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Abstract

Asymmetric contest games are examined under conditions which guar-
antee the existence of a unique pure Nash equilibrium. Conditions are
derived for the local asymptotical stability of the equilibrium under con-
tinuous and discrete dynamics with gradient adjustments. In both cases,
a crucial assumption is the nonexistence of a dominant player at the equi-
librium level. In the case of continuous time scales, this is sufficient for
stability, and in the discrete case, the speeds of adjustments have to be
sufficiently small. As special cases, symmetric and semisymmetric games
are analysed in details.
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1 Introduction

Contest games model situations when the players invest in order to increase
the probability of winning a given prize. Contest games are closely related to
oligopolies with hyperbolic price functions (Bischi et al., 2010), market share
attraction games (Hanssens et al., 1990), rent seeking games (Tullock, 1980), to
mention only a few. Many studies have examined contest and related games with
exogenous prize, Pérez-Castrillo and Verdier (1992), Szidarovszky and Okuguchi
(1997), Cornes and Hartley (2005) and Yamazaki (2008).
However in many cases (such as R&D contest, war, armament) the size of

the prize depends on the efforts of the players. For example, higher efforts make
more valuable prize available to the players. Chung (1996) was the first who
examined rent-seeking games with an endogenous prize (rent in this case) which
was assumed to be an increasing function of the aggregate effort of all players.
For this case, Okuguchi (2005) and Corchón (2007) proved the existence of a
unique symmetric pure Nash equilibrium. In the model developed by Shaffer
(2006), an increased effort has a decreasing effect on the value of the prize. In
these studies identical players were assumed in the valuation of the prize as well
as abilities.
The heterogeneity of players can be divided into three types: in different

valuations of the prize (e.g., Hillman and Riley, 1989), in different abilities to
convert higher expenditures to higher productivity (e.g., Baik, 1994) and also
in different financial constraints (e.g., Che and Gale, 1997).
Szidarovszky and Okuguchi (1997) proved the existence of a unique pure

Nash equilibrium in special asymmetric rent-seeking games. This result was
later generalized for contest games by Hirai (2012) and Hirai and Szidarovszky
(2013).
Dynamic rent-seeking games were first examined in Okuguchi and Szidarovszky

(1999) where the local asymptotic stability of the pure Nash equilibrium was
proved by using linearization around the equilibrium. This result was recon-
sidered to discrete time scales and the global stability of the equilibrium was
analyzed in both discrete and continuous time sales in Bischi et al. (2010). In
these studies instantaneous information was assumed about the actions of the
competitors as well as on available data and expectations of the players. Time
delays were introduced in many variants of the oligopoly model including the
cases of hyperbolic price function in Matsumoto and Szidarovszky (2018).
In this paper the model of Hirai and Szidarovszky (2013) is reconsidered by

introducing its dynamic extensions in both discrete and continuous time scales.
The stability analysis is more general than in earlier studies. The paper is
developed as follows. In Section 2, the basic model is described. Sections 3 and
4, discuss the stability properties of the pure Nash equilibrium with continuous
and discrete time scales. Conclusions and future research directions are given
in Section 5.
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2 The Basic Model

There are n players in a contest game, which are risk-neutral. If xi denotes the
expenditure of player i and ϕi(xi) is its production function for lotteries, then
the probability that player i wins the prize is

pi =
ϕi(xi)�n

j=1 ϕj(xj)
.

Let Li denote the budget of player i implying that its set of feasible strategies
is the closed interval [0, Li]. In Hirai and Szidarovszky (2013) the following
assumptions were made:

Assumption 1. For all players i, function ϕi is twice differentiable,

ϕi(0) = 0, ϕ
′
i(xi) > 0 and ϕ

′′
i (xi) < 0 for xi ∈ [0, Li].

The special form of ϕi(xi) = aixi was studied earlier by several authors
(e.g., Skaperdas, 1996, Clark and Riis, 1998). Introducing the new variables
yi = ϕi(xi) which represent the effective effort of player i, the expected payoff
of player i can be given as follows:

Πi = Ri(yi +Qi)
yi

yi +Qi
− gi(yi) (1)

where

Qi =
n�

j �=i

yj , gi(yi) = ϕ
−1
i (yi)

and the prize as the function of the aggregate effort is

Ri(yi +Qi).

Notice that Assumption 1 implies that

gi(0) = 0, g
′
i(yi) > 0 and g

′′
i (yi) > 0 for all yi ∈ [0, ϕi(Li)].

Function gi(yi) can be considered as the total cost of player i to generate level
yi of effort. Let

Q =
n�

i=1

yi

be the aggregate effort of all players.

Assumption 2. For all players i, the prize Ri(Q) is twice differentiable,

Ri(Q) > 0 and R
′′
i (Q) ≤ 0 for all Q ∈ [0,

n�

i=1

ϕi(Li)].
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This assumption allows both positive and negative externalities of the ag-
gregate effort as the linear function

Ri(Q) = ai + biQ

shows with bi > 0 and bi < 0. Notice in addition that Assumptions 1 and 2 imply
that Πi(yi.Qi) is strictly concave in yi. Hirai and Szidarovszky (2013) proved
that under Assumptions 1 and 2, there is a unique pure Nash equilibrium. The
asymptotic properties of this equilibrium will be examined in the next sections.

3 Continuous Dynamics

Considering gradient adjustments, we notice first that by differentiation,

∂Πi
∂yi

= R′i(yi +Qi)
yi

yi +Qi
+Ri(yi +Qi)

Qi

(yi +Qi)2
− g′i(yi), (2)

which will be denoted by fi(yi, Qi) for notational simplicity. Then the gradient
dynamics is described by the following system of ordinary differential equations:

ẏi = Kifi(yi, Qi) (i = 1, 2, . . . , n) (3)

where Ki > 0 is the speed of adjustment of player i. The local asymptotic
behavior of the equilibrium can be examined by linearization. Notice that

∂fi

∂yi
=
(R

′′

i yi +R
′

i)(yi +Qi)−R
′
iyi

(yi +Qi)2
+
R

′

iQi(yi +Qi)
2 − 2RiQi(yi +Qi)

(yi +Qi)4
−g

′′

i (yi),

(4)
and with j �= i,

∂fi

∂yj
=
R

′′

i yi(yi +Qi)−R
′

iyi

(yi +Qi)2
+
(R

′

iQi +Ri)(yi +Qi)
2 − 2RiQi(yi +Qi)

(yi +Qi)4
. (5)

Let Si and Ti denote the right hand sides of (4) and (5), respectively. Notice
first that

Si = Ti + ui (6)

with

ui =
R′iQ−Ri

Q2
− g

′′

i . (7)

We will now prove that ui < 0. Consider function

hi(Q) = R
′

i(Q)Q−Ri(Q).

Clearly, hi(0) = −Ri(0) ≦ 0 and h
′
i(Q) = R

′′

i (Q)Q ≦ 0, therefore hi(Q) ≦ 0 for

all Q ≧ 0. Since g
′′

i (yi) > 0, the value of ui is always negative.
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Next we will find conditions which guarantee that Ti ≦ 0, implying that
Si < 0. Its numerator can be rewritten as

R
′′

i yiQ
2 −R

′

iyiQ+R
′
iQiQ+RiQ− 2RiQi

= R
′′

i yiQ
2 −R

′

iQ(yi −Qi) +Ri(Q−Qi)−RiQi

= R
′′

i yiQ
2 + (Qi − yi)(R

′

iQ−Ri).

Since R
′′

i ≦ 0 and R
′

iQ−Ri ≦ 0, the value of Ti is less than or equal to zero if
Qi ≧ yi for all i, that is, there is no dominant player.
The Jacobian of system (4) at the equilibrium has the special form

JC =






K1S1 K1T1 . . . K1T1
K2T2 K2S2 . . . K2T2
...

...
...

KnTn KnTn . . . KnSn





. (8)

where Si and Ti are now at their equilibrium levels.
By introducing

D = diag(K1u1, . . . ,Knun), a =






K1T1
...

KnTn




 and 1T = (1, . . . , 1).

Here ui denotes its equilibrium level. We have

JC =D + a1T (9)

with characteristic polynomial

ϕC(λ) = det(D ++a1T − λI)

= det(D − λI) det(I + (D − λI)−1a1T )

= Πni=1(Kiui − λ)

	

1 +
n�

i=1

KiTi

Kiui − λ




where we used the well known fact that if u and v are n-element column vectors
and I is the n × n identity matrix, then det(I + uvT ) = 1 + vTu, (Okuguchi
and Szidarovszky (1999)). The potential eigenvalues are theKiui < 0 quantities
and the roots of equation

n�

i=1

KiTi

Kiui − λ
+ 1 = 0. (10)

Let kC(λ) denote the left hand side, then clearly

lim
λ→±∞

kC(λ) = 1, lim
λ→Kiui−0

kC(λ) = −∞, lim
λ→Kiui+0

kC(λ) = +∞
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and

k′C(λ) =
n�

i=1

KiTi

(Kiui − λ)2
< 0

unless all Ti = 0. In this case the eigenvalues are KiSi < 0 for all i. The poles of
kC(λ) are the Kiui < 0 values. Figure 1 shows the graph of kC(λ) by assuming
that n = 4 and the players are numbered so that K1u1 < K2u2 < . . . < Knun.
If some of the Kiui values are equal, then the same argument can be used with
minor modifications.

Figure 1. n = 4 and K1u1 < K2u2 < K3u3 < K4u4

Notice that (10) is equivalent to a polynomial equation of degree n. There is
one root before K1u1, and one root inside each interval (Kiui,Ki+1ui+1) for
i = 1, 2, . . . , n − 1. So we found n real negative roots. So all eigenvalues are
negative implying the following result.

Proposition 1 The equilibrium is always locally asymptotically stable with con-
tinuous time dynamics (3), if no dominant player is present.

4 Discrete Dynamics

In the case of discrete time scales system (3) is modified as

yi(t+ 1) = yi(t) +Kifi(yi(t), Qi(t)) (11)

with Jacobian matrix

JD = I + JC = I +D + a1T . (12)
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The characteristic polynomial has the form

ϕD(λ) = det(I +D + a1T − λI)

= det(I +D − λI) det(I + (I +D − λI)−1a1T )

= Πni=1(1 +Kiui − λ)

	

1 +
n�

i=1

KiTi

1 +Kiui − λ




.

The possible eigenvalues are 1+Kiui for i = 1, 2, . . . , n and the solutions of
equation

kD(λ) =
n�

i=1

KiTi

1 +Kiui − λ
+ 1 = 0. (13)

Similarly to function kC(λ) it is easy to see that

lim
λ→±∞

kD(λ) = 1, lim
λ→1+Kiui−0

kD(λ) = −∞, lim
λ→1+Kiui+0

kD(λ) = +∞,

k′D(λ) =
n�

i=1

KiTi

(1 +Kiui − λ)2
≦ 0,

and the poles are the 1+Kiui values. The graph of function kD(λ) is shown in
Figure 2. There is one root before 1 +K1u1 and a root between each interval
(1+Kiui, 1+Ki+1ui+1). All roots are therefore less than 1, and they are larger
than −1 if for all i, 1 +Kiui > −1 and kD(−1) > 0.

Figure 2. Graph of function kD(λ)

These conditions can be written as

Ki <
−2

ui
for all i, (14)
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and
n�

i=1

KiTi

2 +Kiui
> −1. (15)

when the denominator is positive by (14).
The left hand side of (15) is negative unless all Ti = 0, in which case the

eigenvalues are the 1+Kiui values, which are between −1 and +1 if (14) holds.
Relation (15) can be interpreted as the speeds of adjustments have to be suffi-
ciently small.

Proposition 2 Assume that no dominant player is present. The equilibrium
with the discrete time dynamics is locally asymptotically stable if (14) and (15)
hold.

In the symmetric case Ti ≡ T , ui ≡ u, Ki ≡ K, yi(0) ≡ y(0). Clearly there is
no dominant player, so the continuous dynamics is locally asymptotically stable.
Relations (14) and (15) are simplified as

K <
−2

u
(16)

and
nKT

2 +Ku
> −1,

that is,

K <
−2

nT + u
, (17)

which is the stability condition for the discrete time system.
Consider next the semi-symmetric case where for players i (1 ≦ i ≦ m),

Ti ≡ T, ui ≡ u,Ki ≡ K

and for players j (m+ 1 ≦ j ≦ n),

Ti = T̄ , uj ≡ ū and Kj ≡ K̄.

Then relation (14) has the forms

K < −
2

u
and K̄ <

−2

ū
(18)

and (15) can be rewritten as

mKT

2 +Ku
+
(n−m)K̄T̄

2 + K̄ū
> −1

or

K(2mT +2u)+ K̄(2(n−m)T̄ +2ū)+KK̄(mTū+(n−m)T̄ u+uū) > −4 (19)
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The coefficients of K and K̄ are negative with a positive coefficient of KK̄.
This relation can be rewritten as

K̄
�
K
�
mTū+ (n−m)T̄ u+ uū



+
�
2(n−m)T̄ + 2ū


�
> −4−K (2mT + 2u)

or
K̄ (AK −B) > −4 + CK (20)

with
A = mTū+ (n−m)T̄ u+ uū,

B = −
�
2(n−m)T̄ + 2ū

�

and
C = − (2mT + 2u)

all being positive.
Relation (20) can be rewritten as

K̄






>
−4 + CK

AK −B
if AK −B < 0

<
−4 + CK

AK −B
if AK −B > 0

(21)

It is easy to show that
4

C
<
B

A
and

4

B
<
C

A
.

Moreover

−
2

u
>
B

A
and-−

2

ū
>
C

A
,

furthermore point �
−
2

u
,−
2

ū

�

is on the upper part of the hyperbola. So the stability region is the lower shaded

9



area in Figure 3.

FIgure 3. Stability region in the (K, K̄) plane

5 Conclusions

This paper examined the local asymptotical stability of the unique Nash equi-
librium of asymmetric contest games with continuous and discrete time scales
under gradient adjustments. In both cases the critical condition was that the
game had no dominant player at the equilibrium level, which guaranteed the
local asymptotical stability at the equilibrium in continuous dynamics. In the
discrete case, in addition, the speeds of adjustments had to be sufficiently small
to guarantee local asymptotical stability. Symmetric and semisymmetric cases
were analyzed in detail.
Further research can continue in two different directions. First, the global

asymptotical stability of the equilibrium can be examined, and second, time
delays can be introduced into the models and an interesting question is to see
how the delays can influence the asymptotical behavior of the equilibrium.

Conflict of Interest: The authors declare that they have no conflict of inter-
est.
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