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1 Introduction

Shibata and Saito (1980, SS henceforth) consider a Lotka-Volterra competition
system with two discrete time delays and numerically illustrate that this system
can generate rich dynamic behavior including chaos. This paper revisits their
study and reconsiders its dynamic structure from an analytical as well as a
numerical point of view. In particular, it detects the roles of the two discrete
time delays for the birth of various dynamics.

Their version is expressed as

ẋ(t) = x(t) [ε1 − a11x(t− τx)− a12y(t)]

ẏ(t) = y(t) [ε2 − a21x(t)− a22y(t− τy)]
(1)

where x(t) and y(t) are the population densities of two competitive species at
time t, ε1 and ε2 denote the intrinsic growth rates, τx and τy are maturation
delays, the coefficients aij (i, j = 1, 2) are all positive in the competition sys-
tem. aii (i = 1, 2) is the crowding coefficient measuring the strength of the
intra-competition within species i whereas aij are the competition coefficients
measuring the strength of the inter-competition between the species, i and j.1

If there are no delays (i.e., τx = τy = 0), then system (1) is reduced to the
Lotka-Volterra competition system where the stationary states are

xe =
ε1a22 − ε2a12
a11a22 − a12a21

,

ye =
ε2a11 − ε1a21
a11a22 − a12a21

.

(2)

It is well-known that two species can coexist (i.e., xe > 0 and ye > 0) when the
intra-competition dominates the inter-competition, that is,

a11
a21

>
ε1
ε2
>
a12
a22

. (3)

A delay system in biology has a long history. If there are no competitors (i.e.,
a12 = a21 = 0), then the population of each species is governed by the delay
logistic equation that is called the Hutchinson equation (Hutchinson, 1948).
May (1973) retains τx > 0 but assumes away the delay of the species y, that
is, τy = 0 and discusses the delay effect on dynamics in the predator-prey
system in which ε2 < 0 and α21 < 0. Shibata and Saito (1980) numerically show
that the delay system (1) displays various dynamic behavior involving periodic
solution and nonperiodic or chaotic solutions. In this study, we aim to provide
an analytical underpinning for their numerical simulations. Further, we also
numerically verify the analytical results using a stability switching curve.

Numerous attempts have been conducted on stability of variants of the delay
Lotka-Volterra competition system. Song et al. (2004) replace the maturation

1Matsumoto and Szidarovszky (2019) consider a more general competition system in which
the hunting delays are included such as a12y(t− τy) and a21x(t− τx).
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delays with the hunting delays and show that the hunting delays are harm-
less. Zhang et al. (2009) study the occurrence of Hopf bifurcation when the
maturation and hunting delays coexist and they are equal. Zhang (2012) is con-
cerned with a slightly different version and discusses the stability of limit cycles
emerged via the Hopf bifurcation. In this study, in addition to periodic behav-
ior, we demonstrate that system (1) may give rise to the birth of complicated
dynamics via quasi period-doubling cascade.2

The rest of the study is organized as follows. Section 2 establishes the stabil-
ity condition of the non-delay Lotka-Volterra system as a benchmark. Section
3 examines a one-delay Lotka-Volterra model with τx = τy = τ . Section 4,
the main part of this study, derives a stability switching curve on which the
competition system just loses stability under τx �= τy. Section 5 performs some
numerical simulations to reproduce Shibata-Saito’s results and to ensure the
analytical results. Section 6 concludes this study.

2 No-Delay Model

The steady state (2) with condition (3) is also the unique steady state of (1).
To proceed to its stability, we linearize system (1) to obtain the homogeneous
correspondence,

ẋ(t) = −αxx(t− τx)− βxy(t)

ẏ(t) = −βyx(t)− αyy(t− τy).
(4)

where the new parameters are defined as

αx = a11x
e, αy = a22y

e, βx = a12x
e and βy = a21y

e.

Assuming exponential solutions, x(t) = eλtu and y(t) = eλtv with constants
u �= 0 and v �= 0, we obtain the corresponding characteristic equation,

P0(λ) + P1(λ)e
−λτx + P2(λ)e

−λτy + P3(λ)e
−λ(τx+τy) = 0 (5)

where

P0(λ) = λ
2 − βxβy, P1(λ) = αxλ, P2 = αyλ, P3(λ) = αxαy.

For τx = τy = 0, the characteristic equation is reduced to

λ2 + (αx + αy)λ+
�
αxαy − βxβy

�
= 0

where, due to (3),

αxαy − βxβy = (a11a22 − a12a21)xeye > 0.

Positive coefficients imply that the stationary state with no delays is locally
asymptotically stable. This result is well-known and summarized as follows.

2System (1) is considered to be a special version of Matsumoto and Szidarovszky (2019)
However this study shows that system (1) can exhibit qualitatively different dynamics.
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Theorem 1 Given (3), the steady state of system (1) with τx = τy = 0 is
locally asymptotically stable.

3 One-Delay Model

We draw attention to the delay system but start with a simpler case in which
system (1) has identical delays, τx = τy = τ > 0. The corresponding character-
istic equation is obtained from (5),

λ2 − βxβy + (αx + αy)λe−λτ + αxαye−2λτ = 0

or multiplying both sides by e−λτ reduces it to
�
λ2 − βxβy

�
eλτ + (αx + αy)λ+ αxαye

−λτ = 0. (6)

It is apparent that λ = 0 is not a solution under condition (3). Inserting a
possible solution λ = iω with ω > 0 for some τ into (6) and then separating the
real and imaginary parts give

�
αxαy − βxβy − ω2

�
cosωτ = 0,

�
αxαy + βxβy + ω

2
�
sinωτ − (αx + αy)ω = 0.

(7)

Define ω∗ by ω2∗ = αxαy − βxβy with which the first equation of (7) holds.
The second equation with ω∗ can be rewritten as

sinω∗τ =
(αx + αy)ω∗
2αxαy

. (8)

The condition for |sinω∗τ | ≤ 1 is

ω2∗ ≤
4 (αxαy)

2

(αx + αy)
2

or using the definition of ω∗, it is transformed to

αxαy

�

1− 4αxαy

(αx + αy)
2

�

≤ βxβy. (9)

In Figure 1 in which βxβy = 1 is assumed,3 the downward-sloping hyperbolic
curve is described by αxαy = βxβy. The inequality condition (9) with αxαy ≥
βxβy is satisfied in the yellow region including the shaded one and violated in
the green region whose boundary is described by the condition (9) with equality.
Hence, the critical value of τ can be determined as

τ∗,m =
1

ω∗

�
sin−1

�
(αx + αy)ω∗
2αxαy

�
+ 2mπ

�
for m = 0, 1, 2, ... . (10)

3For any other values of βxβy, qualitatively the same figure can be obtained.
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with
ω∗ =

	
αxαy − βxβy > 0.

Now suppose that ω2 �= αxαy−βxβy. From the first equation of (7), we have

cosωτ = 0 and sinωτ = ±1.

In case of sinωτ = −1, the second equation of (7) is

ω2 + (αx + αy)ω +
�
αxαy + βxβy

�
= 0.

Since αx + αy > 0 and αxαy + βxβy > 0, the real parts of the solutions are
negative. Hence no stability switch occurs and the delay is harmless. We
eliminate this case for further consideration. On the other hand, in case of
sinωτ = +1, the second equation is

ω2 − (αx + αy)ω +
�
αxαy + βxβy

�
= 0. (11)

The solutions are positive,

ω± =
1

2



αx + αy ±

√
D
�

where the discriminant D is

D = (αx − αy)2 −
�
2
�
βxβy

�2
.

The conditions for the non-negative D are

αy ≤ αx − 2
	
βxβy or αy ≥ αx + 2

	
βxβy. (12)

Solving cosωτ = 0 gives the critical values of the delay,

τ+,n =
1

ω+

π
2
+ 2nπ

�
and τ−,n =

1

ω−

π
2
+ 2nπ

�
for n = 0, 1, 2, ... .

and
0 < τ+,0 < τ−,0.

In the yellow region bounded by the two lines, the discriminant is negative
and thus we have the following result concerning stability switching:

Lemma 2 In the yellow region in which D < 0, the steady state of system (1)
with τx = τy = τ is locally asymptotically stable for τ < τ∗,0 and unstable for
τ > τ∗,0 where

τ∗,0 =
1

ω∗
sin−1

�
(αx + αy)ω

∗

2αxαy

�
.

On the other hand, in the green region we have the following:
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Lemma 3 In the green region in which condition (9) is violated, the steady state
of system (1) with τx = τy = τ is locally asymptotically stable for τ < τ+,0 and
unstable for τ > τ+,0 where

τ+,0 =
π

2ω+

Let us denote the left hand side expressions of the second equation of (7)
and (11) by f(ω) and g(ω), respectively,

f(ω) = sinωτ · ω2 − (αx + αy)ω + sinωτ(αxαy + βxβy)

and
g(ω) = ω2 − (αx + αy)ω +

�
αxαy + βxβy

�
.

Subtracting f(ω) from g(ω) yields

g(ω)− f(ω) =
�
ω2 +

�
αxαy + βxβy

��
(1− sinωτ) > 0 unless sinωτ = 1.

It has been verified that

f(ω∗) = 0 and g(ω±) = 0

and
sinω∗τ∗,0 < 1 and sinω+τ+,0 = 1.

The inequality g(ω) > f(ω) implies

ω+ < ω∗

and consequently
τ∗,0 < τ+,0.

Hence we have the following result:

Lemma 4 In the shaded yellow region in which condition (9) holds and D >
0, the critical value determining stability switching is τ∗,0 implying that the
steady state of system (1) with τx = τy = τ is locally asymptotically stable for
τ < τ∗,0 and unstable for τ > τ∗,0

6



Figure 1. Stability regions for system (1) with τx = τy = τ .

4 Two Delay Model

We now suppose τx > 0, τy > 0 and τx �= τy and consider how such delays
affect stability of model (4). We can see that λ = 0 is not a solution of the
characteristic equation (5) and thus look for purely complex roots. To this end,
we assume that λ = iω with ω > 0 again. Then the characteristic equation is
changed to

P0(iω) + P1(iω)e
−iωτx + P2(iω)e

−iωτy + P3(iω)e
−iω(τx+τy) = 0 (13)

where

P0(iω) = −ω2 − βxβy, P1(iω) = iαxω, P2(iω) = iαyω, P3(iω) = αxαy. (14)

Applying the method developed by Matsumoto and Szidarovszky (2018) that
is based on Lin and Wang (2012), we derive the conditions of τx and τy un-
der which the characteristic roots are purely complex. Equation (13) can be
rewritten as

P0(iω) + P1(iω)e
−iωτx +

�
P2(iω) + P3(iω)e

−iωτx
�
e−iωτy = 0. (15)

Science
��e−iωτy

�� = 1, equation (15) has solution for τx if and only if

��P0(iω) + P1(iω)e−iωτx
�� =

��P2(iω) + P3(iω)e−iωτx
��

or squaring both sides generates the equivalent forms,

(P0(iω) + P1(iω)e
−iωτx)(P̄0(iω) + P̄1(iω)e

iωτx)

= (P2(iω) + P3(iω)e
−iωτx)(P̄2(iω) + P̄3(iω)e

iωτx)
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where over-bar indicates complex conjugate. After some calculations, this equa-
tion can be reduced to

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2Ax(ω) cosωτx − 2Bx(ω) sinωτx (16)

where the argument of Pi is omitted for notational simplicity. In the right hand
side of this equation, we have

Ax(ω) = Re
�
P2P̄3 − P0P̄1

�
= 0

and
Bx(ω) = Im

�
P2P̄3 − P0P̄1

�
= αxω

�
α2y − βxβy − ω2

�
(17)

where Pk(ω) for k = 0, 1, 2, 3 in (14) are used. Then equation (16) is reduced to

|P0|2 + |P1|2 − |P2|2 − |P3|2 = −2Bx(ω) sinωτx. (18)

Returning to equation (13), we can transform it in a different way,

P0 + P2e
−iωτy +

�
P1 + P3e

−iωτy
�
e−iωτx = 0. (19)

Then using exactly the same idea as before, we can arrive at the following form:

|P0|2 − |P1|2 + |P2|2 − |P3|2 = −2By(ω) sinωτy (20)

where
By(ω) = αyω

�
α2x − βxβy − ω2

�
. (21)

To find an appropriate pair of τx and τy satisfying equation (13), we examine
first the case of Bx(ω) = 0 and By(ω) = 0 and then proceed to the case of
Bx(ω) �= 0 or By(ω) �= 0.

4.1 Case 1: Bx(ω) = 0 and By(ω) = 0

Let ωx and ωy be positive solutions of Bx(ω) = 0 and By(ω) = 0,

ω2x = α
2
y − βxβy

and
ω2y = α

2
x − βxβy.

We denote the left hand sides of (18) and (20) by fx(ω) and fy(ω) and then
rewrite them by using (14),

fx(ω) = ω
4 +

�
2βxβy + α

2
x − α2y

�
ω2 −



(αxαy)

2 −
�
βxβy

�2�

fy(ω) = ω
4 +

�
2βxβy − α2x + α2y

�
ω2 −



(αxαy)

2 −
�
βxβy

�2�
.
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Solving fx(ω) = 0 and fy(ω) = 0 for ω2 gives

ω2x± =
α2y − α2x − 2βxβy ±

	�
α2x + α

2
y

�2
+ 4βxβy

�
α2x − α2y

�

2

and

ω2y± =
α2x − α2y − 2βxβy ±

	�
α2x + α

2
y

�2
+ 4βxβy

�
α2y − α2x

�

2
.

Apparently both solutions are identical, ω2x = ω2x+ and ω2y = ω2y+, if αx = αy
whereas they are different, ω2x �= ω2x+ and ω2y �= ω2y+, if αx �= αy. We impose
the slightly stronger conditions only for notational simplicity and then find the
pair of (τx, τy) for the characteristic equation (13).

Assumption 2. αx = αy = α and βx = βy = β.

Assumptions 2 leads to

Bx(ω) = By(ω) = αω(α
2 − β2 − ω2).

Consequently the solution for Bx(ω) = 0 and By(ω) = 0 is

ω∗ =

	
α2 − β2 > 0

where the inequality is due to Assumption 1. Also under Assumption 2, the two
species are symmetric so that we focus on the first one henceforth. Equation
(15) can be reduced to

e−iωτy = −P0(iω) + P1(iω)e
−iωτx

P2(iω) + P3(iω)e−iωτx
. (22)

We use the Euler’s formula for the left hand side and rationalize the denominator
of the right hand side to have

cosωτy − i sinωτy = −
mx

dx
− inx

dx
(23)

where
dx = α

2


(cosωτx)

2
+ (ω − α sinωτx)2

�
> 0

mx = − (αβ)2 cosωτx (24)

and
nx = α

�
2α2ω − α

�
2α2 − β2

�
sinωτx

�
(25)

Comparing both sides, we have

cosωτy = −
mx

dx
and sinωτy =

nx
dx
. (26)

For further development, we need to specify the parameter values. So we take
the same specification that is adopted by Shibata and Saito (1980).
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Specification I. a11 = a22 = 2, a12 = a21 = 1 and ε1 = ε2 = 2.

With Specification 1, the reduced parameters have the following values,

αx = αy = α =
4

3
and βx = βy = β =

2

3
.

The graphs of −mx/dx and nx/dx are illustrated as red and blue curves for
τx ∈ (0, 2π/ω∗) in Figure 1. The red curve intersects the horizontal axis twice
at which mx = 0 or cosω∗τx = 0 from (24). Hence we have ω∗τx = π/2 at
point B and ω∗τx = 3π/2 at point D,

τBx =
π

2ω∗
≃ 1.36 and τDx =

3π

2ω∗
≃ 4.08.

It is also seen that the blue curve intersects the horizontal axis twice at which
nx = 0 or from (25)

sinω∗τx =
2αω

2α2 − β2
=
8
√
3

14
≃ 0.9897 < 1.

Since points A and C are left, respectively, right to point B and sinω∗τx takes
the maximum value +1 at point B with ω∗τBx = π/2, we have ω∗τAx < π/2 at
point A at which cosω∗τAx > 0 and ω∗τCx > π/2 at point C at which cosω∗τCx <
0. Hence

τAx =
1

ω∗
sin−1

�
8
√
3

14

�

≃ 1.24

and

τCx =
1

ω∗

�

π − sin−1
�
8
√
3

14

��

≃ 1.48.

Figure 2. Graphs of −mx/dx (red) and nx/dx (blue)
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The interval [0, 2π/ω∗] is divided into five subintervals. In the first subin-
terval (0, τAx ), it is seen that cosω∗τy > 0 and sinω∗τy > 0. Hence, from
(26), solving cosω∗τy = −mx/dx and sinω∗τy = nx/dx for τy determines the
corresponding values of τy satisfying equation (22),

τ cy(τx) =
1

ω∗
cos−1

�
−mx

dx

�
and τ sy(τx) =

1

ω∗
sin−1

�
nx
dx

�
(27)

where the superscripts c and s stand for cos and sin, respectively. In the same
way, we have cosω∗τy > 0 and sinω∗τy < 0 for τx ∈

�
τAx , τ

B
x

�
in which

τ cy(τx) =
1

ω∗

�
π + cos−1

�
mx

dx

��
and τsy(τx) =

1

ω∗

�
2π + sin−1

�
nx
dx

��
. (28)

For τx ∈
�
τBx , τ

C
x

�
, cosω∗τy < 0 and sinω∗τy < 0 imply

τ cy(τx) =
1

ω∗

�
π + cos−1

�
mx

dx

��
and τ sy(τx) =

1

ω∗

�
π − sin−1

�
nx
dx

��
. (29)

For τx ∈
�
τCx , τ

D
x

�
, cosω∗τy < 0 and sinω∗τy > 0 imply

τ cy(τx) =
1

ω∗
cos−1

�
−mx

dx

�
and τsy(τx) =

1

ω∗

�
π − sin−1

�
nx
dx

��
. (30)

Finally, we have cosω∗τy > 0 and sinω∗τy > 0 for τx ∈
�
τDx , 2π/ω

∗
�

as in the
first subinterval,

τ cy(τx) =
1

ω∗
cos−1

�
−mx

dx

�
and τsy(τx) =

1

ω∗

�
sin−1

�
nx
dx

��
. (31)

Since τ cy(τx) = τ
s
y(τx) holds for τx ∈ [0, 2π/ω∗], the solution can be denoted by

τy(τx).
The locus of (τx, τy(τx)) for τx ∈ [0, 2π/ω∗] constructs the crossing curves in

case of Bx(ω) = 0 that are illustrated by two black-red curves in Figure 3. More
precisely, the inner concave-shaped black segment is described by (27) whereas
the outer convex-shaped curve consists of four segments, from left to right, the
upper-most red segment by (28), the black segment by (29), the red segment
with strong curvature by (30) and the right-most black segment by (31). The
results obtained so far are summarized as follows:

Theorem 5 If Bx(ω) = 0 for ω = ω
∗, αx = αy = α, βx = βy = β and α > β,

then the crossing curve is described by the locus of (τx, τy(τx)) where

τy(τx) =
1

ω∗
cos−1

�
−mx

dx

�
for τx ∈ (0, τAx ) ∪

�
τCx , τ

D
x

�
∪
�
τDx , 2π/ω

∗
�

11



and

τy(τx) =
1

ω∗

�
π + cos−1

�
mx

dx

��
for τx ∈

�
τAx , τ

B
x

�
∪
�
τBx , τ

C
x

�

where

ω∗ =

	
α2 − β2 > 0.

Figure 3. Crossing curves in case of αx = αy = α and βx = βy = β

4.2 Case 2: |Bx(ω)| > 0 and |By(ω)| > 0
In this section we assume away Assumption 2 and consider the case in which
Bx(ω) �= 0 and By(ω) �= 0. We first focus on Bx(ω) that can be written as

Bx(ω) = αxω (ωx + ω) (ωx − ω)

with

ωx =
	
α2y − βxβy.

It can be checked that there exist ϕx(ω) such that

ϕx(ω) = arg
�
P2P̄3 − P0P̄1

�
=






π

2
if Bx(ω) > 0 or ω < ωx

3π

2
if Bx(ω) < 0 or ω > ωx

implying that

sin [ϕx(ω)] =
Bx(ω)�
Bx(ω)2

= 1 and cos [ϕx(ω)] =
Ax(ω)�
Bx(ω)2

= 0

12



Rewriting the first equation as

Bx(ω) =
�
Bx(ω)2 sin [ϕx(ω)]

and using the addition theorem, we obtain

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2
�
Bx(ω)2 cos [ϕx(ω) + ωτx] . (32)

Then we have

|P0|2 + |P1|2 − |P2|2 − |P3|2

2
�
Bx(ω)2

= cos [ϕx(ω) + ωτx] ≤ 1. (33)

Hence a sufficient and necessary condition for the existence of τx > 0 satisfying
the above equation is

���|P0|2 + |P1|2 − |P2|2 − |P3|2
��� ≤ 2

�
Bx(ω)2

or

F (ω) =

|P0|2 + |P1|2 − |P2|2 − |P3|2

�2
− 4 [Bx(ω)]2 ≤ 0.

With Pk(iω) for k = 0, 1, 2, 3 and a new variable x = ω2, F (ω) can be trans-
formed to

F (x) = x4 + a3x
3 + a2x

2 + a1x+ x0 (34)

where

a3 = −2
�
α2x + α

2
y − 2βxβy

�
,

a2 = α
4
x + α

4
y + 4 (αxαy)

4 − 2βxβy
�
2α2x + 2α

2
y − 3βxβy

�
,

a1 = −2
�
α2x + α

2
y − 2βxβy

�
,

a0 =
�
αxαy − βxβy

�2 �
αxαy + βxβy

�2
.

This fourth order polynomial can be factorized as

x4 + a3x
3 + a2x

2 + a1x+ x0 = F1(x)F2(x)

where
F1(x) = x

2 −
�
α2x + α

2
y − 2βxβy

�
x+

�
αxαy − βxβy

�2

and
F2(x) = x

2 −
�
α2x + α

2
y − 2βxβy

�
x+

�
αxαy + βxβy

�2
.

Solving F1(x) = 0 yields two solutions,

x1 =
1

2

�
α2x + α

2
y − 2βxβy − (αx − αy)

	
(αx + αy)2 − 4βxβy

�
(35)
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and

x2 =
1

2

�
α2x + α

2
y − 2βxβy + (αx − αy)

	
(αx + αy)2 − 4βxβy

�
(36)

where the discriminant is positive,

(αx + αy)
2 − 4βxβy = (αx − αy)2 + 4

�
αxαy − βxβy

�
> 0.

Solving F2(x) = 0 also yields two solutions,

x3 =
1

2

�
α2x + α

2
y − 2βxβy − (αx + αy)

√
D
�

(37)

and

x4 =
1

2

�
α2x + α

2
y − 2βxβy + (αx + αy)

√
D
�
. (38)

where
D = (αx − αy)2 − 4βxβy � 0. (39)

The discriminant can have either sign, depending on the parameter specification,

D > 0 if |αy − αx| > 2
	
βxβy

and
D < 0 if |αy − αx| < 2

	
βxβy.

Lemma 6 If αx = αy, then F (ω) ≥ 0 for any ω ≥ 0.

Proof. (35) and (36) imply x1 = x2 if αx = αy and F1(x) > 0 otherwise. (39)
implies D < 0 leading to F2(x) > 0 for any x ≥ 0.

This lemma implies that there is no ω making F (ω) < 0. Therefore no stability
switch occurs in case of |Bx(ω)| > 0.

Subtracting F2(x) from F1(x) presents

F1(x)− F2(x) = −4αxαyβxβy < 0.

The inequality leads to the following two results where ωi is the positive solution
of ω2i = xi for i = 1, 2, 3, 4.

Lemma 7 If |αy − αx| < 2
�
βxβy, then F (ω) < 0 for ω ∈ (ω1, ω2).

Proof. F2(x) > 0 always and F1(x) < 0 for x ∈ (x1, x2) and F1(x) ≥ 0
otherwise.

Lemma 8 If |αy − αx| > 2
�
βxβy, then F (ω) < 0 for ω ∈ (ω1, ω3) ∪ (ω4, ω1).

14



Proof. It is clear that F1(x) < 0 and F2(x) > 0 for x ∈ (x1, x3) ∪ (x4, x1) and
F1(x) ≥ 0 and F2(x) ≥ 0 otherwise.

Let us define ψx(ω) by

ψx(ω) = cos
−1

�
|P0|2 + |P1|2 − |P2|2 − |P3|2

2
�
Bx(ω)2

�

.

Comparing this expression with (33) determines the critical values of delay τx,

τ±x,m =
1

ω
[±ψx(ω)− ϕx(ω) + 2mπ] for m = 0, 1, 2, ... (40)

We now draw attention to the case of By(ω) �= 0 to determine the corre-
sponding values of delay τy. We return to the characteristic equation (13) and
alternatively put it as

P0(iω) + P2(iω)e
−iωτy +

�
P1(iω) + P3(iω)e

−iωτy
�
e−iωτx = 0. (41)

The similarity of (41) to (15) is clear. Hence, in the same way as before, we can
derive the critical value of τy as

τ±y,n =
1

ω

�
±ψy(ω)− ϕy(ω) + 2nπ

�
for n = 0, 1, 2, ... (42)

where
Ay(ω) = Re

�
P1P̄3 − P0P̄2

�
= 0,

By(ω) = Im
�
P1P̄3 − P0P̄2

�
= αyω

�
α2x − βxβy − ω2

�
,

ψy(ω) = cos
−1

�
|P0|2 − |P1|2 + |P2|2 − |P3|2

2
�
By(ω)2

�

and

ϕy(ω) = arg
�
P1P̄3 − P0P̄2

�
=






π

2
if By(ω) > 0 or ω < ωy,

3π

2
if By(ω) < 0 or ω > ωy

with ωy being a positive solution of By(ω) = 0. In case of By(ω) = 0, we solve
(41) to have

e−iωτx = −P0(iω) + P2(iω)e
−iωτy

P1(iω) + P3(iω)e−iωτy
. (43)

We can derive τx(τy) from (43) in the same way as deriving τy(τx) from (22).
Since equations (22) and (43) are different expression for the same characteristic
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equation (13), the crossing curve (τx(τy), τy) is identical with the crossing curve
(τx, τy(τx)). Concerning ϕy(ω), we need a condition similar to F (ω),

G(ω) =
���|P0|2 − |P1|2 + |P2|2 − |P3|2

���
2

− 4By(ω)2 ≤ 0.

Since F (ω) = G(ω), the solutions of F (ω) = 0 also solve G(ω) = 0 although
the positive solution of Bx(ω) = 0 is different from the solution of By(ω) = 0,

ωx ⋚ ωy according to αx � αy.

Under Specification 1, Theorem 5 indicates that the stability switching curve
is described by equation (27), that is, the inner concave-shaped curve that is
reproduced in Figure 4(A). This curve corresponds to the concave curve in
Figure 1 of Shibata and Saito (1980, p.202) in which no derivations for their
curve are given.

Specification II. a11 = 2, a12 = 5/2, a12 = a21 = 1 and ε1 = ε2 = 2.

Under Specification II, the reduced parameters take the following values,

αx =
3

2
> αy =

5

4
, βx =

3

4
and βy =

1

2
.

It is confirmed that αy > αx − 2
�
βxβy, implying that F (ω) = 0 as well as

G(ω) = 0 has two solutions,

ω1 ≃ 1.106 and ω2 ≃ 1.356,

Further, solving Bx(ω) = 0 and By(ω) = 0 yields solutions,

ωx ≃ 1.089 and ωy ≃ 1.369.

Hence we have
ωx < ω1 < ω2 < ωy

implying that

Bx(ω) =
3π

2
and By(ω) =

π

2
for ω ∈ (ω1, ω2) .

The stability switching curves are described by two segments,

�
τ+x,0(ω), τ

−

y,1(ω)
�

and
�
τ−x,1(ω), τ

+
y,0(ω)

�
for ω ∈ (ω1, ω2)

where τ+x,0(ω) of the former segment takes negative values, so only the latter
segment is illustrated in Figure 4(B). Notice that in Figures 4(A) and 4(B), we
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use the same notation for the points on the vertical and horizontal axes only for
notational simplicity.4

(A) αx = αy (B) αx > αy

Figure 4. Stability regions

5 Numerical Simulations

This section is divided into two parts. Numerical simulations under αx = αy
are performed in the first part and those under αx > αy in the second part.

5.1 Symmetric Case

Specification I is adopted in this subsection, with which the two species are
symmetric. In the first example, we assume the identical delays, τx = τy = τ
and simulate system (1) for 0 ≤ t ≤ T (= 2000) by increasing the value of the
delay along the diagonal of Figure 4(A). Two simulations are performed with
different initial functions.5 The red bifurcation diagram in Figure 5 is obtained
when the initial functions defined for t ≤ 0 are different,

φx(t) = x
e + 0.2 and φy(t) = y

e + 0.1

4 In partitular, in Figure 4(A)

τ0y ≃ 1.236, τ
a
y = 1.1, τ

b
y ≃ 0.907

and
τax ≃ 0.594, τ

b
x ≃ 0.907, τ

b
x ≃ 1.236.

On the other hand, in Figure 4(B)

τ0y ≃ 1.288, τ
a
y = 1.1, τ

b
y ≃ 0.911

and
τax ≃ 0.682, τ

b
x ≃ 0.911, τ

b
x ≃ 1.099.

5 It is already confirmed that the same shape of the bifurcation diagrams are obtained
regardless the particular values of the inital functions.
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and the blue bifurcation diagram when the initial functions are identical,

φx(t) = x
e + 0.1 and φy(t) = y

e + 0.1.

Since the blue diagram is placed on the red one in Figure 5, the two are identical
for τ < τ b and τ > τ s(≃ 1.106)6 while they are different for τ b < τ < τ s. We
observe only the red one for a while and refer to the blue one shortly after.
According to Lemma 4, the one-delay system has the critical value of the de-
lay, τ∗,0 at which stability is lost. On the other hand, the diagonal of Figure
4(A) crosses the concave-shaped stability curve at τ bx = τ by = τ b(≃ 0.907) at

which the steady state loses stability. In a natural consequence, τ∗,0 = τ b. As
shown in Figure 5(A), stability is lost at τ b and periodic solutions are obtained
for τ > τ b. The numerical result agrees with the analytical result obtained in
Lemma 4. We now turn attention to the difference of the two curves in interval
(τ b, τs). This difference implies that the steady state is stable along the blue
curve while it bifurcates to a periodic behavior along the red curve. In other
word, the steady state coexists with periodic solutions or multistability emerges.
Furthermore, interesting phenomenon is observed in Figure 5(B) in which for
τ > τs, a trajectory with the same initial functions seems to quickly converge
to the steady state denoted by the red line but turns out eventually to converge
to a periodic solution, transiently stable but finally unstable. These findings are
obtained numerically.

(A) Bifurcation diagram (B) Time trajetory

Figure 5. Dynamics in the one-delay system

In the second example, we examine the case of τx �= τy. In particular, fixing
τy = τay, the value of τx is increased along the horizontal dotted line at τay
from 0 to 3/2 in Figure 4(A). The resultant bifurcation diagram is given in
Figure 6(A) and the phase diagram with τx = 1.15 in Figure 6(B). As usual,
dynamics becomes more complicated via a quasi period-doubling cascade with

6The value of τs is numerically determined while the value of τb is analytically obtained.
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some windows as the value of τx increases.

(A) Bifurcation diagram (B) Phase diagram

Figure 6. Dynamics of the second example

In the third example, we confirm the numerical results obtained by SS from
a different view point. Figure 7 presents a bifurcation diagram with respect to
τy that is increased from 0.5 to 0.9, given τx = 1.6. As seen in Figure 5(A), the
point (τx, τy) = (1.6, 0) is located outside of the yellow region. Thus those
points on the vertical line at τx = 1.6 are unstable. The dotted vertical lines
stand at τay = 0.6, τ by = 0.77, τ cy = 0.85 and τdy = 0.85, those of which are
taken by SS in their Figure 2(a), Figure 2(b), Figure 3 and Figure 4(b). The
bifurcation diagram indicates the birth of limit cycle for τy = τ

a
y, a two period

cycle for τy = τ
b
y, and complicated dynamics for τy = τ

c
y and τy = τ

d
y.

,
Figure 7. Bifurcation diagram with respect to τy, τx = 1.6
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5.2 Asymmetric Case

In this subsection, Specification II is used for which αx > αy, when the species
are asymmetric. In the fourth example, we take the one-delay model again and
the value of τ is increased along the diagonal in Figure 4(B) that crosses the
stability switching curve at τ bx = τ by ≃ τ b ≃ 0.911. It is seen in Figure 8(A)
that the one-delay system can generate complicated dynamics as the value of
τ becomes larger than about 1.5. In the fifth and final example, τy is fixed at
τy = τay = 1.1 and τx is increased along the horizontal dotted line at τay. The
resultant bifurcation diagram is given in Figure 8(B) that is distorted but not
so much different than Figure 6 in the symmetric case.

(A) τx = τy (B) τx �= τy

Figure 8. Bifurcation diagrams in the fourth and fifth examples

6 Concluding Remarks

The Lotka-Volterra competition system was examined and the effect of two time
delays was analyzed. It was first demonstrated that the steady state is locally
asymptotically stable without delays. If the delays are equal, then the model
becomes a one-delay system. The threshold value of the delay was determined
when stability was lost. If the delays are different, then a two-delay system is ob-
tained. The stability switching curves were analytically determined and verified
numerically. The numerical results showed that the unstable two-delay system
may exhibit periodic behavior, multistability, quasi-period doubling cascade and
even complicated dynamics depending on model parameters.

20



References

Hutchinson, G., Circular causal systems in ecology, Annals of the New York
Academy of Sciences, 50, 221-246, 1948.

Lin, X. and Wang, E., Stability analysis of delay differential equations with
two discrete delays, Canadian Applied Mathematics Quarterly, 20, 579-
532, 2012.

Matsumoto, A. and Szidarovszky, F., Stability switching curves in a Lotka-
Volterra competition system with two delays, IERCU #310, 2019. https://www.chuo-
u.ac.jp//research/institute/publication/discussion.

Matsumoto, A. and Szidarovszky, F., Dynamic oligopolies with time delays,
Springer-Verlag, Tokyo, 2018.

May, R., Time delay versus stability in population models with two and three
trophic levels, Ecology, 54, 315-325, 1973.

Shibata, A. and Saito, N., Time delays and chaos in two competing species,
Mathematical Biosciences, 51, 199-211, 1980.

Song, Y., Han, M. and Peng, Y., Stability and Hopf bifurcations in a competi-
tive Lotka-Volterra system with two delays, Chaos, Solitions and Fractals,
22, 1139-1148, 2004.

Zhang, J., Stability and bifurcation periodic solutions in a Lotka-Volterra com-
petition system with multiple delays, Nonlinear Dynamics, 70, 849-860,
2012.

Zhang, J., Jin, Z., Yan, J. and Sun, G., Stability and Hopf bifurcation in a
delayed competition system, Nonlinear Analysis, 70, 658-670, 2009.

21


	No312冊子ロゴ有（松本・ｼﾀﾞ）
	DPno312

