20.0 
All-C 26.7 13.3 20.0 0.0 16.7 8.3 7.7 0.0 10.0 
All-N 0.0 13.3 40.0 0.0 8.3 25.0 7.7 15.4 10.0 
Others --- --- --- 50.0 33.3 20.0 53.8 38.4 30.0 

 
While S-equilibrium always risk dominates W-equilibrium, theoretically, in 

every Session, sometimes the percentages of W-equilibrium are higher than that of S-
equilibrium in our data (Sessions A-3, B-1, and B-3). More so, the percentages of non-
cooperative outcomes (“All-N”) are higher than that of S-equilibrium in some Sessions 
(Sessions A-3 and B-3). In fact, the null hypothesis stating that the frequency of S-
equilibrium is equal among three treatments (such as among A-1, A-2, and A-3) is 
rejected in both Sessions A and B (Chi-squared test, p < 0.01 for Session A and p < 0.05 
for Session B).  

If the sum of the percentages of W-equilibrium and the non-cooperative 
outcome is seen as counter-evidence against S-equilibrium prediction, risk dominance 
prediction fails in more than a half of Sessions (except for Sessions A-1, A-2, B-2 and C-
3). Thus, we have to conclude from these data that the explanatory power of the risk 
dominance concept is very limited. Therefore, we reject Hypothesis 1. 

Finally, as both Hypotheses 1 and 2 are rejected, we will examine whether 
asymmetric mixed strategy equilibrium can explain our data. In Sessions B-1, B-2, and 
B-3, there are asymmetric mixed strategy equilibria in which two W-players choose C 
with different probabilities. In these cases, one of the W-players chooses N with a 
probability of 1 and the other W-players and S-players choose C with a probability of less 
than 1. Likewise, in Sessions C-1, C-2, and C-3, there are asymmetric mixed strategy 
equilibria in which two S-players choose C with different probabilities. In these cases, 
one of the S-players chooses N with a probability of 1 and the other S-players and W-
players choose C with a probability of less than 1. 

Asymmetric mixed strategy equilibrium predictions in the experiment are 
summarized in Table 13. The percentages of every possible outcome implied by the 
asymmetric mixed strategy equilibrium are shown in Table 14. Differences of outcome 
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frequencies between predictions of asymmetric mixed strategy equilibrium in the 
experiment are also presented in Figure 2. 
 

Table 13. Asymmetric mixed strategy equilibria. 
 B-1 B-2 B-3  C-1 C-2 C-3 

𝒑𝑺 0.778 0.600 0.600 𝒑𝑺 0.000 0.000 0.000 
𝒑𝑾 0.000 0.000 0.000 𝒑𝑺 0.778 0.600 0.600 
𝒑𝑾 0.800 0.800 0.667 𝒑𝑾 0.800 0.800 0.667 

 
 
Table 14. The percentages of each outcome implied by asymmetric mixed strategy 

equilibria. 
 B-1 B-2 B-3 C-1 C-2 C-3 
S-eq. 15.6 12.0 20.0 0.0 0.0 0.0 
W-eq. 17.8 32.0 26.7 33.4 44.0 46.7 
All-C 0.0 0.0 0.0 0.0 0.0 0.0 
All-N 4.4 8.0 13.3 4.4 8.0 13.3 
Others 62.2 48.0 40.0 62.2 48.0 40.0 

 
 

 
(a) Session B 
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(b) Session C 

 
Figure 2. Differences of outcome frequencies between predictions of asymmetric 

mixed strategy equilibria in the experiment. 
 

In Session B-1, the frequency of S-equilibrium in the experiment is slightly 
lower than theoretical predictions, while the frequency of W-equilibrium is significantly 
higher. The null hypothesis stating that the frequency of W-equilibrium is equal to the 
probability implied by asymmetric mixed strategy equilibrium is rejected for Session B-
1 (binomial test, p < 0.01), but the null hypothesis that the frequency of S-equilibrium is 
equal to the probability implied by the asymmetric mixed strategy equilibrium is not 
rejected. The opposite is the case in Session B-2 where the frequency of S-equilibrium in 
the experiment is significantly higher than the theoretical predictions (binomial test, p < 
0.01), while the frequency of W-equilibrium is significantly lower (binomial test, p < 
0.01). In Session B-3, non-equilibrium outcomes, All-C, All-N, and others, due to 
coordination failures, are prominent.  
 In Session C-1, C-2, and C-3, frequencies of S-equilibrium in the experiment 
are significantly higher than the theoretical predictions (p < 0.01 for each), while the 
frequencies of W-equilibrium are significantly lower. The null hypothesis stating that the 
frequency of W-equilibrium is equal to the probability implied by asymmetric mixed 
strategy equilibrium is not rejected for every session. In summary, we must conclude that 
the asymmetric mixed strategy equilibrium prediction also fails in our experimental data. 
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 Thus, Diekmann’s conjecture that S-equilibrium is played more frequently 
when it is risk dominant also fails in our experiment. The mixed strategy equilibrium 
prediction fails as well. Therefore, we have to examine alternative theories with altruistic 
motivation or bounded rationality.  
 
4.3 Econometric estimation 
As in Section 3, we examine three alternative theories, inequality aversion, level-k 
mode, and QRE as representative models in behavioral game theory. Model structures 
and estimation strategy are identical in Section 3. 
 
A. Inequity aversion 
Ranges of parameter values consistent with each equilibrium are shown in Table 15. 
Moreover, remember that the most prominent regularity in our data is that the frequencies 
of S-equilibrium vary among sessions, unlike the prediction of risk dominance. 

In fact, from Table 14, S-equilibrium was observed most frequently in the 
second treatment in every Session (73.3%, 41.7% and 30.8% in Session A-2, B-2 and C-
2 respectively), while W-equilibrium was observed most frequently in the third treatment 
in Sessions A and C (26.7% and 20.0% in Session A-3 and C-3 respectively) and the first 
treatment in Session B (41.7%).  
 

Table 15. The prediction of inequity aversion.10 
 A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 

S-eq. 𝛼 ≤
2
3 𝛼 ≤ 2 𝛼 ≤

1
3 𝛼 ≤

4
5 𝛼 ≤ 4 𝛼 ≤

2
3 𝛼 ≤

4
3 𝛼 ≤ 4 𝛼 ≤ 1 

W-eq. any 𝛼 𝛼 ≤
1
2 𝛼 ≤

4
3 

𝛼 + 𝛽

≤ 7 
𝛼 ≤

3
2 𝛼 ≤ 3 any 𝛼 𝛼 ≤

3
2 any 𝛼 

All-N -- 2 ≤ 𝛼 
4
3
≤ 𝛼 

7

≤ 𝛼 + 𝛽 
4 ≤ 𝛼 3 ≤ 𝛼 -- 4 ≤ 𝛼 -- 

 
In fact, the most frequent outcome was an S-equilibrium in sessions A-1, A-2, 

B-2, C-1, C-2, and C-3. However, All-N was the most frequent in sessions A-3 and B-3, 
and W-equilibrium was the most frequent in session B-3.  

                                         
10 The symbol “—“ implies that the outcome cannot be a Nash equilibrium irrespective of the values 
of 𝛼 and 𝛽. 
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But these regularities are not consistent with inequality aversion for any 
parameter values shown in Table 15. 
 
B. Level-k model 
Assume that L0 player, who is the least rational player, chooses C and N with a probability 
of 1/2 respectively. In the level-k model, L𝑘 player chooses the best response to the 
actions taken by L(𝑘 − 1) players. If we assume 𝐿L = 	𝐿M = 0 as in the experimental 
sessions, the best responses of L𝑘 S-player and L𝑘 W-player to the actions of L(𝑘 − 1) 
players up to 𝑘 = 4 are summarized in Table 16.  
 

Table 16. Best response of Lk to L(k-1) 
  A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 

L1 
S-player C C N C C N C C N 
W-player C N N C N N C N N 

L2 
S-player N 𝐶 C N C C N N C 
W-player N N C N N C N N C 

L3 
S-player C C N C C N C C N 
W-player C N N C N N C C N 

L4 
S-player N C C N C C N N C 
W-player N N C N N C N N C 

 
As L1 and L3, as well as L2 and L4, choose exactly the same responses in every 

Session, it is enough to consider up to L2 in the analysis. Then, suppose that both an S-
player and a W-player have the same level of strategic thinking. This assumption is 
natural and justifiable, as the subjects were in the same population, and each player’s role 
was randomly determined in the experiment.  

Remember that S-equilibrium was observed most frequently in the second 
treatment in every session in our experiment. The fact can be obtained if all the players 
are L1 (In this case, an S-player chooses C and a W-player chooses N.). Thus, the level-k 
model can explain a part of the regularities found in our experiment. 

Note, however, that whatever level the players find themselves in, the level-k 
model predicts that a W-equilibrium where an S-player chooses N and a W-player chooses 
C never occur in every session. This contradicts the fact that the percentages of W-
equilibrium are higher than that of S-equilibrium in some sessions in our experimental 
data. 
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C. Estimation results 
Similar to the previous section, we conduct a maximum likelihood estimation for 
obtaining the parameter values for inequality aversion, the level-k model, and QRE. For 
each model, the maximum likelihood estimates are obtained by maximizing the following 
log-likelihood function with respect to 𝜔. 

𝐿𝑜𝑔𝐿(𝜔) = 𝐿𝑜𝑔𝐿¨(𝜔) + 𝐿𝑜𝑔𝐿©(𝜔) + 𝐿𝑜𝑔𝐿F(𝜔), 
where each term is defined similarly to 𝐿𝑜𝑔𝐿�(𝜔) in Section 3.11 Table 17 shows the 
estimated parameters. The log likelihood for symmetric mixed strategy equilibrium 
(especially, Equation (1) in Table 10) is also shown in this table.12  

From Table 17, one can see that the value of AIC for QRE is minimum among 
them. Thus, we conclude that QRE is the best fit model in our experimental data. However, 
since λ = 1/𝜇, a relatively higher value of 𝜇̂ = 25.781 means that players’ choices are 
close to the ones made via a low level of rationality, as λ = 0.039. Next, the value of 
AIC for inequality aversion is lowest, but none of the parameters concerning inequality 
aversion, 𝛼	and	𝛽 , is significant, and only 𝜇  is significant. Finally, Level-1’s 
performance is better than Level-2. All these facts indicate that our data is generated by 
players with a relatively low level of rationality. 
 

Table 17. Estimated parameters 
 Symmetric 

mixed strategy 
Inequality 

aversion 
Level-1 Level-2 QRE 

𝜶 ----- 0.0241 ----- ----- ----- 
𝜷 ----- 0.0547 ----- ----- ----- 
𝝁 ----- 25.738** 22.752** 186.228+ 25.781** 

LogL -237.324 -202.188 -205.784 -210.384 -202.351 
AIC 474.648 410.377 413.569 422.767 406.702 

**, *, and + denote significance at the 1%, 5%, and 10% levels, respectively. 
 

                                         
11 In this definition, it is implicitly assumed that players of the same type have the same choice 
probabilities in a fixed point. Even if we redefine the log likelihood function to consider the possibility 
in which players of the same type have different choice probabilities, no result of the estimation 
changes. 
12 As shown in Tables 10 and 13, there are the other mixed strategy equilibria in Session B and C. 
However, the AIC when assuming Equation (1) in all sessions is smaller than those for other 
combinations of equilibria. 
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But this does not necessarily imply that subject choice were random. QRE 
captures some of the regularities in our experimental data. In fact, Table 18 shows choice 
probabilities implied by the estimated parameter values, which are closer to the data than 
the symmetric mixed strategy equilibrium prediction.  
 

Table 18. Choice probabilities implied by the estimated parameters  
Session  Actual Choice 

frequencies 
Symmetric 

mixed strategy 
QRE 

A-1 𝑝𝑆 0.800 0.600 0.591 
A-1 𝑝𝑤 0.400 0.667 0.509 
A-2 𝑝𝑆 0.867 0.333 0.703 
A-2 𝑝𝑤 0.133 0.667 0.298 
A-3 𝑝𝑆 0.333 0.333 0.510 
A-3 𝑝𝑤 0.467 0.429 0.399 
B-1 𝑝𝑆 0.333 0.503 0.542 
B-1 𝑝𝑤 0.542 0.553 0.507 
B-1 𝑝𝑤 0.542 0.553 0.507 
B-2 𝑝𝑆 0.750 0.106 0.768 
B-2 𝑝𝑤 0.375 0.553 0.287 
B-2 𝑝𝑤 0.375 0.553 0.287 
B-3 𝑝𝑆 0.333 0.307 0.518 
B-3 𝑝𝑤 0.458 0.423 0.396 
B-3 𝑝𝑤 0.458 0.423 0.396 
C-1 𝑝𝑆 0.500 0.529 0.537 
C-1 𝑝𝑆 0.500 0.529 0.537 
C-1 𝑝𝑤 0.615 0.576 0.487 
C-2 𝑝𝑆 0.538 0.368 0.588 
C-2 𝑝𝑆 0.538 0.368 0.588 
C-2 𝑝𝑤 0.231 0.684 0.290 
C-3 𝑝𝑆 0.450 0.368 0.493 
C-3 𝑝𝑆 0.450 0.368 0.493 
C-3 𝑝𝑤 0.500 0.473 0.365 
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6. Conclusion 
We have analyzed a generalized version of an asymmetric Volunteers’ Dilemma (VOD) 
game where the cost for volunteering is different among players. In this game, there is S-
equilibrium where a player with less cost contributes more often. S-equilibrium is 
intuitively appealing, and, in fact, it is an efficient outcome. Under certain plausible 
conditions, S-equilibrium is risk dominant for a general n-person game, which was, firstly, 
proved in this study. As many researchers accept the risk dominance concept as an 
equilibrium selection criterion, the plausibility of S-equilibrium is reinforced by that fact. 
Thus, our first task was to closely examine Diekmann’s conjecture which states that when 
S-equilibrium is risk dominant, it is observed more frequently. However, this conjecture 
was not fully confirmed in both Diekmann’s and our experiments, even though S-
equilibrium was risk dominant in every session.  

As for the prediction by the mixed strategy equilibrium, which sometimes 
contradicts with our intuition, if we consider people’s volunteering decision in the time 
of a natural disaster, we can say that it is not an unacceptable prediction. Sometimes a 
player with more cost contributes more often, as the Parable of the Good Samaritan 
illustrates. However, again, it failed in explaining Diekmann’s and our data. 

Thus, we further analyzed the game with alternative theories including 
inequality aversion, level-k model, and quantal response equilibrium (QRE) as 
representative models in behavioral game theory. Interestingly, our econometric 
comparison results show that altruistic motivation reflected by the inequality aversion 
model play no role in explaining the data. Instead, QRE best fits the data. In fact, choice 
probabilities implied by QRE is closer than the mixed strategy equilibrium prediction.  

For two-person games, it is shown that limiting QRE converges to risk 
dominant equilibrium. Thus, for two-person games, the frequency of S-equilibrium is 
relatively higher when S-equilibrium is risk dominant. However, for a general n-person 
game, whether limiting QRE converges to risk dominant equilibrium is unknown. 
Especially, if there are more than two S-players in the game, as in our experiment, the 
principal branch of QRE correspondence bifurcates because there exits at least two 
symmetric S-equilibria. Analyzing, theoretically, such complicated nonlinear dynamics 
is quite difficult at this moment. The numerical simulation also shows quite exotic 
behaviors and no convergence. Fortunately, as the best fit parameter of QRE was found 
before the principal branch of QRE correspondence bifurcates, our conclusion is intact, a 
close examination of limiting QRE in this game requires more elaboration in the future 
research. 
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Appendix A. Proofs 
 
Proposition 1. Suppose that player 𝑖  takes a completely mixed strategy in a mixed 
strategy equilibrium 𝜃 (𝑖 ∈ 𝐶(𝜃)), then  

𝑞" = A
𝑉" − 𝐿"
𝐾"

B C 5 D
𝐾6

𝑉6 − 𝐿6
E

6∈F(G)

H

I
#F(G)KI

	. (1) 

where #𝐶(𝜃) is the number of 𝐶(𝜃). 
 
Proof. If some players take completely mixed strategies, then the rest of players choose 
N with probability one in an equilibrium 𝜃 . Thus 0 < 𝑞" < 1  for any 𝑖 ∈ 𝐶(𝜃) . 
Therefore, 𝐸"(𝐶) = 𝐸"(𝑁) must hold, and we have 

5𝑞6
67"

=
𝐾"

𝑉" − 𝐿"
, 

for any 𝑖 ∈ 𝐶(𝜃). Therefore, we have 

5 45𝑞6
67"

8
"∈F(G)

= 5 A
𝐾"

𝑉" − 𝐿"
B

"∈F(G)

. 

Note that for any player ℎ ∈ 𝐶(𝜃), 𝐶(𝜃) ∖ {ℎ} ≠ ∅ since at least two players belong to 
𝐶(𝜃). Solving the left-hand side of the above equation for 𝑞±, we have 

5 45𝑞6
67"

8
"∈F(G)

= 45𝑞6
67±

8 5 4𝑞± 5 𝑞6
67",±

8
"∈F(G)∖{±}

= 𝑞±#F(G)KI 45𝑞6
67±

8 5 45 𝑞6
67",±

8
"∈F(G)∖{±}

= 𝑞±#F(G)KI 45𝑞6
67±

845𝑞6
67±

8

#F(G)Ks

= 𝑞±#F(G)KI A
𝐾±

𝑉± − 𝐿±
B
#F(G)KI

. 

The third equality follows from the fact that 𝑞_ = 1 for any 𝑘 ∉ 𝐶(𝜃). Thus, we have 
equation (1) for any player ℎ ∈ 𝐶(𝜃).  

Q.E.D. 
 
Proposition 2. For any 𝑛 ≥ 2 and 1 ≤ 𝑚 ≤ 𝑛, the volunteer’s dilemma game has the 
completely mixed strategy equilibrium if and only if 
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A
𝑉M − 𝐿M
𝐾M

B
RKS

> A
𝑉L − 𝐿L
𝐾L

B
RKSKI

	. (3) 

 
Proof. By Proposition1, the probability of choosing N of a W-player, 𝑞M , in the 
completely mixed strategy equilibrium is given by 

𝑞M = ³A
𝐾o

𝑉o − 𝐿o
B
S

A
𝑉� − 𝐿�
𝐾�

B
SKI

´

I
RKI

 

This is always a positive number. Moreover, 1 > 𝑞M holds by (2) since 

1 > 𝑞M ⟺ A
𝑉L − 𝐿L
𝐾L

B
S

> A
𝑉M − 𝐿M
𝐾M

B
SKI

. 

The probability of choosing N of a S-player, 𝑞L , in the completely mixed strategy 
equilibrium is given by 

𝑞L = ³A
𝑉L − 𝐿L
𝐾L

B
RKSKI

A
𝐾M

𝑉M − 𝐿M
B
RKS

´

I
RKI

. 

This is always a positive number. Moreover,  

1 > 𝑞L ⟺ A
𝑉M − 𝐿M
𝐾M

B
RKS

> A
𝑉L − 𝐿L
𝐾L

B
RKSKI

. 

Thus, 𝑞M  always satisfy 1 > 𝑞M > 0  and (3) gives the necessary and sufficient 
condition for 1 > 𝑞L > 0.  

Q.E.D. 
 
Proposition 3. Suppose that 𝜃 ∈ 𝛩(𝑛,𝑚) is the completely mixed strategy equilibrium, 
and 𝑞L(𝑛,𝑚) and 𝑞M(𝑛,𝑚) are the probabilities of choosing 𝑁 of S-player and W-
player in 𝜃 , respectively. For any two non-negative integers 𝑙  and ℎ , consider the 
volunteer’s dilemma game that the number of players is 𝑛 + 𝑙 + ℎ and the number of S-
players is 𝑚 + 𝑙. In this game, a mixed strategy profile 𝜃′ such that 𝑙 S-players and 
ℎ W-players are choosing 𝑁 with probability one, 𝑚 S-players take 𝑞L(𝑛,𝑚), and 
𝑛 −𝑚 W-players take 𝑞M(𝑛,𝑚) is a mixed strategy equilibrium, i.e., 𝜃′ ∈ 𝛩(𝑛 + 𝑙 +
ℎ,𝑚 + 𝑙). 
 
Proof. For any S-player 𝑖 with 𝑞" = 𝑞L(𝑛,𝑚) in 𝜃′, 
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5𝑞6
67"

= ³A
𝑉L − 𝐿L
𝐾L

B
RKSKI

A
𝐾M

𝑉M − 𝐿M
B
RKS

´

SKI
RKI

³A
𝐾L

𝑉L − 𝐿L
B
S

A
𝑉M − 𝐿M
𝐾M

B
SKI

´

RKS
RKI

= A
𝐾L

𝑉L − 𝐿L
B. 

Therefore, 𝐸"(𝐶) = 𝐸"(𝑁).  Similarly, for any W-player 𝑖  with 𝑞" = 𝑞M(𝑛,𝑚)  in 
𝜃′, 𝐸"(𝐶) = 𝐸"(𝑁). For any player 𝑖 with 𝑞" = 1 in 𝜃′, 

5𝑞6
67"

= ³A
𝐾L

𝑉L − 𝐿L
B
S

A
𝐾M

𝑉M − 𝐿M
B
RKS

´

I
RKI

. 

Therefore, for any S-player 𝑖 with 𝑞" = 1 in 𝜃′, 

𝐸"(𝑁) > 𝐸"(𝐶) ⇔5𝑞6
67"

< A
𝐾L

𝑉L − 𝐿L
B 

⇔ ³A
𝐾L

𝑉L − 𝐿L
B
S

A
𝐾M

𝑉M − 𝐿M
B
RKS

´

I
RKI

< A
𝐾L

𝑉L − 𝐿L
B 

⇔ A
𝑉M − 𝐿M
𝐾M

B
RKS

> A
𝑉L − 𝐿L
𝐾L

B
RKSKI

. 

The last inequality is always true by (3) since Θ(𝑛,𝑚) has the completely mixed strategy 
equilibrium. For any W-player 𝑖 with 𝑞" = 1 in 𝜃′, 

𝐸"(𝑁) > 𝐸"(𝐶) ⇔5𝑞6
67"

< A
𝐾M

𝑉M − 𝐿M
B 

⇔ ³A
𝐾L

𝑉L − 𝐿L
B
S

A
𝐾M

𝑉M − 𝐿M
B
RKS

´

I
RKI

< A
𝐾M

𝑉M − 𝐿M
B 

⇔ A
𝑉L − 𝐿L
𝐾L

B
S

> A
𝑉M − 𝐿M
𝐾M

B
SKI

. 

The last inequality is always true by (2).  
Q.E.D. 

 
Proposition 4. Suppose that 𝛩(𝑛,𝑚), 𝛩(𝑛 + 1,𝑚), and 𝛩(𝑛 + 1,𝑚 + 1) have the 
completely mixed strategy equilibria, then  
  (i) 𝑞L(𝑛 + 1,𝑚) > 𝑞L(𝑛,𝑚),  
  (ii) 𝑞M(𝑛 + 1,𝑚) > 𝑞M(𝑛,𝑚),  
  (iii) 𝑞L(𝑛 + 1,𝑚) > 𝑞L(𝑛 + 1,𝑚 + 1), and  
  (iv) 𝑞M(𝑛 + 1,𝑚) > 𝑞M(𝑛 + 1,𝑚 + 1). 
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Proof. Suppose that 𝜃 ∈ Θ(𝑛,𝑚) is the completely mixed strategy equilibrium. Then, 
we have 

ln 𝑞L =
𝑛 −𝑚 − 1
𝑛 − 1 ln A

𝑉L − 𝐿L
𝐾L

B −
𝑛 −𝑚
𝑛 − 1 lnA

𝑉M − 𝐿M
𝐾M

B 

Differentiate both sides by 𝑛, we have 
d𝑞L
d𝑛 =

𝑞L
(𝑛 − 1)s ·𝑚 ln A

𝑉L − 𝐿L
𝐾L

B − (𝑚 − 1) ln A
𝑉M − 𝐿M
𝐾M

B¸ > 0. 

The last inequality follows from the fact that 
𝑉L − 𝐿L
𝐾L

>
𝑉M − 𝐿M
𝐾M

> 1. 

On the other hand, differentiate both sides by 𝑚, we have 
d𝑞L
d𝑚 = −

𝑞L
(𝑛 − 1)

·ln A
𝑉L − 𝐿L
𝐾L

B − lnA
𝑉M − 𝐿M
𝐾M

B¸ < 0 

For W-player, we have 

ln 𝑞M = −
𝑚

𝑛 − 1 ln A
𝑉L − 𝐿L
𝐾L

B +
𝑚 − 1
𝑛 − 1 lnA

𝑉M − 𝐿M
𝐾M

B . 

Differentiate both sides by 𝑛, we have 
d𝑞M
d𝑛 =

𝑞M
(𝑛 − 1)s ·𝑚 ln A

𝑉L − 𝐿L
𝐾L

B − (𝑚 − 1) ln A
𝑉M − 𝐿M
𝐾M

B¸ > 0 

On the other hand, differentiate both sides by 𝑚, we have 
d𝑞M
d𝑚 = −

𝑞M
(𝑛 − 1)

·lnA
𝑉L − 𝐿L
𝐾L

B − ln A
𝑉M − 𝐿M
𝐾M

B¸ < 0. 

Q.E.D. 
 
Proposition 5’. In the case of 𝑛 ≥ 2 and 1 ≤ 𝑚 < 𝑛, S-equilibrium risk dominants W-
equilibrium in the sense of unilateral deviation stability. 
 
Proof. Note that there are 𝑚 S-equilibrium and n −𝑚 W-equilibrium. For any pair 
(𝑠, 𝑡) where 𝑠 is a S-equilibrium and 𝑡 is a W-equilibrium, 𝑀(𝑠, 𝑡) = {𝑖, 𝑗} where 𝑖 
is a S-player and 𝑗 is a W-player, respectively, and players other than 𝑖 and 𝑗 choose 
N in both 𝑠 and 𝑡. Therefore, 𝐺"6(𝑠, 𝑡) is similar to Table 1, and we have  

𝑅∗(𝑠, 𝑡) = 𝑅"6(𝑠, 𝑡) =
𝐾M(𝑉L − 𝐿L − 𝐾L)
𝐾L(𝑉M − 𝐿M − 𝐾M)

. 

Thus, 𝑅∗(𝑠, 𝑡) > 1 if and only if  
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A
𝑉L − 𝐿L
𝐾L

B > A
𝑉M − 𝐿M
𝐾M

B. 

Q.E.D. 
 
Proposition 6. Suppose that player 𝑖 is an inequity averse player. Then player 𝑖 never 
choose C when all other players choose C. 
 
Proof.  For player 𝑖, let 𝐻(𝑖) be the set of players such that 𝑉6 − 𝐾6 ≥ 𝑉" , 𝐿(𝑖) be the 
set of players such that 𝑉" − 𝐾" > 𝑉6 − 𝐾6, and 𝑀(𝑖) be the set of players other than 𝑖 
such that 𝑉" > 𝑉6 − 𝐾6 ≥ 𝑉" − 𝐾" (the players of same type as 𝑖 belong to 𝑀(𝑖)). Note 
that 𝐻(𝑖) ∩ 𝐿(𝑖) = ∅	𝑎𝑛𝑑	𝐻(𝑖) ∩ 𝑀(𝑖) = ∅  by their definition. Then, if all players 
choose C, the utility of player 𝑖 is given by 

(𝑉" − 𝐾") −
𝛼

𝑛 − 1 w f𝑉6 − 𝐾6 − 𝑉" + 𝐾"g
6∈½(")∪n(")

−
𝛽

𝑛 − 1 w f𝑉" − 𝐾" − 𝑉6 + 𝐾6g
6∈¿(")

. 

On the other hand, if player 𝑖 chooses N and the other players choose C, then player 𝑖’s 
utility is 

𝑉" −
𝛼

𝑛 − 1 w f𝑉6 − 𝐾6 − 𝑉"g
6∈½(")

−
𝛽

𝑛 − 1 w f𝑉" − 𝑉6 + 𝐾6g
6∈n(")∪¿(")

. 

Therefore, if player 𝑖 deviates from All-C, player 𝑖’s utility will increase by 

𝐾" +
𝛼

𝑛 − 1 w if𝑉6 − 𝐾6 − 𝑉" + 𝐾"g − f𝑉6 − 𝐾6 − 𝑉"gj
6∈½(")

+
𝛽

𝑛 − 1 w if𝑉" − 𝐾" − 𝑉6 + 𝐾6g − f𝑉" − 𝑉6 + 𝐾6gj
6∈¿(")

+
𝛼

𝑛 − 1 w f𝑉6 − 𝐾6 − 𝑉" + 𝐾"g
6∈n(")

−
𝛽

𝑛 − 1 w f𝑉" − 𝑉6 + 𝐾6g
6∈n(")

. 

If 𝛽 = 0, then the above equation is positive since 𝐾" > 0 and the other terms are 
nonnegative. Suppose that 𝛽 > 0 and rearrange this equation, we have, 
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𝐾" D1 −
#𝑀(𝑖)
𝑛 − 1 +

𝛼#𝐻(𝑖)
𝑛 − 1 −

𝛽#𝐿(𝑖)
𝑛 − 1 E +

(1 + 𝛼)#𝑀(𝑖)
𝑛 − 1 𝐾" −

𝛼 + 𝛽
𝑛 − 1 w f𝑉" − 𝑉6 + 𝐾6g

6∈n(")

≥ 𝐾" À1 −
#𝑀(𝑖)
𝑛 − 1 +

𝛽
𝑛 − 1

f#𝐻(𝑖) − #𝐿(𝑖)gÁ +
(1 + 𝛼)#𝑀(𝑖)

𝑛 − 1 𝐾"

−
𝛼 + 1
𝑛 − 1 w f𝑉" − 𝑉6 + 𝐾6g

6∈n(")

= 𝐾" À1 −
#𝑀(𝑖)
𝑛 − 1 +

𝛽
𝑛 − 1

f#𝐻(𝑖) − #𝐿(𝑖)gÁ

+
1 + 𝛼
𝑛 − 1 w f𝐾" − 𝑉" + 𝑉6 − 𝐾6g

6∈n(")

 

≥ 𝐾" À1 −
#𝑀(𝑖)
𝑛 − 1 +

𝛽
𝑛 − 1

f#𝐻(𝑖) − #𝐿(𝑖)gÁ, 

where #𝐻(𝑖),#𝐿(𝑖), 𝑎𝑛𝑑	#𝑀(𝑖)  be the number of their set, respectively. The first 
inequality follows from 𝛽 < 1 and 𝛽 ≤ 𝛼. The last inequality follows from 𝐾" − 𝑉" +
𝑉6 − 𝐾6 ≥ 0 for any 𝑗 ∈ 𝑀(𝑖). Since there are only two types of players, S and W, if 
#𝐻(𝑖) > 0  then #𝐿(𝑖) = 0 , and vice versa. Suppose that #𝐻(𝑖) > 0 , then the last 
equation is positive since n − 1 ≥ #𝑀(𝑖) and 𝛽 > 0. Suppose that #𝐿(𝑖) > 0, then we 
have 
 

𝐾" À1 −
#𝑀(𝑖)
𝑛 − 1 +

𝛽
𝑛 − 1

f#𝐻(𝑖) − #𝐿(𝑖)gÁ = 𝐾" D1 −
#𝑀(𝑖)
𝑛 − 1 −

𝛽#𝐿(𝑖)
𝑛 − 1 E

> 𝐾" D1 −
#𝑀(𝑖)
𝑛 − 1 −

#𝐿(𝑖)
𝑛 − 1E = 𝐾" D1 −

#𝑀(𝑖) + #𝐿(𝑖)
𝑛 − 1 E ≥ 0, 

 
since 𝛽 < 1 and 𝑛 − 1 ≥ #𝑀(𝑖) + #𝐿(𝑖).  

Q.E.D. 
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Appendix B. Instructions (originally in Japanese) 
 
Session A-1: Instructions 
In this experiment, you are paired with another player and make a decision. 
Pairing is randomly determined and you are not informed of whom you are paired with 
during and after the experiment. 

Your role in the experiment is either X or Y, which is randomly determined. 
As a result, there are a player whose role is X and a player whose role is Y in each pair. 
Please check in the recording sheet about which role do you play in the experiment. 

In the experiment, each player in a pair chooses option A or B simultaneously 
and independently. If a player X chooses A, he/she has to pay 200 JPY. If a player Y 
chooses A, he/she has to pay 400 JPY. If each player chooses B, no one needs to pay 
anything. 

Depending on the number of players who chose A, each player's payoff is 
determined by the following table. 

 
Payoff table 

 # of player who chose 

A other than you 

0 1 

Player X Option A 400 400 

Option B 0 600 

Player Y Option A 600 600 

Option B 0 1000 

 
Thus, if one member in your pair chooses A, a player X gains 600 JPY and a player Y 
1000 JPY. Please note that if your role is X and choose A, as you have to pay 200 JPY, 
your payoff becomes 400 JPY and that if your role is Y and choose A, as you have to 
pay 400 JPY, your payoff becomes 600 JPY. 
If no one chooses A including yourself, each player gains nothing. 

Then, once you decide your choice, draw a circle on A or B in the recording 
sheet. After everyone’s choice is made, experimenters collect your recording sheet. 

If this is your first experiment today, please wait for a while for next 
experiment. Your outcome in the experiment is not informed before all the experiments 
ends. If this is your second experiment today, we sum up your outcomes in both 
experiments and pay the total to you in cash. 
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Session A-1: Recording sheet 
 

Your identity：Pair (    ) Role (    )  Player (    )    
 
Payoff table 

 # of player who chose 

A other than you 

0 1 

Player X Option A 400 400 

Option B 0 600 

Player Y Option A 600 600 

Option B 0 1000 

 
 

Your choice A or  B 
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Session B-1: Instructions 
In this experiment, you are paired with other two players and make a decision. 
Pairing is randomly determined and you are not informed of whom you are paired with 
during and after the experiment. 

Your role in the experiment is either X or Y, which is randomly determined. 
As a result, there are a player whose role is X and two players whose role are Y in each 
group. Please check in the recording sheet about which role do you play in the 
experiment. 

In the experiment, each player in a group chooses option A or B 
simultaneously and independently. If a player X chooses A, he/she has to pay 200 JPY. 
If a player Y chooses A, he/she has to pay 400 JPY. If each player chooses B, no one 
needs to pay anything. 

Depending on the number of players who chose A, each player's payoff is 
determined by the following table. 
 
Payoff table 

 # of player who 

chose A other 

than you 

0 1 2 

Player X Option A 800 800 800 

Option B 0 1000 1000 

Player Y Option A 1400 1400 1400 

Option B 0 1800 1800 

 
Thus, if one member in your group chooses A, a player X gains 1000 JPY and a player 
Y 1800 JPY. Please note that if your role is X and choose A, as you have to pay 200 
JPY, your payoff becomes 800 JPY and that if your role is Y and choose A, as you have 
to pay 400 JPY, your payoff becomes 1400 JPY. 
If no one chooses A including yourself, each player gains nothing. 

Then, once you decide your choice, draw a circle on A or B in the recording 
sheet. After everyone’s choice is made, experimenters collect your recording sheet. 

If this is your first experiment today, please wait for a while for next 
experiment. Your outcome in the experiment is not informed before all the experiments 
ends. If this is your second experiment today, we sum up your outcomes in both 
experiments and pay the total to you in cash. 
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Session B-1: Recording sheet 
 

Your identity：Pair (    ) Role (    )  Player (    )    
 
Payoff table 

 # of player who 

chose A other 

than you 

0 1 2 

Player X Option A 800 800 800 

Option B 0 1000 1000 

Player Y Option A 1400 1400 1400 

Option B 0 1800 1800 

 
 

Your choice A or  B 
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