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Abstract

This study proposes an equilibrium model of the term structures of bonds and equities,

which has a similar descriptive ability to the reduced-form model proposed by Lettau and

Wachter (LW) (J. Financial Economics, 2011), and yet offers economic implications about

preferences and consumption dynamics. The ability is obtained by letting the parameters

of recursive utility depend on state variables of the economy. The model is calibrated by

matching it with the LW model, showing that it can produce the term structure of real

interest rates with either a positive or a negative slope and the term structure of dividend

risk premiums with a negative slope, both of which stand as challenges to current pricing

models. It also shows that while the implied behavior of state-dependent time preference

is reasonable, modifications of parameter values and cash-flow processes are necessary for

state-dependent risk aversion to behave reasonably.

Keywords: Term structure, Interest rate, Dividend strip, Risk premium, Sharpe ratio, Re-
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1 Introduction

The pricing of cash flows at various points in time is one of the central issues in finance. The

term structure of interest rates, which has long been studied, is based on fixed cash flows.

Stochastic cash flows such as dividends lead to the term structure of dividend strips or zero-

coupon equities, which is of relatively recent focus. This study builds an equilibrium model

of the term structures of zero-coupon bonds and equities and discusses the preferences and

consumption dynamics implicit in these term structures.

Essentially, any equilibrium model can price any asset. However, few models aim to explain

both zero-coupon bonds and equities from a term-structure perspective. To model their term

structures, at least two challenges are known. The first is the term structure of real interest

rates, which is upward-sloping, flat, or downward-sloping. This indecisive shape in turn requires

a model to be flexible. The second is the term structure of risk premiums of dividend strips,

which is on average downward-sloping, as evidenced by various data sources such as index options

(van Binsbergen, Brandt, and Koijen, 2012), index dividend futures (van Binsbergen et al., 2013;

van Binsbergen and Koijen, 2017), and the cross-section of stocks (Weber, 2017).1 However, as

illustrated by van Binsbergen et al. (2012), the downward slope is difficult to explain by using

well-established equilibrium models such as the external habit model of Campbell and Cochrane

(1999), the long-run risks model of Bansal and Yaron (2004), and the disaster models of Barro

(2009) and Gabaix (2012). These challenges motivated recent studies to improve equilibrium

models, which are compared with ours below.

Without imposing equilibrium conditions, it may not be very difficult to model the term

structures of real interest rates and dividend risk premiums consistently with the stylized facts.

Indeed, Lettau and Wachter (2011) (hereafter LW) propose a reduced-form model that can

explain these term structures. The key driver behind their success is the specification of the

stochastic discount factor (SDF), which increases in response to a negative shock to realized

dividend growth. This specification is effective for raising the risk of holding short-term dividend

strips. Furthermore, LW assume that a negative shock to realized dividend growth is highly likely

to raise expected dividend growth. This assumption makes long-term dividend strips less risky

because they rise in value when the SDF is high. Consequently, the term structure of dividend

risk premiums slopes downward. In addition, the LW model can generate an upward-sloping,

1See also Schulz (2016), who points out that the evidence of a downward slope is inconclusive when returns to

short-term dividend claims are adjusted for taxes or liquidities.
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flat, or downward-sloping term structure of real interest rates by simply controlling for the

correlation between realized dividend growth and real risk-free rate.

These important mechanisms of the LW model are exogenous. Our goal is to endogenize

them. The purpose of this study is to develop an equilibrium model that offers implications

about the preferences and consumption dynamics and yet has a similar descriptive ability to

the reduced-form model proposed by LW. For this purpose, we ask what kind of utility function

supports LW’s SDF. Our answer is to let the parameters of a recursive utility function of the

representative agent depend on the state variables of the economy. Meanwhile, we model cash-

flow processes as simply as in the original LW model, although we later consider a minimal

extension of these processes.

The idea of state-dependent preferences itself is not new. In fact, Gordon and St-Amour

(2000, 2004), Melino and Yang (2003), Chabi-Yo, Garcia, and Renault (2008), Berrada, De-

temple, and Rindisbacher (2013), and Dew-Becker (2014) consider models in which preference

parameters themselves change over time. A distinct feature of the current model is that both

the risk-aversion and time-preference parameters are driven by many state variables such as

(expected) consumption and inflation growth as well as financial variables such as the risk-free

rate and price of risks, meaning that the agent can fine-tune her preferences by looking at the

economy and asset markets.

A state-dependent risk aversion is beneficial for amplifying the variation in the SDF and

hence capturing high equity risk premiums. Moreover, it leads to time-varying price of risks,

which naturally explains time-varying risk premium (the product of the price of risks and an

asset-specific quantity of risks) with the source of variation not limited to stochastic volatility,

or stochastic intensity in the case of jumps, of cash-flow processes. Furthermore, it offers an

additional channel of raising the slope of the term structure of nominal interest rates other than

the standard channel of a negative correlation between consumption and inflation growth. A

state-dependent time preference also has the advantage of generating various shapes in the term

structure of real interest rates. Suppose, for example, there is a shock that raises the SDF. If this

shock also affects agent’s time preference in a way in which she more heavily discounts (utilities

from) future cash flows, the prices of real bonds will fall, with the fall more significant for longer-

term bonds because of the compound effect. Real bonds therefore cannot be hedging instruments

against events that raise the SDF, and the real term structure will thus slope upward.

The parameters of the proposed model are calibrated by matching it with the LW model,
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which has two advantages. The first is to achieve a similar descriptive ability to the LW model.

Indeed, the proposed model can closely replicate various term-structure shapes generated by

the LW model. The second is to obtain an equilibrium foundation of the LW model. It is

possible to imply the preferences and consumption dynamics from the LW model through the

calibration of the proposed model. This calibration approach is similar in spirit to Backus,

Boyarchenko, and Chernov (2018), who first establish the facts about the level and shape of

the various term structures and then identify the features theoretical models (in both reduced

and structural forms) should possess to be consistent with the facts. As the facts here, we use

the term structures generated by the LW model. Unlike Backus et al. (2018) focusing on the

extension of cash-flow processes while using the standard recursive utility, we extend the utility

function with cash-flow processes kept simple.

The calibration results contain unrealistic implications about the preferences and/or con-

sumption dynamics. Most notably, given consumption volatility of less than 4% per year, the

mean and standard deviation of state-dependent risk aversion reach 150 and 128, respectively.

Conversely, when mean risk aversion reduces to 30, then the implied consumption volatility

reaches nearly 9%.

One possibility of these implications is that the parameter values originally calibrated by LW

are unrealistic. Since the LW model is a reduced-form model, it allows for many combinations

of the parameter values, any of which can explain the observed term structures. However, once

some equilibrium conditions are imposed, few combinations of the parameter values are consis-

tent with not only the observed term structures but also realistic preferences and consumption

dynamics. Our model uncovers which combinations are more appropriate. Another possibility

is that the dynamics of cash flows in the LW model are too simple. We then slightly deviate

from the LW model by introducing jumps into consumption and dividend growth, which are in-

terpreted as disasters. The change in parameter values and modification of cash-flow processes

together are shown to be effective for making risk aversion and consumption growth economically

plausible, while retaining the ability to explain the various term structures.

Related literature

Our model extends the recursive utility function of Epstein and Zin (1989, 1991) and Weil

(1989) in a way in which the risk-aversion and time-preference parameters depend on the state

variables of the economy. Melino and Yang (2003) consider the recursive utility function with
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state-dependent parameters more generally in that the elasticity of intertemporal substitution

(EIS) is also state-dependent; however, they do not model how these parameters evolve over

time. The law of motion of risk aversion is modeled by Gordon and St-Amour (2000), and

Chabi-Yo et al. (2008) by using Markov-switching processes. Berrada et al. (2013) also use

them for driving both risk aversion and time preference. Gordon and St-Amour (2004) and

Dew-Becker (2014) model risk aversion as driven by autoregressive processes. Our model is

similar to the last two studies regarding how to model time variation but different from them

in that time preference is also state-dependent and that the preference parameters are driven

by many state variables that drive the economy. Mehra and Sah (2002) study the impact of

changes in a time-preference parameter or a risk-aversion parameter on the volatility of stock

returns. We address the importance of time-varying preference parameters for describing the

term structures.

Whether and how risk preferences vary has been examined using surveys and/or experiments.

Andersen et al. (2008) perform field experiments using lottery choices with real monetary

rewards and find that risk preferences are state dependent with respect to personal finances but

not macroeconomic perspectives. Brunnermeier and Nagel (2008), Chiappori and Paiella (2011),

and Liu, Yang, and Cai (2016) ask whether wealth drives risk preferences, proxied by a share

of risk assets in wealth portfolio, reporting mixed results. Kuhnen and Knutson (2011), Cohn

et al. (2015), and Guiso, Sapienza, and Zingales (2018) relate the change in risk preferences

to emotions and find evidence that anxiety or fear can raise risk aversion by an economically

significant magnitude.2

The possibility that time preference is varying over time and/or across individuals has also

been considered; see Frederick, Loewenstein and O’Donoghue (2002) for a review and Halevy

(2015) for recent experimental evidence of the variation in subjective discount rate. Becker and

Mulligan (1997), and Stern (2006) model an endogenous subjective discount rate as a function

of future-oriented capital, invested for increasing the propinquity of future utilities. Unlike their

work, time preference in our model is driven by exogenous variables, which simplifies the con-

sumption problem and keeps the model tractable for asset-pricing purposes. The exogenous sub-

jective discount rate in this study is also different from the well-established, horizon-dependent

2In Cohn et al. (2015, pp. 863-4): “In standard theory, expectations typically do not affect preferences. If,

however, price expectations affect fear levels, they may also directly affect risk preferences.” We model preference

parameters as a function of state variables including those affecting expected cash-flow growth.
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time preference that discounts nearby cash flows more heavily than distant ones; see, for exam-

ple, Thaler (1981). However, Harris and Laibson (2001) and Luttmer and Mariotti (2003) show

that the horizon-dependent time preference leads to an effective subjective discount rate that

depends on the state variables affecting endowment growth (unless the agent has log utility).

Recent studies develop equilibrium asset-pricing models to explain the stylized facts about

dividend strips. We limit our attention to some of these studies that explicitly present the results

for the entire term structures of risk premiums and return volatilities of dividend strips, which

are summarized in Table 1; see van Binsbergen and Koijen (2017) for a broader review.

There are two main approaches to improving equilibrium models: one is to improve prefer-

ences and the other cash flows. This study belongs to the former. Recent studies taking the

preference approach are as follows. Curatola (2015) considers heterogeneous agents who have

loss-averse utility, in which the reference point between gain and loss is set at the external con-

sumption habit, so that unlike many standard habit formation models, consumption is allowed

to be below the habit. Because the loss-averse agents are willing to hold long-term dividend

claims to hedge the risks of future consumption being below the habit, the term structure of

dividend risk premiums slopes downward. Meanwhile, the term structure of real interest rates

slopes upward because long-term real bonds cannot hedge increase in the habit and hence de-

crease in the surplus consumption. Doh and Wu (2016) impose a structure on the long-run

risks model such that both the equilibrium wealth-consumption ratio and the price of a one-

period dividend strip are quadratic functions of the state variables and then reverse-engineer

the consumption and dividend processes consistent with the imposed structure. The resulting

risk premiums of dividend strips are first decreasing with maturity and then increasing, which

is not surprising as the premiums are also quadratic in the state variables. Our model is as

flexible as the reduced-form model proposed by LW and can generate both a downward-sloping

term structure of dividend risk premiums and either an upward-sloping or a downward-sloping

term structure of real interest rates. This flexibility is owing to state-dependent preferences.

Recent studies that modify cash-flow processes propose various mechanisms that make short-

run growth in dividends volatile and procyclical relative to long-run growth. Belo, Collin-

Dufresne, and Goldstein (2015) consider as a mechanism a stationary financial leverage ratio.

In their model, in response to a temporal increase (decrease) in corporate earnings measured

by EBIT, a firm is assumed to increase (decrease) debt to keep the leverage ratio to a station-

ary level, which further increases (decreases) the cash distributed to shareholders as dividends.
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Consequently, dividends change more intensely than earnings in the short run. In the long run,

however, both EBIT and dividends are exposed to the same amount of risks because of the

stationarity of the leverage ratio, which makes EBIT and dividends cointegrated. Favilukis and

Lin (2016) consider as a mechanism wage rigidity in a production economy, where a negative

transitory shock to technology, corresponding to poor economic states, reduces dividends more

than wages that are settled infrequently. Lopez, Lopez-Salido and Vazquez-Grande (2015) con-

sider a similar logic but instead use nominal rigidity that induces a countercyclical wage share

of output and hence a procyclical dividend share. Marfè (2017) also uses the wage channel

together with the limited participation of asset markets. Specifically, in his model, shareholders

who receive and consume dividends provide wage insurance to workers, which is effective for the

short run but not for the long run because both dividends and wages are cointegrated (i.e., they

share the same long-run risks). Then, dividends, or equivalently shareholders’ consumption in

equilibrium, are more prone to transitory shocks than wages. Meanwhile, only shareholders can

access asset markets. Consequently, in the eyes of pricing agents (i.e., shareholders), short-term

dividend strips look riskier than long-term dividend strips.

Hasler and Marfè (2016) introduce recovery after disaster into cash-flow processes as well as

the stochastic mean of cash-flow growth and stochastic intensity of disaster occurrence. While

the latter two features alone may generate an upward-sloping term structure of dividend risk

premiums as does the Wachter (2013) model, the fast recovery in dividend growth after a large

negative shock reduces the risks of holding long-term dividend strips, more than offsetting the

long-run risks associated with the stochastic mean growth and disaster intensity.

A novel approach taken by Croce, Lettau, and Ludvigson (2015) for generating a downward-

sloping term structure of dividend risk premiums is that they do not change cash-flow processes

from those originally specified by Bansal and Yaron (2004) but do change the way in which they

are estimated. In their framework, the agent overestimates the impact of short-run shocks to

consumption growth on dividend growth because she erroneously revises a long-run component

of dividend growth that is irrelevant to short-run shocks to consumption growth. Consequently,

she requires high premiums for holding short-term dividend strips. Conversely, long-run shocks

to consumption growth, which are originally small, are difficult to infer from dividend growth

because they are contaminated by large idiosyncratic shocks to dividend growth. Then, long-

run consumption risks are not properly priced into long-term dividend strips, and they do not

command high risk premiums.
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Our model taking the preference approach complements the models taking the cash-flow

approach. Indeed, it can easily be combined with more sophisticated cash flows, which further

improves statistical adequacy and economic plausibility.

The rest of the manuscript is organized as follows. Section 2 presents the model. Section 3

explains how to calibrate the parameters of the proposed model with a brief introduction of the

LW model. Section 4 verifies the performance of the proposed model and discusses the implied

consumption dynamics and preferences. Section 5 introduces jumps into cash-flow processes to

obtain more plausible economic implications. Section 6 concludes. The technical arguments are

collected in the appendices.

2 Model

Our model is built on a simple exchange economy, in which the flow of endowments is exogenously

provided and a rational, representative agent has recursive utility of Epstein and Zin (1989, 1991)

and Weil (1989). Section 2.1 first specifies the utility function and then extends it in a way in

which the risk-aversion and time-preference parameters depend on the state variables of the

economy. Sections 2.2–2.4 specify the endowment process and state-dependent preferences such

that the recursive equation for agent’s continuation value is solved in closed form for a certain

case, which is presented in Section 2.5. Section 2.6 derives an analytical approximation of the

continuation value for a general case, guided by the results of Section 2.5. Finally, Section 2.7

provides the pricing formulas for zero-coupon bonds and equities. The derivations of the key

equations are provided in Appendix A.

2.1 Preference

Let Ut denote the time-t utility of the representative agent, which is specified by the following

recursive form:

Ut = {(1− β)Cρt + βEt[U
1−γ
t+1 ]

ρ/(1−γ)}1/ρ , (1)

where Ct is aggregate consumption at time t to be determined by the agent (the decision variable)

and Et[·] stands for expectation conditioned on time t. There are three parameters in Ut: β

represents time preference or subjective discount factor (typically somewhat less than one), γ is

a coefficient of risk aversion, and ρ is related to EIS as 1/(1− ρ).

To capture the average term structures of zero-coupon bonds and equities, we let β and
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γ be state-dependent as in Melino and Yang (2003). Unlike their study, we set ρ to zero or

equivalently the EIS to unity. This restriction has the advantage of keeping the model simple

without reducing the goodness-of-fit to at least the average term structures. The unit EIS is

considered by Piazzesi and Schneider (2006) to model the term structure of interest rates. Hansen

et al. (2007) show that a model with the unit EIS can be used as a basis for approximating

more general models.

By substituting (βt, γt) for (β, γ) and ρ = 0 in (1),

Ut = C1−βt
t Et[U

1−γt
t+1 ]βt/(1−γt) . (2)

To solve the optimal consumption problem, we make the following assumptions: (i) βt and γt

are exogenous, and (ii) 0 < βt < 1 for all t. Assumption (i) is also considered by Gordon and

St-Amour (2004), who model the risk-aversion coefficient directly as a stochastic process. The

analogous assumption is made by Campbell and Cochrane (1999) in the form of the external

habit. Since βt and γt are not affected by the decision variable, the optimal consumption problem

can be solved in the same way as in the case of constant preference parameters. Assumption

(ii) guarantees that the period utility in (2) is concave with respect to the decision variable (see

(83) in Appendix A) and that wealth is positive in equilibrium (derived just below).

Let Cet > 0 be the time-t endowment and Wt be time-t wealth, which in the endowment

economy is the cum-dividend value of a claim to the flow of endowments. The gross rate of

return to wealth, Rw,t+1, is defined by

Rw,t+1 =
Wt+1

Wt − Cet
. (3)

Then, the budget constraint for the agent is

Rw,t+1(Wt − Ct) =Wt+1 . (4)

Let Vt be the continuation value, which is the solution to the following problem:

Vt = max
Ct

Ut subject to (4) . (5)

Because of the unit EIS, the optimal consumption, C∗
t , has a closed form irrespective of how βt

and γt are specified:

C∗
t = (1− βt)Wt . (6)

Unlike a constant-parameter case, the wealth-consumption ratio, Wt/C
∗
t , varies over time even

for the unit EIS.
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The equilibrium condition is that the agent consumes the given endowment, C∗
t = Cet .

Wealth in equilibrium, W ∗
t , is then solved as W ∗

t = 1
1−βtC

e
t from (6). By substituting W ∗

t into

(3), the equilibrium gross rate of return to wealth, R∗
w,t+1, is

R∗
w,t+1 =

1

βt

1− βt
1− βt+1

Cet+1

Cet
. (7)

The continuation value in equilibrium, V ∗
t , is the solution to the following recursive equation.

Define νt = V ∗
t /C

e
t , and νt satisfies

3

νt = Et

[(
νt+1

Cet+1

Cet

)1−γt
]βt/(1−γt)

. (8)

The SDF, Mt+1, is obtained as

Mt+1 = βt
1− βt+1

1− βt

(
νt+1

ν
1/βt
t

)1−γt (
Cet+1

Cet

)−γt
. (9)

In general, the recursive equation for νt cannot be solved in closed form, which makes the

SDF unavailable in closed form. In the next subsections, we specify the endowment process and

state-dependent preferences in a way in which νt is solved in closed form for a constant time

preference and approximately for a state-dependent time preference, keeping accuracy in mind.

2.2 Dynamics

Following LW, all the variables are assumed to be homoscedastic. Define ct = lnCet and ∆ct+1 =

ct+1 − ct. The evolution of the rate of growth in endowment, which is equal to aggregate

consumption in equilibrium, is specified as

∆ct+1 = µc + b′cxt + σ′czt+1 , (10)

where µc is the unconditional mean of the consumption-growth rate (given that the unconditional

mean of xt is zero), xt is a d-dimensional vector of state variables, and zt+1 is a (d+3)-dimensional

vector of i.i.d. normal random variables. The reason for the (d + 3) dimension will be clear

soon.

To price nominal zero-coupon bonds, a general price index, Πt, is introduced, which is

assumed to be determined exogenously. Define πt = lnΠt and ∆πt+1 = πt+1 − πt. Then, the

evolution of the rate of inflation growth is specified as

∆πt+1 = µπ + b′πxt + σ′πzt+1 , (11)

3We call νt the continuation value unless otherwise noted because V ∗
t does not explicitly appear in the discus-

sions to follow.
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where the parameters and variables are interpreted similarly to the consumption process in (10).

To price dividend strips, the flow of aggregate dividends needs to be specified. Let Dt be

the aggregate dividend paid at time t. Define dt = lnDt and ∆dt+1 = dt+1 − dt. Then, the

evolution of the rate of dividend growth is specified as

∆dt+1 = µd + b′dxt + σ′dzt+1 . (12)

The aggregate dividend can be regarded as levered consumption in an endowment economy.

The most direct description of this relation is Dt = (Cet )
a for some constant a > 1 (Abel,

1999; Campbell, 2003). In addition, it is often assumed that ∆ct+1 and ∆dt+1 are cointegrated

(Bansal, Gallant, and Tauchen, 2007). We consider their link when calibrating the parameters

in Section 3.2.

Finally, a d-dimensional state vector xt is assumed to follow

xt+1 = Φ′
xxt + σ′xzt+1 . (13)

Notice that the unconditional mean of xt is zero and that there are (d + 3) variables in the

economy.

For notational convenience, define sij = σ′iσj . For example, the covariance between innova-

tions in ∆ct+1 and ∆dt+1 is denoted as scd = σ′cσd (scaler). Likewise, the covariance between

innovations in ∆ct+1 and xt+1 is denoted as scx = σ′xσc (d × 1 vector) and the variance of

innovation in xt+1 as sxx = σ′xσx (d× d matrix).

2.3 Risk aversion

We specify the coefficient of risk aversion as a linear function of the state vector:

γt = µγ + b′γxt . (14)

The linear specification has the advantage of obtaining the SDF in closed form when time

preference is constant. It is also useful for a state-dependent time preference, which is discussed

in Section 2.6.

One caveat is that since xt is Gaussian, γt becomes negative with a positive probability. This

shortcoming is also seen in the previous work. Gordon and St-Amour (2004) and Dew-Becker

(2014) specify γt as a part of the VAR(1) system and an AR(1) process, respectively; however,

they do not theoretically impose the positivity of γt. The probability of γt < 0 in this study is

addressed after calibrating the parameters in Section 4.1.
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2.4 Time preference

We consider the following two specifications:

(S1) βt = β , (15)

(S2) βt = 1− exp{µβ + b′βxt} (µβ < 0) . (16)

S1 allows us to solve the recursive equation (8) for νt in closed form. The resulting formula

is exponentially linear in xt, leading to the SDF of the affine class. The prices of zero-coupon

bonds and equities are therefore available in closed form, which are also exponentially linear in

xt.

For any specification of βt except S1, νt has no closed form. To retain tractability, we thus

perform an analytical approximation of νt in a way in which the affine-pricing framework is

available as for S1. S2 aims to retain the accuracy of the approximation rather than being based

on economic reasoning or statistical adequacy. Specifically, once ln νt is approximated as a linear

function of xt (this approximation is inevitable for any specification of βt), the price of risks is

derived as a linear function of xt without further approximation. Intuitively, this is understood

by noting that the SDF given in (9) has a term 1− βt+1, which in S2 is exponentially linear in

xt+1. Moreover, the wealth-consumption ratio given in (6) is log-linear in xt.

One caveat of S2 is that βt becomes negative with a positive probability, violating the lower

bound constraint in Assumption (ii). The severity of this violation depends on the parameter

values and therefore is addressed after the calibration in Section 4.1.

2.5 SDF for S1

We derive the continuation value and SDF for S1. Although our interest is in S2, the results for

S1 are worth presenting for three reasons. First, they are an extension of the results presented

by Hansen, Heaton and Li (2008). The extension is in the coefficient of risk aversion: this is

constant in Hansen et al. (2008), whereas it is a linear function of the Gaussian state vector

in this study. Second, the fact that the SDF for S1 derived here is exact while that for S2 is

approximate clarifies the source of the approximation and provides the sense of the accuracy

(the cost of S2). Third, through the comparison with S1, it is highlighted how the risk-free rate

and price of risks are extended (the benefit of S2).

The recursive equation (8) for νt is solved as

νt = exp{µν + b′νxt} , (17)
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where µν and bν are the solutions to the following simultaneous equations:

µν = β

{
µν + µc −

1

2
vcν(µγ − 1)

}
, (18)

bν = β

(
bc +Φxbν −

1

2
vcνbγ

)
, (19)

where

vcν = vart[ln νt+1 +∆ct+1] = b′νsxxbν + 2s′cxbν + scc . (20)

(18) and (19) are quadratic equations because vcν is quadratic in bν . Appendix B provides the

condition for µν and bν to be real and addresses which real root to select. It is noted that setting

bγ = 0 in (19) (i.e., a constant risk-aversion coefficient) leads to the continuation value presented

by Hansen et al. (2008).

Next, we drive the price-of-risk vector, denoted as λt. This is the (negative) loading on the

innovation vector zt+1 in the SDF. By taking the log of (9) with βt replaced by β and defining

mt+1 = lnMt+1,

mt+1 = (1− γt) ln νt+1 − γt∆ct+1 + resmt , (21)

where resmt collects the remaining terms observed at time t. By substituting (17) and then (10)

and (13) into (21), we have mt+1 − Et[mt+1] = −λ′tzt+1, where

λt = (σxbν + σc)γt − σxbν . (22)

Since γt is assumed to be linear in xt, so is λt. Owing to γt, the risk premium of any asset is

also time-varying even without time-varying volatility of cash flows. A potential drawback of λt

in (22) is that it is driven by γt alone, which is a certain linear combination of the d-dimensional

state vector as given in (14). This implies that the correlation between risk premiums of any

pair of assets is one in absolute value. LW make a similar assumption that the price-of-risk

vector is driven by one factor and point out the drawbacks of this assumption.

The one-period real risk-free rate, denoted as rf,t+1, is the solution to the following Euler

equation: rf,t+1 = − lnEt[Mt+1]. Then, it is also derived as a linear function of xt:

rf,t+1 = Af +B′
fxt , (23)

where

Af = − lnβ + µc −
1

2
scc − (s′cxbν + scc)(µγ − 1) , (24)

Bf = bc − (s′cxbν + scc)bγ . (25)
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Finally, mt+1 can be rewritten in a conventional form as

mt+1 = −rf,t+1 −
1

2
λ′tλt − λ′tzt+1 . (26)

Since both rf,t+1 and λt are linear in xt, mt+1 falls into the affine class.

2.6 SDF for S2

The recursive equation (8) for νt cannot be solved in closed form for a state-dependent time

preference, which is denoted here as β(xt) to clarify the dependence on xt. To retain tractability,

we therefore approximate νt as an exponentially linear function of xt. First, β(xt) and β(xt)xt

are linearized around xt = 0 (the unconditional mean):

β(xt) ≈ β0 + β′1xt , (27)

β(xt)xt ≈ β0xt , (28)

where β0 = β(0) and β1 = dβ(xt)
dxt

|xt=0. For S2, these are, respectively, β0 = 1 − eµβ and

β1 = −eµβbβ. Then, νt is approximated by an exponentially linear function of xt as given in

(17), where the coefficients satisfy the following simultaneous quadratic equations:

µν = β0

{
µν + µc −

1

2
vcν(µγ − 1)

}
, (29)

bν = β0

(
bc +Φxbν −

1

2
vcνbγ

)
+ β1

{
µν + µc −

1

2
vcν(µγ − 1)

}
, (30)

where vcν is given in (20). Notice that the second term on the RHS of (30) is newly added by

S2.

The accuracy of the approximation of νt is examined in Appendix C. In brief, it seems to be

maintained for the parameter values determined by the calibration procedure in Section 3.2 and

given specifically in Tables 2 and 4. Intuitively, the reason for the high accuracy is that β(xt)

changes little, as will be addressed in Section 4.1 and Figure 1(b). Then, (27) and (28) are not

bad approximations after all.

Once ln νt is approximated as a linear function of xt, the price-of-risk vector λt is derived as

linear in xt without further approximation, which is due to S2 together with a linear specification

of γt. Specifically, from (9), the log SDF can be written as

mt+1 = ln(1− βt+1) + (1− γt) ln νt+1 − γt∆ct+1 + resmt , (31)
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where resmt collects the remaining terms observed at time t. By substituting (16) and (17) and

then (10) and (13) into (31), we have as before mt+1 − Et[mt+1] = −λ′tzt+1, where

λt = (σxbν + σc)γt − σx(bβ + bν) . (32)

From the linear specification of γt given in (14), λt is also linear in xt. Apart from bν that is

different between S1 and S2, −σxbβ is newly added by the extension to state-dependent time

preference.

Finally, to obtain the one-period real risk-free rate rf,t+1 as a linear function of xt, we need

to rely on another approximation, which is to linearize lnβ(xt) around xt = 0. Specifically for

S2,

ln(1− exp{µβ + b′βxt}) ≈ ln(1− eµβ )− eµβ

1− eµβ
b′βxt . (33)

Again, this approximation may not be a serious concern because of the small variation in β(xt)

noted above. Then, rf,t+1 is approximated as given in (23), where the coefficients are as follows:

Af = − lnβ0 + µc −
1

2
vcβ − (µγ − 1)(s′cxbν + scc) + (µγ − 1)(sxxbν + scx)

′bβ , (34)

Bf = bc − (s′cxbν + scc)bγ +

{
1

β0
Id×d − Φx + bγ(sxxbν + scx)

′
}
bβ , (35)

where Id×d is a d-by-d identity matrix and

vcβ = vart[ln(1− βt+1)−∆ct+1] = b′βsxxbβ − 2s′cxbβ + scc . (36)

By setting bβ = 0, Af and Bf in (34) and (35) reduce to those in (24) and (25), respectively.

2.7 Prices of zero-coupon bonds and equities

Both the risk-free rate and the price of risks are derived as linear functions of the Gaussian

state vector exactly for S1 and approximately for S2. We now turn to the pricing of zero-coupon

bonds and equities by utilizing the affine framework.

2.7.1 Real zero-coupon bonds

Let PRt,n be the time-t real price of a zero-coupon bond maturing at time t+n with the face value

normalized to one unit of consumption. The Euler equation for PRt,n is PRt,n = Et[Mt+1P
R
t+1,n−1]

with the initial condition PRt,0 = 1. The solution is of the form

PRt,n = exp{ARn +BR ′
n xt} , (37)
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where ARn and BR
n are determined recursively, starting with AR0 = 0 and BR

0 = 0. The recursive

equations are provided in Appendix D.

2.7.2 Nominal zero-coupon bonds

Let PNt,n be the time-t real price of a zero-coupon bond maturing at time t+n with the face value

normalized to one in nominal terms or equivalently 1/Πt+n in real terms. The Euler equation

for PNt,n is PNt,n = Et[Mt+1P
N
t+1,n−1] with the initial condition PNt,0Πt = 1. It follows that

PNt,nΠt = Et

[
Mt+1(P

N
t+1,n−1Πt+1)

Πt
Πt+1

]
. (38)

The solution to (38) is of the form

PNt,nΠt = exp{ANn +BN ′
n xt} , (39)

where ANn and BN
n are determined recursively, starting with AN0 = 0 and BN

0 = 0. The recursive

equations are provided in Appendix D.

2.7.3 Zero-coupon equities or dividend strips

Let PDt,n be the time-t real price of a zero-coupon equity that pays Dt+n at time t+n. The Euler

equation for PDt,n is PDt,n = Et[Mt+1P
D
t+1,n−1] with the initial condition PDt,0/Dt = 1. It follows

that
PDt,n
Dt

= Et

[
Mt+1

PDt+1,n−1

Dt+1

Dt+1

Dt

]
. (40)

The solution to (40) is of the form

PDt,n/Dt = exp{ADn +BD ′
n xt} , (41)

where ADn and BD
n are determined recursively, starting with AD0 = 0 and BD

0 = 0. The recursive

equations are provided in Appendix D.

3 Calibration

We calibrate the parameters of the proposed model by matching it with the LW model. Specif-

ically, both the one-period real risk-free rate rf,t+1 and the price-of-risk vector λt are matched

between the two models, which means from equation (26) that the two models have the iden-

tical SDF and therefore that they agree with the price of any asset. This calibration approach

16



has two advantages. First, it provides the proposed model with the opportunity to inherit a

high descriptive ability of the LW model with respect to the average term structures of zero-

coupon bonds and equities. Second, it provides the LW model with an equilibrium foundation,

thereby uncovering the preferences and consumption dynamics implicit in this reduced-form

model. Section 3.1 introduces the LW model and Section 3.2 explains the calibration procedure.

3.1 The LW model

The LW model has the following six variables (the notation is slightly different from the original

one):

∆dt : dividend growth rate

∆πt : inflation growth rate

xd,t : factor driving the expected dividend growth rate

xπ,t : factor driving the expected inflation growth rate

xf,t : factor driving the real risk-free rate

xλ,t : factor driving the price of risks

Note that consumption growth rate does not appear in the LW model as it is a reduced-form

model. The last four variables are collected in a state vector, denoted as xLWt :

xLWt = (xd,t xπ,t xf,t − µf xλ,t − µλ)
′ , (42)

where µf and µλ are the unconditional means of xf,t and xλ,t, respectively (those of xd,t and

xπ,t are implicitly assumed to be zero). The dynamics of these variables are specified as

∆dt+1 = µd + xd,t + σ′dzt+1 , (43)

∆πt+1 = µπ + xπ,t + σ′πzt+1 , (44)

xLWt+1 = ΦLW ′
x xLWt + σLW ′

x zt+1 . (45)

The log SDF of the LW model, denoted as mLW
t+1 , is specified exogenously as

mLW
t+1 = −xf,t −

1

2
sddx

2
λ,t − xλ,tσ

′
dzt+1 , (46)

where sdd = σ′dσd. A notable feature of mLW
t is that it is driven by the same innovation term

as driving dividend growth, σ′dzt+1. The conditional correlation between mLW
t+1 and ∆dt+1 is

then −xλ,t/|xλ,t|. Since the parameters calibrated by LW imply Pr{xλ,t > 0} = 0.99, these two
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variables can safely be regarded as perfectly negatively correlated. That is, a negative shock to

dividend growth almost always raises the SDF. This mechanism is the key to generating high

risk premiums of short-term dividend strips that are strongly affected by shocks to dividend

growth. Risk premiums arising from shocks to the other variables are nonzero as long as these

shocks have nonzero correlations with the dividend-growth shock.

Table 2 summarizes the parameter values of the LW model, which are collected from ta-

bles 1–3 in LW (2011). The unconditional means, standard deviations, and autocorrelations

are expressed in annual terms, except for the conditional first and second moments of xλ,t ex-

pressed in raw numbers. The annual numbers are transformed into quarterly raw numbers when

substituted into the models.

Several notes on the parameter values are in order. First, the autoregressive matrix of

xLWt , ΦLWx , is diagonal. The expected dividend-growth factor xd,t and risk-free rate factor

xf,t are relatively persistent as the autoregressive coefficients are equal to and larger than 0.9,

respectively. Second, the correlation between innovations in ∆dt and xd,t is −0.83, indicating

that a negative shock to realized dividend growth is more likely to increase expected dividend

growth. An important implication of the negative correlation is that long-term dividend strips

are not as risky as short-term ones because a negative shock to realized dividend growth, which

always raises the SDF, raises the level of future dividends and thus the price of long-term

dividend strips. The negative correlation together with the innovation term of the SDF given in

(46) are the key factors behind a downward-sloping term structure of dividend risk premiums.

Third, the correlation between innovations in ∆πt and xπ,t is set to one, indicating that the

realized and expected inflation growth rates move one for one. Fourth, the correlation between

innovations in ∆dt and πt is −0.3. Because πt and xπ,t are perfectly correlated, the correlation

between innovations in ∆dt and xπ,t is also −0.3. Then, a positive shock to realized and expected

inflation growth is more likely to decrease realized dividend growth, which in turn raises the SDF.

Meanwhile, the rise in realized and expected inflation growth lowers the payoffs of nominal bonds

in real terms with both short and long maturities. Hence, nominal bonds cannot be hedging

instruments against events that raise the SDF, leading to an upward-sloping term structure of

nominal interest rates. Fifth, the correlation between innovations in ∆dt and xf,t is −0.3. This

negative correlation contributes to generating an upward-sloping term structure of real interest

rates. Specifically, following a negative shock to realized dividend growth, the SDF rises and the

real risk-free rate tends to rise owing to the negative correlation. The rise in the real risk-free
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rate in turn lowers the prices of real bonds, indicating that real bonds cannot hedge the rise in

the SDF.

In summary, all the variables, except xλ,t, are correlated negatively with ∆dt and hence

positively with mt, which intuitively means that the agent dislikes increase in any of them. The

factor risk premiums, which are computed as −covt[mt+1, · ] = sd·xλ,t, are then negative except

those of ∆dt and xλ,t. In the last row of Table 2, the factor risk premiums evaluated at xλ,t = µλ

are presented in annual percentage terms. First, by far the highest in absolute value is the factor

risk premium of ∆dt, 17% per year. Then, an asset that has a positive exposure to ∆dt, such

as short-term dividend strips, is supposed to command a positive risk premium. In fact, the

risk premium of the one-quarter dividend strip is exactly 17%. Second, the factor risk premium

of xλ,t is zero by the zero correlation between innovations in xλ,t and ∆dt. Then, although an

asset has either a positive or a negative exposure to xλ,t, this does not affect its risk premium.

However, the exposure to xλ,t does affect the volatility and thus the Sharpe ratio of this asset.

Third, the factor risk premiums of the rest of the variables are negative. Then, an asset that

has a positive exposure to one of these variables commands a negative risk premium attributed

to the variable.

3.2 Calibration procedure

The most straightforward approach for replicating the SDF of the LW model with that of the

proposed model is to use the same variables. Specifically, we match xt = xLWt and inherit the

dynamics of xLWt as well as those of ∆dt and ∆πt into the proposed model. This means that

the parameters associated with these dynamics are not calibrated in this study (i.e., we simply

borrow them from LW). Then, the parameters to calibrate here are those associated with the

consumption dynamics and state-dependent preferences that do not appear in the LW model.

We first re-specify the consumption process as

∆ct+1 = µc + bcxd,t + σ′czt+1 , (47)

which is similar to the dividend process given in (43). Precisely, the expected consump-

tion growth is driven by the same state variable (scaled by bc) as that driving the expected

dividend growth. The parameters associated with the consumption process are as follows:

(µc, bc, scc, scd, scπ, s
′
cx). Among them, we fix (µc, bc) to maintain a reasonable relation-

ship between consumption and dividend growth. Specifically, we set µc = µd and bc = 1/3
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following Bansal and Yaron (2004). Then, seven consumption parameters need to be calibrated.

Next, the parameters of the state-dependent preferences are (µγ , b
′
γ) in the risk-aversion

coefficient γt and (µβ, b
′
β) in the subjective discount factor βt. Among these preference param-

eters, some elements of bγ can be determined immediately. Specifically, the price-of-risk vector

is driven by one factor, xλ,t in the LW model and γt in the proposed model, leading to

γt = µγ + bγ4(xλ,t − µλ) . (48)

Hence, bγi = 0 (i = 1, 2, 3), resulting in seven preference parameters that need to be calibrated.

These unknown parameters are determined by numerically solving the following sets of con-

straint equations. The first set is obtained by matching the one-period real risk-free rate, which

is given as a state variable in the LW model and derived as a linear function of the state variables

in the proposed model. Specifically,

xf,t = Af +Bf1xd,t +Bf2xπ,t +Bf3(xf,t − µf ) +Bf4(xλ,t − µλ) . (49)

Equation (49) holds for any xt, leading to the five constraint equations:

Bf1 = Bf2 = Bf4 = 0, Bf3 = 1, Af = µf . (50)

The second set of constraint equations is obtained by matching the factor risk premiums. In

the LW model (augmented with the consumption process given in (47)):

−covt[m
LW
t+1 , ∆ct+1] = scdxλ,t , (51)

−covt[m
LW
t+1 , ∆dt+1] = sddxλ,t , (52)

−covt[m
LW
t+1 , ∆πt+1] = sdπxλ,t , (53)

−covt[m
LW
t+1 , xt+1] = sdxxλ,t . (54)

Note that (54) is four dimensional. The corresponding factor risk premiums in the proposed

model are

−covt[mt+1, ∆ct+1] = (s′cxbν + scc)γt − s′cx(bβ + bν) , (55)

−covt[mt+1, ∆dt+1] = (s′dxbν + scd)γt − s′dx(bβ + bν) , (56)

−covt[mt+1, ∆πt+1] = (s′πxbν + scπ)γt − s′πx(bβ + bν) , (57)

−covt[mt+1, xt+1] = (s′xxbν + scx)γt − s′xx(bβ + bν) . (58)
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By substituting (48) into (55)–(58) and then matching the resulting equations with (51)–(54),

we have the following fourteen equations:

(Slope) (Intersept)

bγ4(s
′
cxbν + scc) = scd , (µγ − bγ4µλ)(s

′
cxbν + scc)− s′cx(bβ + bν) = 0 , (59)

bγ4(s
′
dxbν + scd) = sdd , (µγ − bγ4µλ)(s

′
dxbν + scd)− s′dx(bβ + bν) = 0 , (60)

bγ4(s
′
πxbν + scπ) = sdπ , (µγ − bγ4µλ)(s

′
πxbν + scπ)− s′πx(bβ + bν) = 0 , (61)

bγ4(s
′
xxbν + scx) = sdx , (µγ − bγ4µλ)(s

′
xxbν + scx)− s′xx(bβ + bν) = 0 . (62)

Taken together, there are fourteen unknown parameters: two in γt, five in βt, and seven for

consumption variance and covariances. Meanwhile, nineteen constraint equations are needed

for perfect replication: five from the risk-free rate and fourteen from the factor risk premiums.

Hence, perfect replication is impossible in the first place. This is so even if (µc, bc) are free

parameters. In this case, these drift parameters are used for matching the factor risk premi-

ums rather than capturing expected consumption growth. Consequently, unrealistic values are

returned, and this is why we fix (µc, bc) for a realistic consumption process.

Among these equations, the five equations in (50) and the seven slope equations in (59)–

(62) are selected. By this selection, there is no difference in the loadings of each asset on the

state vector, Bi
n (i = {R,N,D}), between the LW and proposed models; see Appendix D for

more details. Additionally, given that the factor risk premium of ∆dt is by far the highest, the

intercept equation (60) is also selected. This means that the factor risk premium of ∆dt is exactly

matched between the two models, and so is the risk premium of the one-quarter dividend strip

(17% per year). Finally, one free parameter is reserved for keeping positive definite the extended

correlation matrix, which includes consumption growth but excludes realized inflation growth

because of the perfect correlation with expected inflation growth. Without this constraint, a

negative definite correlation matrix is returned in exchange for a closer fit to the SDF of the LW

model.

Since the rest of the intercept equations, (59) and (61)–(62), are not satisfied, the average

term structures differ between the two models, as shown in Section 4.3. We prioritize the slope

equations over the intercept equations for two reasons. First, the constant terms in the pricing

formulas, Ain (i = {R,N,D}), which matter for the average term structures, are computed

recursively and dependently on the loadings; see equations (145), (148), and (151) in Appendix

D. Second, it is difficult to find solutions to the intercept equations that satisfy the following
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two conditions: (i) (µν , bν) are real and (ii) the extended correlation matrix is positive definite.

4 Baseline results

This section addresses whether the proposed model can replicate the term structures of bonds

and equities generated by the LW model and discusses the preferences and consumption dy-

namics implicit in these term structures. There are numerous solutions to the set of constraint

equations presented in Section 3.2. In Section 4.1, we first select several solutions to discuss

their pattern and then describe one of them in Section 4.2. For this particular solution, we

generate the term structures of zero-coupon bonds and equities in Section 4.3. In Section 4.4,

we show that the model can also generate a downward-sloping term structure of real interest

rates without much affecting the other term structures. We further show in Section 4.5 that the

model can change the slope of the term structure of nominal interest rates without changing the

correlation between consumption and inflation growth.

4.1 Several solutions and their pattern

Table 3 presents several solutions in ascending order of mean risk aversion µγ . First, there is

an inverse relationship between µγ and the volatility of innovation in consumption growth
√
scc.

In addition, this relationship is nonlinear: the rate of decrease in
√
scc is much slower than the

rate of increase in µγ . Specifically, at µγ = 30,
√
scc is 8.84% per year, which is high relative to

the historical estimates discussed below and the corresponding dividend volatility set at 10%.

It becomes half at around µγ = 120 and less than 4% at µγ = 150. Further reductions in
√
scc

are limited: (
√
scc, µγ) = (3.43%, 300), (3.32%, 500), (3.28%, 1000).

Second, the unconditional standard deviation of risk aversion, SD[γt], also increases with

µγ . In fact, the ratio of mean to standard deviation is nearly constant at 1.2 for any solutions.

Because the standard deviation is large relative to the mean, γt becomes negative with a non-

negligible probability. Figure 1(a) depicts the unconditional distribution of γt at Solution (e) of

Table 3 (i.e., µγ = 150). The probability of γt < 0 reaches 12%.4 If a negative risk aversion is

4In lottery choice experiments, it is often observed that a certain proportion of the subjects exhibit a risk-

neutral or a risk-loving behavior. For instance, Holt and Laury (2002) and Dohmen et al. (2011) report that

around 80% of the subjects are classified as risk-averse and the rest as risk-neutral or risk-loving. Harrison, Lau,

and Ruström (2007) obtain a similar result. More specifically, their figure 1 showing the distribution of subjects’

elicited relative risk-aversion coefficients has a close resemblance to Figure 1(a) of the current research, although
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unacceptable, it can be avoided by specifying γt as a positive function of xt. In Appendix C, we

consider a quadratic specification and examine the accuracy of the approximation for the con-

tinuation value νt. Alternatively, it is also possible to virtually avoid negative values by reducing

the volatility of xλ,t. This is originally set at 4 (see Table 2). In Section 5, we change the values

of some of the parameters originally set by LW to see whether reasonable economic implications

are obtained without reducing the descriptive ability for the average term structures presented

in this section.

Third, the unconditional mean of the subjective discount factor, E[βt], expressed in quarterly

terms, increases with µγ . At µγ = 30, it is 0.969, which appears to be smaller than usually con-

sidered. At µγ = 90, it increases to a reasonable value of 0.985. Conversely, the unconditional

standard deviation of the subjective discount factor, SD[βt], decreases with µγ . The inverse rela-

tionship between the mean and variance of βt is a natural consequence of the specification given

in (16), which has the upper bound of one. Figure 1(b) depicts the unconditional distribution of

βt at Solution (e) of Table 3 (i.e., µγ = 150). Obviously, βt does not vary largely. Consequently,

the unconditional probability of βt < 0 is negligibly low, indicating that the specification of βt

given in (16) is virtually consistent with Assumption (ii) (i.e., 0 < βt < 1). Also of note is that

the small variation in βt is beneficial for the accuracy of the approximation of νt. As shown in

Section 2.6, the source of the approximation lies in (27) and (28), which implies that the smaller

the variation in βt, the more accurate is the approximation: in the limit where βt is constant,

no approximation is necessary, as discussed in Section 2.5.

In summary, we face either large risk aversion or high consumption volatility, or both. This

is a typical trade-off in the literature of equity premium puzzles. However, here it results from

many equity risk premiums having the term structure with a sharply downward slope. This

trade-off implies that the specification of the SDF and/or the calibration of the parameters

provided by LW are not in fact realistic from an equilibrium point of view. While this problem

is masked in the reduced-form model, it emerges once economic structures are imposed. In

Section 5, we slightly change the specification of cash-flow processes as well as the values of

some of the parameters to resolve this trade-off and recover realistic economic implications.

the magnitude of the coefficients differs (ours are much larger in absolute value). Curatola (2015) assumes in his

model to explain a negative slope of dividend risk premiums that risk-loving agents represent a certain proportion

of the population.
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4.2 Implied consumption dynamics and preferences at a particular solution

Facing the trade-off between risk aversion and consumption volatility, we choose a reasonable

level of consumption volatility, while giving up a reasonable level of risk aversion. Specifically,

we focus here on Solution (e) of Table 3, characterized by µγ = 150 and
√
scc = 3.91%. The

consumption volatility of 4% seems reasonable based on U.S. historical data. For example, in

Barro (2006, table III), a sample standard deviation of real per capita GDP growth over 1890–

2004 is 4.5%. In Mehra and Prescott (1985, table 1), originally from Grossman and Shiller

(1981), a sample standard deviation of real per capita consumption growth over 1889–1978 is

3.6%.

We report all the calibrated parameters with particular attention to the following two points.

The first is the mechanism of implying a large µγ and the second is the key parameters for

determining the shape of the average term structure of real interest rates. The parameters of the

consumption dynamics are first addressed, followed by those of the state-dependent preferences.

4.2.1 Consumption growth

Panel A of Table 4 presents implied correlations between innovations in consumption growth

∆ct and the other six variables in addition to the volatility of innovation in ∆ct. First, the

correlation between ∆ct and dividend growth ∆dt, denoted as ρcd, is 0.88. Although this im-

plied value is larger than typical estimates from time-series data on aggregate consumption and

dividend growth, it may be rationalized by an economic theory of limited asset-market partic-

ipation. Specifically, as assumed by Marfè (2017), only shareholders who earn dividends and

consume them can have access to the markets, so that the SDF is that of shareholders. This

assumption then supports not only the SDF of the LW model but also a high correlation between

consumption and dividend growth.

Second, the correlation between ∆ct and expected dividend-growth factor xd,t, denoted as

ρcx1, is −0.76, which is close to the correlation between ∆dt and xd,t originally fixed at −0.83.

These negative correlations contribute to making longer-term dividend strips less risky than

shorter-term ones.

Third, the correlation between ∆ct and expected inflation-growth factor xπ,t, denoted as

ρcx2, is −0.09, which is somewhat lower in absolute value than the correlation between ∆dt

and xπ,t originally fixed at −0.3. Note that the correlation between ∆ct and realized inflation

growth ∆πt is the same as ρcx2 because of the perfect correlation between ∆πt and xπ,t. The
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negative correlations of consumption growth with realized and expected inflation growth are the

key channel through which equilibrium models generate a positive slope of the term structure of

nominal interest rates (e.g., Piazzesi and Schneider, 2006; Wachter, 2006). Empirically, however,

it may be difficult to find decisive evidence for a negative correlation. It is then beneficial to

create alternative channels through which longer-term nominal bonds are made riskier. Indeed,

the proposed model has such a channel, which is addressed in Section 4.4.

Fourth, the correlation between ∆ct and risk-free rate factor xf,t, denoted as ρcx3, is −0.05.

This is consistent in sign with, but smaller in magnitude than, the correlation between ∆dt and

xf,t originally fixed at −0.3.

Finally, the correlation between ∆ct and price-of-risk factor xλ,t, denoted as ρcx4, is 0.34,

which is higher than the correlation between ∆dt and xλ,t originally fixed at zero. The positive

ρcx4 is from the positive covariance scx4, which is needed to match the factor risk premium of

xλ,t between the LW and proposed models. Specifically, recall that the fourth row of the slope

equation (62) is

bγ4(s
′
xx4bν + scx4) = sdx4 (= 0) , (63)

where scx4 and sdx4 are, respectively, the fourth row of scx and sdx (the vectors consisting of the

covariances of innovation in xt with innovations in ∆ct and ∆dt) and sxx4 is the fourth column

of sxx (the variance matrix of innovation in xt). Note that sdx4 is originally set to zero by LW.

On the LHS of (63), s′xx4bν = covt[xλ,t+1, ln νt+1] turns out to be negative, which is intuitive

because a positive shock to the price of risks tends to lower the continuation value. It then

follows that scx4 = −s′xx4bν > 0.

The positive correlation between ∆ct and xλ,t appears counterintuitive, as a positive shock

to consumption growth tends to raise the price of risks. Furthermore, since a positive shock to

consumption growth lowers the SDF, it may be concerned that the SDF falls in response to a

rise in xλ,t. However, we show below that the SDF is in fact correlated positively with xλ,t.

Taken together, the implied parameters of the consumption process are basically consistent

with the predetermined parameters of the dividend process. Although the correlation between

innovations in consumption growth and price of risks becomes positive, this is inevitable based

on the calibration procedure.
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4.2.2 Preferences

To ease our explanation, we call 1−βt the subjective discount rate. Panel B of Table 4 presents

the implied parameters of risk aversion γt and log subjective discount rate ln(1 − βt), together

with the calculated parameters of the log continuation value ln νt.

First, the loadings on the expected inflation-growth factor xπ,t are zero for all these functions.

That γt does not depend on xπ,t is noted in Section 3.2. xπ,t does not affect ln(1− βt) because

it does not enter into the risk-free rate owing to the constraint Bf2 = 0 given in (50). Since xπ,t

has no influence on γt, βt, or ∆ct, it has no channel of affecting νt.

Risk aversion

As reported in Table 3, the standard deviation of γt is 128. Behind such a large value, bγ4 (the

coefficient of xλ,t) is implied to be 8.94. A large bγ4 together with a large µγ are a consequence

of explaining the high factor risk premium of ∆dt set by LW. Specifically, recall that the slope

equation for matching the factor risk premium of ∆dt is

bγ4(s
′
dxbν + scd) = sdd . (64)

On the LHS, s′dxbν = covt[∆dt+1, ln νt+1] turns out to be negative, indicating that a positive

shock to dividend growth tends to decrease the continuation value. This relation can intuitively

be understood by recalling that from ρdx1 = −0.83 a positive shock to ∆dt is more likely to

reduce xd,t and hence ln νt that has a positive coefficient of xd,t, bν1 = 8.86. Meanwhile, both bγ4

and sdd in (64) are positive. It follows that scd > −s′dxbν > 0. However, because scd =
√
sccsddρcd

is much smaller than sdd given a reasonable
√
scc (around 4% per year) and ρcd ≤ 1, bγ4 must

be large to equate the LHS with sdd.

This logic can also be used to explain why a large
√
scc is required to reduce bγ4. For a small

bγ4, scd must be large to satisfy (64). However, because sdd is fixed at 10% per year and ρcd has

an upper limit of one,
√
scc must increase.

A large bγ4 leads to a large µγ , which is explained by using the intercept equation for matching

the factor risk premium of ∆dt:

(µγ − bγ4µλ)(s
′
dxbν + scd) = s′dx(bβ + bν) . (65)

The RHS of (65) is

s′dx(bβ + bν) = covt[∆dt+1, ln νt+1] + covt[∆dt+1, ln (1− βt+1)] . (66)
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As noted above, the first term on the RHS of (66) is negative. The second term on the RHS

turns out to be positive but is dominated by the first term. Then, the RHS of (65) is negative

but not very large in absolute value. Meanwhile, bγ4 on the LHS of (65) is large to satisfy (64)

and µλ is originally fixed at 17. To offset a large bγ4µλ, µγ must also become large.

These explanations clarify why we face the trade-off between the reasonable values of risk

aversion and consumption volatility. To reduce µγ , bγ4 must also be reduced. However, this is

possible only by increasing the consumption volatility.

Because of bγ4 = 8.94, the risk aversion increases with the price-of-risk factor. Since the

correlation between ∆ct and xλ,t is positive (i.e., ρcx4 = 0.34), so is the correlation between ∆ct

and γt, which may be counterintuitive. However, this relationship does not violate the inverse

relationship between ln νt and γt because ln νt has a negative coefficient of xλ,t, bν4 = −0.003.

In fact, the covariance between ln νt and γt is negative, covt[ln νt+1, γt+1] = −0.24. This

negative covariance in turn implies a positive covariance between the log SDF mt and γt, which

is fundamental for many models to explain high equity premiums. This relation is further

addressed after reporting the parameters of the subjective discount rate.

Subjective discount rate

First, the signs of the coefficients in ln(1− βt) are all opposite to those in ln νt, indicating that

the subjective discount rate moves inversely with the continuation value. This movement makes

sense by recalling that the wealth-consumption ratio is solved in equilibrium as ln(W ∗
t /C

e
t ) =

− ln(1− βt). Hence, the inverse relationship between ln(1− βt) and ln νt is consistent with the

parallel movement between the continuation value and wealth.

More precisely, ln(1− βt) increases with xf,t and xλ,t because of bβ3 = 30.2 and bβ4 = 0.014,

respectively. The positive relationship between the subjective discount rate and risk-free rate is

reasonable. The positive bβ4 implies that the agent raises her discount rate and hence becomes

less patient when she becomes more risk averse. Conversely, the increase in xd,t lowers ln(1−βt)

because of bβ1 = −8.66. This implies that the agent lowers her discount rate and hence becomes

more patient when she has brighter prospects for future consumption.

Finally, we discuss the implied conditional covariances between mt and state-dependent

preferences:

covt[mt+1, γt+1] = b′γ{sxx(bβ + bν)− (sxxbν + scx)γt} = 1.53 , (67)

covt[mt+1, ln(1− βt+1)] = b′β{sxx(bβ + bν)− (sxxbν + scx)γt} = 10−5(292− 1.6γt) . (68)
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The conditional covariance between mt+1 and γt+1 is positive, which is consistent with many

equilibrium models in that the SDF increases with increasing risk aversion. It is constant because

only the fourth element of bγ is nonzero and the fourth element of (sxxbν + scx) is zero from

the slope equation (62) for matching the factor risk premium of xt. Meanwhile, the conditional

covariance between mt+1 and ln(1−βt+1) depends on γt. It is positive at µγ = 150 and remains

so for γt < 180, suggesting that the agent is more likely to raise her discount rate when the SDF

is high. Because future cash flows are discounted to a larger extent by the compound effect,

real bonds are devalued, with the devaluation more significant for longer-term bonds. They

therefore command high risk premiums and the resulting term structure of real interest rates

slopes upward.

In summary, when consumption volatility is reasonable, the implied parameters in γt are

large. They are mostly determined by the factor risk premium of dividend growth. On the

other hands, the parameters in βt are more closely related to (real) bonds and calibrated to

explain the term structure of (real) interest rates. In Section 4.3, we generate the average term

structures of zero-coupon bonds and equities at Solution (e) of Table 3.

4.3 Term structure shapes

All solutions, some of which are presented in Table 3, lead to similar average term structures

because the factor loadings Bi
n (i = {R,N,D}) are the same among the solutions, which are in

fact identical to those in the LW model by construction of the calibration. The constant terms

Ain (i = {R,N,D}) differ among the solutions because not all of the intercept equations are

satisfied and the resulting errors have different patterns. Still, Ains differ little because they are

computed dependently on the (identical) loadings.

4.3.1 Factor loadings

We first show the term structure of factor loadings for the log-price of zero-coupon bonds and

equities, Bi
n (i = {R,N,D}). The sign and shape of Bi

n give us a clue about the term structure

of risk premiums. Since we know the sign and magnitude of the factor risk premiums, which are

presented in Panel C of Table 4, we understand the risk premium of an asset if we know an asset-

specific quantity of risks, which is associated with the loadings on the factors. Additionally, the

shape of the term structure of excess-return volatilities can roughly be captured by examining

the loadings.
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Figure 2 plots Bi
n against n (quarters), which are normalized by multiplying the uncondi-

tional standard deviation of each factor, and hence interpreted as the loadings on the factors

with unit volatility. Panel (c) shows the (normalized) loadings on the risk-free rate factor xf,t,

which is a common factor for all assets, generating the baseline risk. They are identical for all

assets, negative for all n ≥ 1, and decrease with n. Since the factor risk premium of xf,t is neg-

ative (−0.11% per year), the negative loadings on xf,t lead to positive risk premiums attributed

to xf,t for all assets. Furthermore, the risk premiums are expected to increase with n as the

loadings decrease with n. Since, for real bonds, the loadings on the other factors are zero as

seen in the other panels of Figure 2, the term structure of real interest rates is expected to be

upward-sloping.

Panel (b) shows that only nominal bonds have nonzero loadings on the expected inflation-

growth factor xπ,t, which are negative for all n ≥ 1 and decrease with n. Since the factor risk

premium of xπ,t is negative (−0.18% per year), the risk premiums attributed to xπ,t become

positive for all n ≥ 1 and increase with n. These premiums are added to those attributed to

xf,t, and the resulting term structure of nominal interest rates will be above that of real interest

rates with the difference between the two curves widening with n.

Panel (a) shows that only dividend strips have nonzero loadings on the expected dividend-

growth factor xd,t, which are positive for all n ≥ 1 and increase with n. Since the factor risk

premium of xd,t is negative (−0.46% per year), the risk premiums attributed to xd,t are negative

for all n ≥ 1 and more so for longer n. This means that a dividend strip has two opposing

components of the risk premium: one is a positive risk premium attributed to xf,t and the other

is a negative risk premium attributed to xd,t. The latter dominates the former. Specifically,

while the magnitude of the normalized loadings is similar in absolute value between xd,t and

xf,t as seen in Figures 2(a) and 2(c), the normalized factor risk premium of xd,t is about three

times larger in absolute value than that of xf,t. Consequently, the term structure of dividend

risk premiums will have a downward slope.

Finally, in Panel (d), the loadings on the price-of-risk factor xλ,t are presented, which are

negative for all assets. They differ in shape, however. They decrease monotonically with n

for real and nominal bonds whereas they are inversely hump-shaped for dividend strips. These

shapes do not matter with the risk premium of any assets in the original LW model, however,

because the factor risk premium of xλ,t is zero. They do matter with the volatility and hence

the Sharpe ratio. Specifically, the negative hump around n =35–40 is expected to increase the
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volatility of returns to dividend strips with these maturities. In contrast to the LW model,

the negative loadings on xλ,t also matter with any assets’ risk premiums in the proposed model

because the factor risk premium of xλ,t is negative, as presented in Panel C of Table 4. Hence, the

negative loadings on xλ,t generate additional risk premiums. Consequently, the term structures

of risk premiums in the proposed model will be above those in the LW model, which is indeed

the case as seen below.

4.3.2 Level and volatility of real and nominal interest rates

Let Y i
t,n (i = {R,N}) be the yield to maturity of a zero-coupon bond maturing in n periods:

Y i
t,n = − 1

n lnP
i
t,n. By substitution of (37) and (39),

Y i
t,n = − 1

n
(Ain +Bi ′

n xt) (i = {R,N}) . (69)

Then, the unconditional mean and variance of Y i
t,n are −Ain/n and Bi ′

n var[xt]B
i
n/n

2, respectively.

These moments, expressed in quarterly terms, are annualized by multiplying by four.

Figure 3(a) plots the annualized unconditional mean of real interest rates, 4E[Y R
t,n], against

n (quarters) produced by the LW (dotted line) and proposed (solid line) models. The two plots

are upward-sloping. By construction of the calibration in which the real risk-free rate is matched

exactly between the two models, these plots start from the same point at n = 1. By increasing

n, they deviate gradually. At n = 160 (40 years), the mean real interest rate for the proposed

model is higher by 1% than that for the LW model in line with the argument in Section 4.3.1.

Figure 3(b) plots the annualized unconditional mean of nominal interest rates, 4E[Y N
t,n].

Again, the two plots are upward-sloping and above those for real interest rates because of the

additional risk premiums attributed to ∆πt and xπ,t. These plots start from almost the same

point at n = 1 and deviate gradually, with the proposed model producing higher nominal rates.

The deviation reaches 1.65% at n = 160.

Figures 3(c) and 3(d) plot the annualized unconditional standard deviation of real and nom-

inal interest rates,
√
4var[Y i

t,n] (i = {R,N}). Both plots are downward-sloping. There is no

discrepancy between the LW and proposed models because the loadings Bi
n (i = {R,N}) are

the same for both models for any n.

Figures 4(a) and 4(b) plot the term structures of real and nominal interest rates generated

by the proposed model when the risk-free rate factor xf,t is above (+2SD) or below (−2SD) two

standard deviations from the mean, while the other factors are fixed at the mean. Consistent
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with our intuition, when xf,t is high (low), both real and nominal curves shift upward (downward)

with the shift more significant at the short end.

Analogous plots are shown in Figures 4(c) and 4(d), where the price-of-risk factor xλ,t is

above or below two standard deviations from the mean with the other factors fixed at the mean.

This is equivalent to changing the risk-aversion coefficient γt by plus or minus two standard

deviations from the mean by the specification of γt given in (48). Also consistent with our

intuition, when the agent becomes more risk averse (i.e., γt is high), both curves shift upward.

When she is less risk averse (i.e., γt is low), both real and nominal interest rates first decrease

up to n =12–16 (three to four years) and then increase because of the constant term, −Ain/n,

which is increasing in n as shown in Figures 3(a) and 3(b).

The term structures of interest rates in Figures 4(e) and 4(f) are drawn when the economy

is “good” and “bad,” respectively. We arguably define a good (bad) state of the economy as a

state with low (high) xλ,t and high (low) (xd,t, xπ,t, xf,t). The high (low) value corresponds

to two standard deviations above (below) the mean. When the economy is good, both real and

nominal interest rates start from high levels, decrease with increasing n up to around n = 40 (10

years), and then turn slightly increasing. Overall, both real and nominal curves can be regarded

as downward-sloping or flat. By contrast, when the economy is bad, these curves are sharply

upward-sloping, starting from low levels. The nominal interest rate at n = 1 is negative as the

model consists of the Gaussian state vector. These plots do not seem to deviate largely from

real observations of the economy, although some level adjustments may be necessary.

4.3.3 Risk premium, volatility, and Sharpe ratio of dividend strips

Let rDt+1,n−1 be the log return to a dividend strip, defined and developed as

rDt+1,n−1 = ln

(
PDt+1,n−1

PDt,n

)

= ln

(
PDt+1,n−1/Dt+1

PDt,n/Dt

)
+ ln

(
Dt+1

Dt

)
= (σxB

D
n−1 + σd)

′zt+1 + resDt , (70)

where resDt collects the remaining terms observed at time t. We define the risk premium of

a dividend strip, denoted as RPDt,n−1, based on the excess log return adjusted for convexity or

Jensen’s inequality term:

RPDt,n−1 = Et[r
D
t+1,n−1]− rf,t+1 +

1

2
vart[r

D
t+1,n−1]
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= −covt[mt+1, r
D
t+1,n−1] , (71)

where the second equality follows from the Euler equation, Et[e
mt+1+rDt+1,n−1 ] = 1. By developing

the conditional covariance in (71),

RPDt,n−1 = ARPDn−1 +BRPD
n−1 γt , (72)

where

ARPDn−1 = −(bβ + bν)
′(sxxB

D
n−1 + sdx) , (73)

BRPD
n−1 = s′dxbν + scd + (sxxbν + scx)

′BD
n−1 . (74)

The unconditional risk premium is then obtained as E[RPDt,n−1] = ARPDn−1 +BRPD
n−1 µγ .

Figure 5(a) plots the annualized unconditional mean of risk premiums, 4E[RPDt,n−1], against

n (quarters) implied by the LW (dotted line) and proposed (solid line) models. Both plots are

downward-sloping. They start from the same point, 17%, which is remarkably high. By increas-

ing n, they deviate gradually, with the proposed model again producing higher risk premiums.

At n = 160, the risk premiums implied by the LW and proposed models are, respectively, 4.4%

and 5.8%, and the two curves are almost flat.

Next, we compute the unconditional variance of excess return to a dividend strip, var[rDt+1,n−1−

rf,t+1]. First, it can be decomposed as

var[rDt+1,n−1 − rf,t+1] = var[Et[r
D
t+1,n−1 − rf,t+1]] + E[vart[r

D
t+1,n−1 − rf,t+1]] . (75)

The first term on the RHS of (75) is developed as

var[Et[r
D
t+1,n−1 − rf,t+1]] = var[RPDt,n−1] = BRP ′

n−1 var[γt]B
RP
n−1 . (76)

The first equality in (76) follows from the definition of the risk premium given in (71), where

vart[r
D
t+1,n−1] is actually constant. The second equality follows by substituting (72). From (14),

var[γt] = b′γvar[xt]bγ . The second term on the RHS of (75) is developed as

E[vart[r
D
t+1,n−1 − rf,t+1]] = vart[r

D
t+1,n−1] = BD ′

n−1sxxB
D
n−1 + 2s′dxB

D
n−1 + sdd , (77)

where the first equality follows because rf,t+1 is observed at time t and vart[r
D
t+1,n−1] is constant.

The second equality follows by substituting (70).

Figure 5(b) plots the annualized volatility,
√
4var[rDt+1,n−1 − rf,t+1], implied by the LW and

proposed models. Both plots are the same because BD
n and BRPD

n are the same for any n ≥ 1.
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The reason for the same BD
n is that all the slope equations (59)–(62) are satisfied. In addition,

BRPD
n is the same because the intercept equation (60) associated with the factor risk premium

of dividend growth is also satisfied. The volatility curve is hump-shaped with the peak around

n =35–40, which corresponds to the trough of the term structure of loadings on xλ,t shown in

Figure 2(d).

Finally, we compute the unconditional Sharpe ratio of dividend strips as a ratio of the

unconditional mean of risk premiums to the unconditional volatility of excess returns. Figure

5(c) plots the annualized ratio, 4E[RPDt,n−1]/
√
4var[rDt+1,n−1 − rf,t+1]. Both plots are sharply

downward-sloping with the curve for the proposed model less steep. As seen in Figures 5(a) and

5(b), the risk premiums are high while the volatilities are low at the short end. This combination

produces high Sharpe ratios. In the medium maturity range, the risk premiums decrease while

the volatilities increase, leading to a sharp decrease in the Sharpe ratio. At the long end, since

both risk-premium and volatility curves are almost flat, so is the curve of the Sharpe ratio.

Figure 6 presents the term structures of dividend risk premiums and Sharpe ratios generated

by the proposed model when the price-of-risk factor xλ,t is above (+2SD) or below (−2SD) two

standard deviations from the mean. It is noted that since the risk premiums are driven by γt,

which is a linear function of xλ,t alone, changing the values of the other factors does not alter

the plots. In addition, since the excess-return volatilities are constant for all maturities, the

volatility curve does not change by changing the factor values. Accordingly, it is not surprising

that only a parallel shift is observed in the risk-premium and Sharpe-ratio curves. Consistent

with our intuition, the curves shift upward (downward) when xλ,t and thus γt is large (small).

To see a more flexible shift in the risk-premium curve such that the curve slopes upward in

times of a good economy, it may be necessary to incorporate stochastic volatility into cash-flow

processes.

In summary, the proposed model can produce the average term structures of zero-coupon

bonds and equities that are close to those produced by the LW model. In the next subsection,

we further examine whether the proposed model can also generate the term structure of real

interest rates that is flat or downward-sloping without much affecting the shapes of the other

term structures.
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4.4 Changing the shape of the real term structure

The LW model can easily change the shape of the average term structure of real interest rates.

This ability is rooted in the SDF driven by the same innovation term as that driving dividend

growth, which makes it easy to change the correlations between the SDF and factors affecting the

real term structure. Since the proposed model does not have such a simple mechanism, it cannot

change the shape as easily as the LW model can. However, as demonstrated in Sections 4.1–4.3,

the proposed model can replicate the LW model, which motivates us to take the following two

steps to generate a downward-sloping term structure of real interest rates: (i) generate it by

using the LW model, and (ii) replicate the LW model by using the proposed model.

In the first step, we change the correlation between innovations in dividend growth ∆dt and

risk-free rate factor xf,t, denoted as ρdx3, from −0.3 to 0.1 while keeping the other parameters

unchanged in the LW model. When ρdx3 = 0.1, the factor risk premium of xf,t is now positive

because a positive shock to xf,t is more likely to increase ∆dt and hence decrease the SDF.

Meanwhile, regardless of the value of the correlation parameter, the (log) price of real bonds is

negatively exposed to xf,t and the negative exposure is increasing with maturity. Hence, the

combination of a positive factor risk premium and increasingly negative exposures associated

with xf,t results in increasingly negative risk premiums of real bonds. The term structure of

real interest rates then has a negative slope. To lower the slope further, we simply increase the

value of ρdx3 (up to one). However, since the loadings on xf,t are the same for all the assets as

shown in Figure 2(c), a positive slope of the term structure of nominal interest rates becomes

less steep and a negative slope of the term structure of dividend risk premiums becomes steeper

for a larger ρdx3.

In the second step, this exogenous mechanism through the correlation parameters is again

endogenized by the proposed model using the parameters of the consumption dynamics and

state-dependent preferences. These parameters need to be recalibrated entirely even though

only a single parameter is changed in the original LW model. As in the baseline calibration,

there are numerous solutions to the set of constraint equations presented in Section 3.2. We

thus select a solution with µγ = 150 to ease comparison with the baseline calibration.

In Figure 7, the average term structures generated by the LW (dotted line) and proposed

(solid line) models are presented. (Those of volatilities are not shown to save space.) Each term

structure starts from the same point as that in the baseline calibration presented in Figures 3

and 5. First, Figure 7(a) shows that the real term structure is indeed slightly downward-sloping.
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The proposed model generates higher rates with the deviation reaching 0.55% at n = 160 (40

years). Second, Figure 7(b) shows that the term structure of nominal interest rates is flattened

for both models, reflecting a downward-sloping real term structure. The nominal term structure

is still positively sloped because of the positive risk premiums attributed to xπ,t. It is possible to

further steepen this slope by increasing these risk premiums. In the LW model, this is achieved

by making the correlation between dividend growth and realized/expected inflation growth more

negative (up to minus one). In addition to this correlation channel, the proposed model has

an alternative channel through the state-dependent preferences, which may be beneficial when

empirical evidence of the correlation channel is weak. The benefit of this alternative channel is

discussed in Section 4.5. Third, in Figures 7(c) and 7(d), the average term structures of dividend

risk premiums and Sharpe ratios remain sharply downward-sloping. In fact, the downward slope

is reinforced by ρdx3 = 0.1 as expected.

Table 5 presents the calibrated parameters for ρdx3 = 0.1. Panel A shows two major changes

in the consumption process. First, the consumption volatility
√
scc increases from 3.91% to

4.96%, which can also be explained by using the slope equation (64) for matching the factor

risk premium of ∆dt. In this equation, s′dxbν = covt[∆dt+1, ln νt+1] becomes more negative

than in the baseline calibration because increase in xf,t+1, which decreases the log continuation

value ln νt+1 in the previous and current calibrations because of bν3 < 0, now tends to increase,

rather than decrease, ∆dt+1 by changing ρdx3 from −0.3 to 0.1. Second, the correlation between

innovations in ∆ct and xf,t (i.e., ρcx3) increases from −0.046 to 0.085 consistently with the

change in ρdx3 from −0.3 to 0.1.

Panel B of Table 5 presents the preference parameters. Overall, the signs of the parameters

do not change from those in the baseline calibration shown in Table 4. Since we originally

selected a particular solution with µγ = 150, the implied value of bγ4 (the coefficient of xλ,t

in γt) changes little from that in the baseline calibration. Instead, the implied parameters in

ln(1− βt) exhibit some changes. Specifically, the unconditional mean of βt increases from 0.987

to 0.998 mainly because of the decrease in µβ from −4.39 to −6.34. Furthermore, the implied

values of bβ change toward reducing the conditional covariance between ln(1 − βt) and mt.

Specifically, covt[mt+1, ln(1− βt+1)] = 10−5(171− 11.5γt), which is now negative at µγ = 150,

indicating that the agent tends to lower her discount rate when the SDF is high. The decrease

in this covariance is mainly attributed to the decrease in bβ1 from −8.66 to −12. Then, a

positive shock to xd,t, which increases mt as reflected in the negative factor risk premium of
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xd,t, decreases ln(1− βt) more than previously. Furthermore, the increase in bβ3 from 30 to 45

makes an additional contribution to decreasing this covariance. Specifically, a positive shock to

xf,t increases ln(1− βt) more than previously, while it is more likely to decrease mt because of

ρdx3 = 0.1.

In summary, the proposed model is shown to be as flexible as the LW model in terms of

generating the average term structure of real interest rates. This flexibility is crucial as the

shape of the real term structure is indecisive. The state-dependent time preference contributes

to this flexibility.

4.5 Raising the slope of the nominal term structure

As seen in Section 4.4, the real term structure slopes downward by setting ρdx3 = 0.1; however,

at the same time, the nominal term structure is flattened. We attempt to steepen the nominal

slope while keeping the real slope negative by changing some of the preference parameters rather

than the correlation parameters.

There are two approaches for this purpose. The first is a direct approach, which is to increase

bγ2 (the coefficient of xπ,t in γt), originally set at zero. Specifically, we set bγ2 = 90. Then, the

agent dislikes increase in xπ,t more than previously as it increases the risk-aversion coefficient γt

and thus the log SDF mt. Consequently, she requires higher risk premiums for holding nominal

bonds, and the term structure of nominal interest rates will be more positively sloped. It is

noted that after changing the value of bγ2, we need to solve the recursive equation (8) for the

continuation value νt. Then, the solution would not exist if bγ2 were changed largely from zero

(the original value) because the rest of the parameters regarding the consumption dynamics and

state-dependent preferences remain unchanged.

Figures 8(a) and 8(b) plot the average term structures of real and nominal interest rates

for bγ2 = 90 together with those for bγ2 = 0 (the same plots shown in Figures 7(a) and 7(b)).

The nominal term structure shifts upward, with the shift more significant at the long end.

Consequently, the nominal spread between n = 160 and n = 1 increases from 1.44% for bγ2 = 0

to 1.79% for bγ2 = 90.

The second is an indirect approach, which is to increase bβ2 (the coefficient of xπ,t in ln(1−

βt)), originally set at zero. Specifically, we set bβ2 = 2. The reason that a positive bβ2 steepens

the slope of the nominal term structure is less obvious but will be understood by recalling the

inverse relationship between ln(1 − βt) and ln νt (see Tables 4 and 5). By setting bβ2 > 0,
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therefore, it is not surprising that the value of bν2, which is the coefficient of xπ,t in ln νt and

obtained as a solution to the recursive equation (8), is negative. For bν2 < 0, the agent dislikes

increase in xπ,t more than before (i.e., bν2 = 0) as this reduces the continuation value. As is

the case for bγ2, if bβ2 were changed largely from zero (the original value), there would be no

solution for νt.

Figures 8(c) and 8(d) plot the average term structures of real and nominal interest rates

for bβ2 = 2 together with those for bβ2 = 0 (the same plots shown in Figures 7(a) and 7(b)).

Again, the nominal term structure is more upward-sloping with the spread between long-term

and short-term rates increased to 2.14%.

In summary, the proposed model can steepen the slope of the term structure of nominal

interest rates when the term structure of real interest rates is downward-sloping and the cor-

relation between consumption and inflation growth is moderate. The key factor is again the

state-dependent preference parameters, which control agent’s aversion to inflation risks.

5 Alternative parameter values and cash-flow dynamics

While the proposed equilibrium model can generate the term structures of zero-coupon bonds

and equities as flexibly as the reduced-form LW model, it obtains some counterfactual impli-

cations about the consumption dynamics and/or preferences. The purpose of this section is

therefore to make the proposed model plausible from an economic point of view through two

steps. First, in Section 5.1, we change some of the parameter values originally calibrated by

LW and recalibrate the parameters of the proposed model by adopting the same procedure as

explained in Section 3.2. This change aims to reduce the mean and standard deviation of state-

dependent risk aversion without much increasing the volatility of consumption growth. Second,

in Section 5.2, we slightly deviate from the LW model and incorporate jumps into cash flows to

further reduce the consumption volatility.
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5.1 Changing some of the parameter values of the LW model and recalibrat-

ing the proposed model

The values of the following three parameters are changed, while the other parameters are kept

fixed at the values presented in Table 2:√
vart[xλ,t+1] : 4 → 0.2 ,√
vart[∆dt+1] : 10% → 18% (per year) ,

E[xλ,t] : 17 → 2.62 (= 0.085/0.182) ,

where xλ,t is the price-of-risk factor and ∆dt is realized dividend growth. The reduction in

the volatility of xλ,t from 4 to 0.2 aims to reduce the variance of state-dependent risk aversion

specified as γt = µγ + bγ4(xλ,t − µλ). This change, however, also reduces the volatility of

returns to dividend strips, shifting downward the volatility term structure with the shift more

significant at the short end. To offset this downward shift, the volatility of innovation in ∆dt,

simply denoted as
√
sdd, is increased from 10% to 18% per year, which seems to remain within

an acceptable range. In the LW model, the increase in sdd directly increases the factor risk

premium of ∆dt, or equivalently the risk premium of the one-period dividend strip, as it is given

by E[−covt[m
LW
t+1 , ∆dt+1]] = sddµλ. To keep this in a reasonable range as well, µλ(= E[xλ,t])

is decreased from 17 to 2.62. Through this change, the factor risk premium of ∆dt is halved

to 8.5% per year. Nonetheless, a level of 8.5% still seems to stand as a challenge to existing

equilibrium models (see Table 1). In short, these changes shift part of risks from the price-of-risk

factor to realized dividend growth.

After changing the values of the three parameters in the LW model as above, the parameters

of the proposed model are calibrated by the same procedure as explained in Section 3.2. Again,

among the numerous solutions to the set of constraint equations, we focus on the solution with

E[γt] = µγ = 30, aiming to highlight the degree to which the volatility of consumption growth

decreases. While a level of 30 may still be high, this is within the range of values considered or

estimated by the previous work: 21 (Bansal and Shaliastovich, 2013), 50 (Doh and Wu, 2016), 66

(van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez, 2012), and 75 (Rudebusch

and Swanson, 2012).

The “No JUMP” row of Table 6 provides the results of the calibration. Total volatility

(Total vol.) is computed as
√
vart[∆ct+1] for consumption growth and

√
vart[∆dt+1] for dividend

growth. These are the same as
√
scc (=

√
σ′cσc) and

√
sdd (=

√
σ′dσd), respectively, in the current
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model. In the extended model in Section 5.2, which introduces jumps into cash flows,
√
scc and

√
sdd correspond to the Gaussian components of the total volatility.

The implied
√
scc is 5.05% per year, which is lower than 8.84% in the baseline calibration

presented at Solution (a) of Table 3 but still seems to be high relative to the historical estimates.

An intuitive explanation of why
√
scc is lower even though

√
sdd is raised from 10% to 18% is

as follows. By decreasing the volatility of xλ,t, bγ4 (the coefficient of xλ,t in γt) increases more

rapidly than
√
sdd for γt to retain a sufficient variation. It then follows from the slope equation

for the factor risk premium of ∆dt, given by bγ4(s
′
dxbν + scd) = sdd, that the consumption

volatility, which appears in scd =
√
sccsddρcd, does not need to be as high as that in the baseline

calibration.

The unconditional standard deviation of γt, denoted as SD[γt], is implied to be 8.6, which is

below 25 in Table 3. Panel (a) of Figure 9 depicts the unconditional distribution of γt. Although

still nonzero under the normal distribution, the probability of γt < 0 is negligibly low, showing

that one of the shortcomings of the proposed model is resolved.

The unconditional mean and standard deviation of subjective discount factor, denoted as

E[βt] and SD[βt], are 0.996 and 0.00085, respectively. Compared with the corresponding values

at Solution (a) of Table 3, the mean is more reasonable and the standard deviation is much lower

because of the lower volatility of xλ,t. As noted in Sections 2.6 and 4.1, the lower volatility of

βt improves the accuracy of the approximation of the continuation value νt, which is beneficial

for the model. Panel (b) of Figure 9 depicts the unconditional distribution of βt, showing that

the peak is near the upper bound of one and that the left tail is not long.

Figure 10 presents the average term structures of real and nominal interest rates, where the

focus is now placed on the plots labeled “No Jump.” Panels (a) and (b) show that both real and

nominal yield curves slope upward. The slopes, however, are less steep than those in the baseline

calibration in Figure 3 because of the smaller mean of xλ,t. Panels (c) and (d) show that both

real and nominal volatility curves slope downward. The negative slopes are more pronounced

than those in the baseline calibration because of the lower volatility of xλ,t.

Figure 11 presents the term structures of risk premiums, excess-return volatilities, and Sharpe

ratios of dividend strips, where we address the plots labeled “No Jump.” Panel (a) shows that the

proposed model can still generate a downward-sloping term structure of dividend risk premiums.

The risk premiums at n = 1 (one quarter) and n = 160 (40 years) are 8.50% and 5.77% per

year, respectively. Although the range is narrower than in the baseline calibration, it is still

39



comparable to those for the previous models listed in Table 1. Panel (b) shows that the volatility

curve is first decreasing up to around n = 40 (10 years) and then turns slightly increasing. The

volatilities at n = 1, 40, and 160 are 18.0%, 15.2%, and 16.3% per year, respectively. Compared

with the baseline calibration in Figure 5, the volatilities at the short end are higher, reflecting

the increase in the volatility of ∆dt. In the medium maturity range, they are lower because

of the lower volatility of xλ,t. At the long end, the volatilities in the baseline and alternative

calibrations converge to a similar level. Panel (c) shows that the model can also generate a

downward-sloping term structure of Sharpe ratios, ranging from 0.47 (n = 1) to 0.35 (n = 160).

This range seems to be comparable to those in the previous models although it is narrower than

in the baseline calibration.

In summary, the proposed model can still generate the term structures that stand as chal-

lenges to equilibrium models. However, changing the parameter values alone may be insufficient

because the volatility of ∆ct still seems to be high. In Section 5.2, we modify the dynamics of

cash flows to overcome this problem. This modification is minimal as our fundamental interest

is in the extension of preferences rather than cash flows. Backus et al. (2018) also propose a

simple modeling of jumps, so that returns to contingent claims written on cash flows at distant

points in time are not excessively correlated.

5.2 Introducing jumps into cash flows

To further reduce the volatility of consumption growth, we introduce jumps into the consumption

and dividend processes. The (negative) jumps can be interpreted as disastrous events in line

with Reitz (1988), Barro (2009), Gabaix (2012), and Wachter (2013). The agent dislikes jump

shocks (infrequent but large negative shocks) to consumption growth more than Gaussian shocks

(small but frequent shocks) if these two types of shocks have the same volatility in a statistical

sense. Put it another way, for a given level of agent’s measure of consumption risks, it is possible

to reduce statistical measures of consumption risks by introducing jumps.

5.2.1 Cash-flow dynamics and the derived SDF

Our introduction of jumps is simple. We assume that realized consumption and dividend growth

alone can jump, whereas neither the inflation growth nor the state vector can. Additionally, we

assume that both the jump intensity and the jump size are constant. Then, we respecify the
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consumption and dividend processes as

∆ct+1 = µc + bcxd,t + σ′czt+1 + (ln ξ)Nt+1 , (78)

∆dt+1 = µd + xd,t + σ′dzt+1 + k(ln ξ)Nt+1 , (79)

where Nt follows an i.i.d. Poisson distribution with intensity parameter l > 0 and is independent

of the Gaussian shock zt. A jump size in consumption growth is captured by ξ (0 < ξ < 1).

When a single jump occurs at time t + 1 (i.e., Nt+1 = 1), Cet+1 = ξCet , ignoring the other

components. Multiple jumps at a point in time are also possible, which can be interpreted as

representing the severity of the disaster. Specifically, when Nt+1 = n, Cet+1 = ξnCet . However,

this interpretation makes it difficult to identify l and ξ separately. Then, we fix l at 1/40, which

roughly corresponds to the frequency at which a jump occurs once in every ten years on average.

It is noted that our purpose of implying a reasonable behavior of risk aversion together with a

realistic level of consumption volatility can be achieved for other values of l.

The same Nt+1 is used for capturing jumps in dividend growth, which means that the jump

event occurs to both consumption and dividend simultaneously. However, the jump size for

dividend growth is amplified by k > 1 because Dt+1 = ξnkDt for Nt+1 = n, ignoring the other

components.

A number of extensions are possible and accordingly the results below may further be im-

proved. First, the jump size can be stochastic. A conventional probability distribution such

as an exponential, gamma, or normal distribution does not violate model’s tractability. Sec-

ond, the jump intensity can be stochastic. Gabaix (2012) and Watcher (2013) demonstrate

the importance of time-varying jump intensity for capturing high equity premiums. Third, the

disaster can be followed by recovery. Hasler and Marfè (2016) model consumption and dividend

processes that mean-revert after a large fall, with the rate of mean reversion differing between

the two processes, and successfully explain a downward-sloping term structure of dividend risk

premiums.

For notational simplicity, we denote the consumption process by the sum of the Gaussian

and jump components as ∆ct+1 = ∆cGt+1 + ∆cJt+1, where ∆cJt+1 = (ln ξ)Nt+1 and ∆cGt+1 is

the remaining Gaussian component. Likewise, the dividend process is denoted as ∆dt+1 =

∆dGt+1 +∆dJt+1.

The log continuation value ln νt is also approximated by a linear function of the state vector

xt as ln νt = µν + b′νxt, where (µν , b
′
ν) are the solution to the simultaneous quadratic equations,
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which are slightly modified by the jump component. Appendix A provides these equations and

Appendix C examines the accuracy of the approximation of νt.

The log SDF mt+1 is derived as

mt+1 = −rf,t+1 −
1

2
λ′tλt − λ′tzt+1 − γt(ln ξ)Nt+1 − l(ξ−γt − 1) . (80)

The real risk-free rate rf,t+1 is also derived as a linear function of xt: rf,t+1 = Af +B
′
fxt, where

(Af , B
′
f ) are also adjusted for the jump component, presented in Appendix A. The price-of-risk

vector λt associated with zt+1 is of the same form as that given in (32), which now depends

indirectly on the jump parameters through (µν , b
′
ν).

The log prices of zero-coupon bonds and equities are approximated as linear in xt: lnP
i
t,n =

Ain +Bi ′
n xt (i = {R,N,D}). For real and nominal bonds, the recursive equations for (Ain, B

i ′
n )

(i = {R,N}) are of the same form as those without the jump component, although they contain

the jump parameters implicitly through (µν , b
′
ν , Af , B

′
f ). By contrast, for dividend strips,

the recursive equations for (ADn , B
D ′
n ) have additional terms related to the jump component

because their payoffs depend directly on future dividends that are exposed to jump shocks. The

price of a dividend strip when jumps are included is derived in Appendix D.

5.2.2 Calibration

The parameters of the extended model are calibrated by taking the following conditions into

account: E[γt] = 30; E[∆ct] = E[∆dt] = 1.29% per year in equations (78) and (79) (the same

level as in the baseline calibration); vart[∆ct+1] = 4% per year in equation (78); vart[∆dt+1] =

18% per year in equation (79); l = 1/40; and the average term structures of interest rates and

dividend risk premiums are similar to those in Section 5.1.

The “JUMP” row of Table 6 provides the results of the calibration. The continuation value

and hence the SDF exist that satisfy the conditions listed above. Indeed, we can successfully

reduce the volatility of consumption growth while keeping reasonable the behavior of state-

dependent preferences. Of the total volatility of ∆ct set at 4%, the Gaussian component
√
scc

reaches 3.98%. Once a jump event occurs with the intensity set at l = 1/40, the current

consumption falls by 1.26% (computed by ξ−1) from the previous quarter. These results imply

that the role of jumps is not crucial for consumption growth. It is, however, for dividend growth.

Of the total volatility of ∆dt set at 18%, the Gaussian component
√
sdd is 16.52%, and upon

the occurrence of a single jump, the dividend falls by more than 20% (computed by ξk−1) from

42



the previous quarter.

The standard deviation of state-dependent risk aversion decreases from 8.6 to 8.1 when

jumps are included. The difference, however, does not seem to be economically large, based on

the unconditional distribution of γt in Figure 9(a). In both cases, the probability of γt < 0 is

negligibly low.

On the contrary, the inclusion of jumps can change the mean and standard deviation of

subjective discount factor βt. The unconditional mean E[βt] decreases to 0.986, which remains

within a reasonable range. The unconditional standard deviation SD[βt] increases to 0.00232.

Consequently, the accuracy of the approximation of the continuation value νt is maintained even

by the introduction of jumps (see Appendix C). Figure 9(b) plots the unconditional distribution

of βt. It shifts leftward and has a longer left tail, which is explained intuitively as follows. We

do not change the level of the one-period risk-free rate between with and without jumps in the

calibration procedure. With jumps, however, there is a downward pressure on the one-period

risk-free rate because the agent is more willing to hold real bonds to hedge jump risks. To offset

this downward pressure, the subjective discount rate 1− βt must instead rise and hence βt falls.

Furthermore, since βt shifts away from the upper bound of one, there is more room for βt to

fluctuate.

5.2.3 Term structures

Figure 10 plots the term structures of interest rates and their volatilities. By construction of the

calibration procedure explained in Section 5.2.2, each plot is similar with and without jumps.

The same is true for the term structure of dividend risk premiums in Figure 11(a). On the

contrary, a difference appears in Figure 11(b), which shows the term structure of excess-return

volatilities of dividend strips. By including jumps, the volatility curve in the medium to long

maturity range shifts upward while at n = 1, the volatility is similar with and without jumps

because of the constraint that the volatility of dividend growth is the same, set at 18%. At

n = 160, the excess-return volatility with jumps is 17.0%, higher than that without jumps,

16.3%. The higher volatility arises from a higher covariance between realized and expected

dividend growth. The covariance is higher (less negative) because jumps are introduced only

into realized dividend growth while keeping its total volatility fixed. Since the excess-return

volatility is slightly higher with jumps than without, the Sharpe ratios with jumps decrease

slightly faster, as shown in Figure 11(c).
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In summary, the change in some of the parameter values and the inclusion of jumps into

cash flows together are helpful for improving the proposed model, which now offers economically

reasonable implications about the consumption dynamics and preferences while keeping the

ability to generate the various term structures.

6 Concluding remarks

This study proposes an equilibrium asset-pricing model that jointly produces the term structures

of zero-coupon bonds and equities. For this purpose, we extend a recursive utility function in

a way in which the parameters capturing risk aversion and time preference are driven by state

variables of the economy and asset markets. The parameters of the proposed model are calibrated

by matching the stochastic discount factor of the proposed model with that exogenously specified

by Lettau and Wachter (2011; LW). This calibration approach allows the proposed model to

have a similar descriptive ability to the LW model, and the LW model to have an equilibrium

foundation. With the help of the LW model, the proposed model can produce a downward-

sloping term structure of dividend risk premiums when the term structure of real interest rates

slopes either upward or downward. Explaining these term structures is considered to be a

challenge for equilibrium models.

In terms of an equilibrium foundation, we find that the values of the parameters originally

calibrated by LW may be unrealistic when more economic structures are imposed. Most notably,

it is implied that the mean and variance of state-dependent risk aversion is too high under a

reasonable level of consumption-growth volatility. We then change some of the parameter values

of the LW model, which shifts part of risks from a price-of-risk factor to realized dividend

growth. We further introduce jumps into the consumption and dividend processes, which can

be interpreted as disasters. The modified version of the model then implies an economically

plausible behavior of the preferences and consumption growth without losing the descriptive

ability for the average term structures.

While this study shows that the state-dependent preferences are useful for endogenizing the

key mechanism of the LW model, it does not address which state variables are effective from

actual data on cash flows and market prices. A further challenge is to present micro evidence on

the state-dependent preferences. Even though we accept that the preferences are changeable, it

is unclear whether they change as predicted by the model. These important questions are left
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for future research.
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Appendix A: Derivation of key equations

The optimal consumption given in equation (6)

Substitute Vt into (2) with Ct replaced by C∗
t (the optimal consumption for the agent):

Vt = C∗1−βt
t Et[V

1−γt
t+1 ]βt/(1−γt) . (81)

Assume that Vt is of the form Vt = ϕtWt, where ϕt is a state-dependent variable identified below.

Substitute first this form and then the budget constraint given in (4) into the RHS of (81):

Vt = C∗1−βt
t (Wt − C∗

t )
βtEt[(ϕt+1Rw,t+1)

1−γt ]βt/(1−γt) . (82)

(82) satisfies the first order condition (FOC): ∂Vt/∂C
∗
t = 0. Given that βt and γt are exogenous

by Assumption (i), solving the FOC yields C∗
t given in (6). By Assumption (ii), the second

order condition is met:

∂2Vt
∂C∗2

t

= −βt(1− βt)Vt

{
Wt

C∗
t (Wt − C∗

t )

}2

< 0 . (83)

Finally, by substituting (6) into (82), Vt is confirmed to be of the assumed form, where

ϕt = (1− βt)

{
βt

1− βt
Et[(ϕt+1Rw,t+1)

1−γt ]1/(1−γt)
}βt

. (84)

Recursive equation (8) for the value function

Replace first Rw,t+1 with R∗
w,t+1 on the RHS of (84) and then substitute (7):

ϕ∗t
1− βt

= Et

[(
ϕ∗t+1

1− βt+1

Cet+1

Cet

)1−γt
]βt/(1−γt)

, (85)

where ϕ∗t is used in place of ϕt to emphasize the equilibrium. Meanwhile, the continuation value

in equilibrium is V ∗
t = ϕ∗tW

∗
t =

ϕ∗t
1−βtC

e
t . Define νt = V ∗

t /C
e
t =

ϕ∗t
1−βt . Substituting this into (85)

yields (8).

SDF given in equation (9)

A simple way of deriving the SDF is to use the Euler equation for wealth (a claim to the flow

of endowments). Rearrange (8):

1 = Et

( νt+1

ν
1/βt
t

)1−γt (
Cet+1

Cet

)−γt Cet+1

Cet

 . (86)
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By (7),
Cet+1

Cet
= βt

1− βt+1

1− βt
R∗
w,t+1 . (87)

Substitute (87) into (86) and rearrange the terms, we have 1 = Et[Mt+1R
∗
w,t+1], where Mt+1 is

given in (9).

Value function given in equations (17)–(19)

Assume that the solution to the recursive equation (8) is of the following form: νt = exp{µν +

b′νxt}. Substitute this form into (8) together with βt = β:

exp{µν + b′νxt} = Et[exp{(1− γt)(µν + b′νxt+1 +∆ct+1)}]β/(1−γt)

= exp

{
β

(
Et[χt+1]−

1

2
(γt − 1)vart[χt+1]

)}
, (88)

where

χt = µν + b′νxt +∆ct . (89)

Note that

Et[χt+1] = µν + µc + (bc +Φxbν)
′xt , (90)

vart[χt+1] = b′νsxxbν + 2s′cxbν + scc (= vcν) . (91)

Substitute these conditional moments and γt = µγ + b′γxt into the RHS of (88), and then take

the log of both sides:

µν + b′νxt = β

{
µν + µc + (bc +Φxbν)

′xt −
1

2
vcν(µγ + b′γxt − 1)

}
. (92)

For the assumed form of νt to be true, (92) must hold for any xt, leading to the simultaneous

equations for (µν , b
′
ν) given in (18) and (19).

Risk-free rate given in equations (23)–(25)

By substituting (17) together with βt = β into (9), the SDF can be rewritten using χt+1 defined

in (89) as

Mt+1 = βν
−(1−γt)/β
t exp{(1− γt)χt+1 −∆ct+1} . (93)

Take the conditional expectation of both sides of (93):

Et[Mt+1] = βν
−(1−γt)/β
t Et[exp{(1− γt)χt+1}] Et[e−∆ct+1 ] exp{(γt− 1)covt[χt+1, ∆ct+1]} . (94)

47



Meanwhile, the recursive equation (8) can be rewritten using χt as

ν
(1−γt)/β
t = Et[exp{(1− γt)χt+1}] . (95)

Substitute (95) into the RHS of (94), develop the conditional moments, and rearrange the terms:

rf,t+1 = − lnEt[Mt+1]

= − lnβ + µc −
1

2
scc − (s′cxbν + scc)(µγ − 1) + {bc − (s′cxbν + scc)bγ}′xt . (96)

Collecting the intercept and slope terms of (96) into Af and Bf , respectively, yields (24) and

(25).

Approximation of the value function given in equations (17) and (29)–(30)

Substitute νt = exp{µν + b′νxt} into the RHS of (8), develop the conditional expectation, and

rearrange the terms:

ln (RHS of (8)) = β(xt)

{
µν + µc + (bc +Φxbν)

′xt −
1

2
vcν(µγ + b′γxt − 1)

}
, (97)

which is basically the same as the RHS of (92) except that β is replaced by β(xt). Since (97)

is not equal to µν + b′νxt (the log of the LHS of (8)) for any xt, it is approximated as linear in

xt. Specifically, nonlinear terms associated with β(xt) and β(xt)xt are linearized around xt = 0

(the unconditional mean) as given in (27) and (28), respectively. Then, matching the intercept

and slope terms yields (29) and (30).

Approximation of the risk-free rate given in equations (23) and (34)–(35)

By substituting (17) into (9), the SDF can be rewritten as

Mt+1 =
βt

1− βt
ν
−(1−γt)/βt
t exp{(1− γt)χt+1 + ψt+1} , (98)

where χt+1 is defined in (89) and

ψt = µβ + b′βxt −∆ct . (99)

Take the conditional expectation of both sides of (98):

Et[Mt+1] =
βt

1− βt
ν
−(1−γt)/βt
t

×Et[exp{(1− γt)χt+1}]Et[eψt+1 ] exp{(1− γt)covt[χt+1, ψt+1]} . (100)
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Note that the recursive equation (8) can also be rewritten as ν
(1−γt)/βt
t = Et[exp{(1− γt)χt+1}].

Substitute this into the RHS of (100) and develop the conditional expectation:

Et[Mt+1] =
βt

1− βt
exp

{
Et[ψt+1] +

1

2
vart[ψt+1] + (1− γt)covt[χt+1, ψt+1]

}
. (101)

Note that

Et[ψt+1] = µβ − µc + (Φxbβ − bc)
′xt , (102)

vart[ψt+1] = b′βsxxbβ − 2s′cxbβ + scc (= vcβ) , (103)

covt[χt+1, ψt+1] = (sxxbν + scx)
′bβ − (s′cxbν + scc) . (104)

Substitute these conditional moments together with (14) and (16) into the RHS of (101), and

rearrange the terms:

rf,t+1 = − lnβt + µc −
1

2
vcβ + {(sxxbν + scx)

′bβ − (s′cxbν + scc)}(µγ − 1)

+
[
bc + (Id×d − Φx)bβ + {(sxxbν + scx)

′bβ − (s′cxbν + scc)}bγ
]′
xt . (105)

The leading term on the RHS of (105), − lnβt, is nonlinear in xt. It is then linearized around

xt = 0 (the unconditional mean) as given in (33). Then, collecting the intercept and slope terms

into Af and Bf , respectively, yields (34) and (35).

Risk premium of a dividend strip given in equations (72)–(74)

Note that

mt+1 − Et[mt+1] = −λ′tzt+1 , (106)

rDt+1,n−1 − Et[r
D
t+1,n−1] = (σxB

D
n−1 + σd)

′zt+1 , (107)

where λt = (σxbν + σc)γt − σx(bβ + bν). Substitute (106) and (107) into the RHS of (71),

RPDt,n−1 = {(σxbν + σc)γt − σx(bβ + bν)}′(σxBD
n−1 + σd)

= −(bβ + bν)
′(sxxB

D
n−1 + sdx) + {s′dxbν + scd + (sxxbν + scx)

′BD
n−1}γt . (108)

Approximation of the value function with jumps in consumption growth

By ∆ct = ln(Cet /C
e
t−1) = ∆cGt +∆cJt , the recursive equation for the log continuation value can

be written as

ln νt =
βt

1− γt
lnEt[exp{(1− γt)(ln νt+1 +∆cGt+1 +∆cJt+1)}] . (109)

49



Because ∆cGt and ∆cJt are mutually independent and because νt is a function of the state vector

that has no jump component, the RHS of (109) can be factorized as follows:

ln νt =
βt

1− γt

(
lnEt[exp{(1− γt)(ln νt+1 +∆cGt+1)}] + lnEt[exp{(1− γt)∆c

J
t+1}]

)
. (110)

For ∆cJt+1 = (ln ξ)Nt+1, the second term on the RHS of (110) is developed as

βt
1− γt

lnEt[exp{(1− γt)(ln ξ)Nt+1}] =
l βt(ξ

1−γt − 1)

1− γt
. (111)

To approximate ln νt as ln νt = µν + b′νxt, it is necessary to linearize the RHS of (111) as,

l βt(ξ
1−γt − 1)

1− γt
≈ −(1− eµβ )lk0 + lk′1xt , (112)

where

k0 =
ξ1−µγ − 1

µγ − 1
, (113)

k1 = eµβk0bβ +
1− eµβ

µγ − 1
{k0 + ξ1−µγ ln ξ}bγ . (114)

It is noted that this approximation is unavoidable even for βt = β (constant). Then, it is

concerned that the approximation of νt is less accurate, which is addressed in Appendix C.

By the additional approximation given in (112), (µν , b
′
ν) satisfy the following equations:

µν = (1− eµβ )

{
µν + µc −

1

2
vcν(µγ − 1)− lk0

}
, (115)

bν = (1− eµβ )

(
bc +Φxbν −

1

2
vcνbγ

)
− eµβ

{
µν + µc −

1

2
vcν(µγ − 1)

}
bβ + lk1 . (116)

Risk-free rate with jumps in consumption growth

We approximate the risk-free rate rf,t+1 as rf,t+1 = Af + B′
fxt. First, the SDF given in (9) is

rewritten as Mt+1 =MG
t+1M

J
t+1, where

MG
t+1 = βt

1− βt+1

1− βt

(
νt+1

ν
1/βt
t

)1−γt
e−γt∆c

G
t+1 , (117)

MJ
t+1 = e−γt(ln ξ)Nt+1 . (118)

Then, by the Euler equation, rf,t+1 = − lnEt[M
G
t+1]− lnEt[M

J
t+1]. The conditional expectation

of the Gaussian part is the same as before and that of the Jump part is developed as

− lnEt[e
−γt(ln ξ)Nt+1 ] = −l(ξ−γt − 1) . (119)
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This term is added to the previous equation for rf,t+1 without jumps. To approximate rf,t+1 as

linear in xt, the RHS of (119) is linearized as,

−l(ξ−γt − 1) ≈ −l(ξ−µγ − 1) + lξ−µγ (ln ξ)b′γxt . (120)

Then, rf,t+1 = Af +B′
fxt, where

Af = − ln(1− eµβ ) + µc −
1

2
vcβ + (µγ − 1){(sxxbν + scx)

′bβ − (s′cxbν + scc)}

− l(ξ−µγ − 1) , (121)

Bf = bc + {lξ−µγ ln ξ − (s′cxbν + scc)}bγ +
{

1

1− eµβ
Id×d − Φx + bγ(sxxbν + scx)

′
}
bβ .(122)

Appendix B: Condition for the continuation value to be real

For a state-dependent subjective discount factor, β(xt), the continuation value is approximated

as νt = exp{µν+b′νxt}, where µν and bν are the solution to the simultaneous quadratic equations

given in (29) and (30). This appendix presents the condition on which µν and bν are real. Also,

it addresses which real root to select.

Recall that (29) and (30) are, respectively,

µν = β0

{
µν + µc −

1

2
vcν(µγ − 1)

}
,

bν = β0

(
bc +Φxbν −

1

2
vcνbγ

)
+ β1

{
µν + µc −

1

2
vcν(µγ − 1)

}
.

By (29), vcν can be expressed as a linear function of µν . Then, substitute this into (30) and

rearrange the terms:

bν = c0 + c1µν , (123)

where

c0 = (Id×d − β0Φx)
−1β0

(
bc −

µc
µγ − 1

bγ

)
, (124)

c1 = (Id×d − β0Φx)
−1

(
β1
β0

+
1− β0
µγ − 1

bγ

)
. (125)

Substituting (123) back into (29), where vcν = b′νsxxbν+2s′cxbν+scc , yields a quadratic equation

with respect to µν as

α2µ
2
ν + 2α1µν + α0 = 0 , (126)
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where

α2 = c′1sxxc1 , (127)

α1 = c′0sxxc1 + s′cxc1 +
1− β0

β0(µγ − 1)
, (128)

α0 = c′0sxxc0 + 2s′cxc0 + scc −
2µc

µγ − 1
. (129)

Then, the condition for real µν is that the determinant of (126) is non-negative:

α2
1 − α2α0 ≥ 0 . (130)

By (123), this is also the condition for real bν .

Which root to select

Given that (126) has two real roots, we always select a larger root in order to avoid a negative

value of µν if a smaller root is negative. It is likely that at least one root is positive for typical

sets of parameter values, which is explained as follows. (29) can be rewritten as

µν =
β0

1− β0

{
µc −

1

2
vcν(µγ − 1)

}
, (131)

where β0 = 1 − eµβ . By µβ < 0, it holds that 0 < β0 < 1 and hence that β0/(1 − β0) > 0.

Furthermore, it is typically the case that the mean term (µc = E[∆ct]) dominates the (scaled)

variance term (vcν = vart[ln νt+1 +∆ct+1]) even if µγ is large.

Appendix C: Accuracy of approximation of the value function

We express here an approximation of the value function as νAPt , which is derived as νAPt =

exp{µν + b′νxt}. The approximation error is defined by

et = νt − νAPt = Et[(νt+1e
∆ct+1)1−γt ]βt/(1−γt) − exp{µν + b′νxt} . (132)

Since the true form of νt is unknown, it is difficult to evaluate the conditional expectation on

the RHS of (132) and hence the error et. We therefore compute a pseudo approximation error.

First, we decompose et as et = e1,t + e2,t, where

e1,t = Et[(νt+1e
∆ct+1)1−γt ]βt/(1−γt) − Et[(ν

AP
t+1e

∆ct+1)1−γt ]βt/(1−γt) , (133)

e2,t = Et[(ν
AP
t+1e

∆ct+1)1−γt ]βt/(1−γt) − exp{µν + b′νxt} . (134)
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Then, e2,t is a pseudo approximation error, where the log of Et[(ν
AP
t+1e

∆ct+1)1−γt ]βt/(1−γt) is equal

to (97). Unless e1,t and e2,t offset each other, e2,t undervalues the approximation error, which

requires caution for interpreting the results obtained in the following three cases.

C1. Linear risk aversion γt with E[γt] = 150

Panel A of Table A1 presents e2,t/ν
AP
t in percentage terms when γt is linear with the parameter

values given in Table 4. The errors are evaluated when the factors are above or below k (= 1, 2, 3)

standard deviations from the mean (i.e., zero). By construction of the approximation, e2,t = 0

at xt = 0. The label “All factors” indicates that all factors change simultaneously, whereas the

label “Individual factors” indicates that only a factor in each row changes with the other factors

fixed at the mean. All the errors in the xπ,t-row are zero as νt does not depend on xπ,t.

First, by changing all elements of xt proportionally, the pseud errors are at most −0.12%.

Second, by changing only the expected dividend-growth factor xd,t or the risk-free rate factor

xf,t, the pseud errors are negligibly small. Third, since the price-of-risk factor xλ,t varies more

intensively than the other factors, it is expected to have a larger impact on the accuracy of the

approximation. While this is indeed the case, the pseud errors are at most 0.1%.

C2. Quadratic γt with E[γt] = 150

In Section 4.3, we refer to a quadratic specification of γt to avoid negative values of γt. We

specify γt = q0 + q1x
2
λ,t with q0, q1 > 0. In order to derive ln νt as a linear function of xt, γt

needs to be linearized around xλ,t = µλ:

γt ≈ q0 + q1µ
2
λ + 2q1µλ(xλ,t − µλ) . (135)

By matching the intercept and slope terms between (48) and (135), we have q1 = bγ4/(2µλ)

and q0 = µγ − q1µ
2
λ. By this matching, we do not re-calibrate the parameters of the model but

simply use those presented in Tables 2 and 4.

Panel B of Table A1 presents e2,t/ν
AP
t in percentage terms for a quadratic γt. As expected,

the pseud errors are larger than those for a linear γt due to the additional approximation given

in (135). Still, they are less than 1% in absolute value.
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C3. Linear γt and jumps in cash-flow processes

To obtain ln νAPt = µν + b′νxt in the case of jumps, we need to rely on a further approximation

presented in (112), which is avoided if γt is constant. Then, it follows that the smaller the

variation in γt, the more accurate is the (additional) approximation. Note that in Section 5.1,

we reduce the volatility of xλ,t and hence the volatility of γt = µγ + bγ4(xλ,t − µλ), which works

for reducing the approximation error.

Panel C of Table A1 presents e2,t/ν
AP
t in percentage terms, which are computed at the

parameter values given (partially) in Table 6. As expected, the additional approximation is not

a serious concern. The pseud errors are at most −0.2% when all elements of xt are above three

standard deviations from the mean. When the value of each factor is changed, there is no case

in which the pseud error exceeds 0.1% in absolute value.

Appendix D: Term structure formulas

Risk-neutral drift

To simply express the recursive equations for the prices of zero-coupon bonds and equities, we

bundle model parameters into those in the risk-neutral probability measure. Specifically, we

first describe the risk-neutral dynamics as

∆dt+1 = µQd + bQ ′
d xt + σ′dz

Q
t+1 , (136)

∆πt+1 = µQπ + bQ ′
π xt + σ′πz

Q
t+1 , (137)

xt+1 = µQx +ΦQ ′
x xt + σ′xz

Q
t+1 , (138)

where zQt+1 is an i.i.d. normal random vector in the risk-neutral probability measure. The

risk-neutral drift of ∆dt+1 satisfies for any xt

µQd + bQ ′
d xt = Et[∆dt+1] + covt[mt+1, ∆dt+1] . (139)

The conditional covariance on the RHS of (139) is

covt[∆dt+1, mt+1] = −σ′dλt = s′dx(bβ + bν)− (s′dxbν + scd)µγ − (s′dxbν + scd)b
′
γxt . (140)

Then, µQd and bQd on the LHS of (139) are identified as

µQd = µd + s′dx(bβ + bν)− µγ(s
′
dxbν + scd) , bQd = bd − bγ(s

′
dxbν + scd) . (141)
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Likewise,

µQπ = µπ + s′πx(bβ + bν)− µγ(s
′
πxbν + scπ) , bQπ = bπ − bγ(s

′
πxbν + scπ) , (142)

µQx = sxx(bβ + bν)− µγ(sxxbν + scx) , ΦQx = Φx − bγ(sxxbν + scx)
′ . (143)

By the calibration, the slope terms of the factor risk premiums are matched exactly between

the LW and proposed models. This is equivalent to matching the slope terms of the risk-neutral

drift (i.e., bQd , b
Q
π , and ΦQx ) between the two models.

Real zero-coupon bonds

The price of a real zero-coupon bond maturing in n periods, PRt,n, satisfies the following Euler

equation:

PRt,n = Et[Mt+1P
R
t+1,n−1] = e−rf,t+1EQt [P

R
t+1,n−1] , (144)

where the second equality is by the change from the physical to risk-neutral probability measures

and EQt [·] stands for the conditional expectation under the risk-neutral probability measure. The

initial condition is PRt,0 = 1. By substituting PRt,n = exp{ARn + BR ′
n xt} into the RHS of (144),

developing the conditional expectation under the risk-neutral probability measure, and matching

the intercept and slope terms on both sides, we obtain the following recursive equations for ARn

and BR
n :

ARn = ARn−1 −Af + µQ ′
x BR

n−1 +
1

2
BR ′
n−1sxxB

R
n−1 , (145)

BR
n = ΦQxB

R
n−1 −Bf , (146)

with the initial condition AR0 = 0 and BR
0 = 0.

ΦQx in (146) is the same between the LW and proposed models as documented above. Also,

Bf , the loading on the state vector in the real risk-free rate rf,t+1, is the same between the two

models as (50) holds by the calibration procedure. Consequently, BR
n is the same between the

two models for any n.

Nominal zero-coupon bonds

Rewrite the Euler equation (38) for the real price of a nominal zero-coupon bond as

PNt,nΠt = Et

[
Mt+1(P

N
t+1,n−1Πt+1)

Πt
Πt+1

]
= e−rf,t+1EQt

[
(PNt+1,n−1Πt+1)

Πt
Πt+1

]
, (147)

55



with the initial condition PNt,0Πt = 1. By substituting PNt,nΠt = exp{ANn + BN ′
n xt} into (147),

developing the conditional expectation under the risk-neutral probability measure, and matching

the intercept and slope terms on both sides, we obtain the following recursive equations for ANn

and BN
n :

ANn = ANn−1 −Af − µQπ +
1

2
sππ + (µQx − sπx)

′BN
n−1 +

1

2
BN ′
n−1sxxB

N
n−1 , (148)

BN
n = ΦQxB

N
n−1 −Bf − bQπ , (149)

with the initial condition AN0 = 0 and BN
0 = 0. Notice that BN

n is the same between the LW

and proposed models for any n because ΦQx , Bf , and b
Q
π are the same between the two models

by the calibration.

Zero-coupon equities

Rewrite the Euler equation (40) for the price of a dividend strip as

PDt,n
Dt

= Et

[
Mt+1

PDt+1,n−1

Dt+1

Dt+1

Dt

]
= e−rf,t+1EQt

[
PDt+1,n−1

Dt+1
e∆dt+1

]
, (150)

with the initial condition PDt,0/Dt = 1. By substituting PDt,n/Dt = exp{ADn +BD ′
n xt} into (150),

developing the conditional expectation under the risk-neutral probability measure, and matching

the intercept and slope terms on both sides, we obtain the following recursive equations for ADn

and BD
n :

ADn = ADn−1 −Af + µQd +
1

2
sdd + (µQx + sdx)

′BD
n−1 +

1

2
BD ′
n−1sxxB

D
n−1 , (151)

BD
n = ΦQxB

D
n−1 −Bf + bQd , (152)

with AD0 = 0 and BD
0 = 0. For the same reason as above, BD

n is the same between the LW and

proposed models for any n.

Zero-coupon equities with jumps in consumption and dividend growth

The SDE Mt+1 is decomposed into the Gaussian and jump components, which are mutually

independent, as

Mt+1 =MG
t+1M

J
t+1 = e−rf,t+1

MG
t+1

Et[MG
t+1]

MJ
t+1

Et[MJ
t+1]

.

Also, ∆dt+1 = ∆dGt+1+∆dJt+1. Meanwhile, PDt+1,n−1/Dt+1 is a function of xt+1 that has no jump

component. Then, the recursive equation (150) is developed as

PDt,n
Dt

= e−rf,t+1Et

[
MG
t+1

Et[MG
t+1]

PDt+1,n−1

Dt+1
e∆d

G
t+1

]
Et

[
MJ
t+1

Et[MJ
t+1]

e∆d
J
t+1

]
. (153)

56



The first conditional expectation (multiplied by e−rf,t+1) on the RHS of (153) is the same as

that developed without jumps. The second conditional expectation is developed by substituting

MJ
t+1 = e−γt(ln ξ)Nt+1 and ∆dJt+1 = k(ln ξ)Nt+1 as

Et[exp{(k − γt)(ln ξ)Nt+1 − l(ξ−γt − 1)}] = exp{l(ξk − 1)ξ−γt} . (154)

To derive ln(PDt,n/Dt) as a linear function of xt, ξ
−γt is linearized as

ξ−γt ≈ ξ−µγ{1− (ln ξ)b′γxt} . (155)

Then, ln(PDt,n/Dt) = ADn +BD ′
n xt, where A

D
n and BD

n are determined recursively as

ADn = ADn−1 −Af + µQd +
1

2
sdd + (µQx + sdx)

′BD
n−1 +

1

2
BD ′
n−1sxxB

D
n−1 + l(ξk − 1)ξ−µγ ,(156)

BD
n = ΦQxB

D
n−1 −Bf + bQd − l(ξk − 1)ξ−µγ (ln ξ)bγ , (157)

with AD0 = 0 and BD
0 = 0.
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∆d ∆π xd xπ xf xλ

Unconditional means

µ. 1.29% 3.68% − − 0.96% 17.0

Standard deviations of innovation terms
√
s.. 10.0% 1.18% 0.32% 0.35% 0.19% 4.00

Autocorrelations

diag(Φx) − − 0.90 0.78 0.92 0.85

Correlations between innovation terms

∆d 1.00 −0.30 −0.83 −0.30 −0.30 0.00

∆π 1.00 0.00 1.00 0.00 0.00

xd 1.00 0.00 0.00 0.35

xπ 1.00 0.00 0.00

xf 1.00 0.00

Unconditional factor risk premiums

17.00% −0.60% −0.45% −0.18% −0.10% 0.00

Table 2: Parameter values of the LW model

These values are collected from tables 1–3 in LW (2011). Unconditional means, standard de-

viations, and autocorrelations are annualized, except for the unconditional mean of xλ,t and

the standard deviation of innovation in xλ,t expressed in raw numbers. The last row presents

annualized, unconditional factor risk premiums.
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Solution Consumption Risk aversion Subjective discount factor
√
scc E[γt] SD[γt] E[βt] SD[βt]

(%, year) (×102)

(a) 8.84 30 25 0.969 1.097

(b) 5.89 60 51 0.981 0.532

(c) 4.77 90 77 0.985 0.392

(d) 4.22 120 102 0.986 0.331

(e) 3.91 150 128 0.987 0.298

Table 3: Moments for consumption and preferences at selected solutions

Table 3 presents the annualized volatility of innovation in consumption growth (
√
scc), and

the unconditional mean (E[·]) and standard deviation (SD[·]) of state-dependent preferences at
selected solutions to the set of constraint equations given in Section 3.2. The solutions are in

ascending order of E[γt].
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Panel A: Consumption volatility and correlations
√
scc ρcd ρcx1 ρcx2 ρcx3 ρcx4

3.91% 0.877 −0.755 −0.086 −0.046 0.341

Panel B: State-dependent preferences and continuation value

constant xd xπ xf xλ

γt 150 0.00 0.00 0.000 8.9357

ln(1− βt) −4.392 −8.66 0.00 30.170 0.0136

ln νt 0.071 8.86 0.00 −0.817 −0.0029

Panel C: Unconditional factor risk premiums

∆d ∆π xd xπ xf xλ

17.00% −0.60% −0.46% −0.18% −0.11% −0.172

Table 4: Implied parameters of consumption dynamics and preferences

Table 4 presents the calibrated parameters at Solution (e) of Table 3. Panel A presents the

annualized volatility of innovation in consumption growth (
√
scc) and the correlations between

innovations in consumption growth and the rest of the variables. The correlation with realized

inflation growth is not shown because it is the same as the correlation with expected inflation

growth (ρcx2). Panel B presents the parameters in risk aversion γt, log subjective discount

rate ln(1 − βt), and log continuation value ln νt. All of these functions are linear in x′t =

(xd,t, xπ,t, xf,t−µf , xλ,t−µλ). Panel C presents annualized, unconditional factor risk premiums,

except for xλ expressed in row numbers.
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Panel A: Consumption volatility and correlations
√
scc ρcd ρcx1 ρcx2 ρcx3 ρcx4

4.96% 0.898 −0.792 −0.069 0.085 0.281

Panel B: State-dependent preferences and continuation value

constant xd xπ xf xλ

γt 150 0.00 0.00 0.000 8.7817

ln(1− βt) −6.337 −12.00 0.00 44.639 0.0025

ln νt 0.458 12.36 0.00 −1.619 −0.0035

Panel C: Unconditional factor risk premiums

∆d ∆π xd xπ xf xλ

17.00% −0.60% −0.45% −0.18% 0.02% 0.015

Table 5: Implied parameters for ρdx3 = 0.1

ρdx3 stands for the correlation between innovations in dividend growth and risk-free-rate factor.

It is first changed from −0.3 to 0.1 in the LW model, and then the parameters of the proposed

model are re-calibrated in the same procedure as explained in Section 3.2. The same legend as

in Table 4 follows.
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−3S.D. −2S.D. −1S.D. +1S.D. +2S.D +3S.D.

Panel A: Linear γt

All factors −0.060 −0.030 −0.008 −0.011 −0.048 −0.124

Individual factors

xd 0.046 0.020 0.005 0.004 0.017 0.038

xπ 0.000 0.000 0.000 0.000 0.000 0.000

xf −0.002 −0.001 0.000 0.000 −0.001 −0.002

xλ 0.056 0.028 0.008 0.009 0.042 0.105

Panel B: Quadratic γt

All factors −0.812 −0.364 −0.092 −0.094 −0.378 −0.858

Individual factors

xd 0.046 0.020 0.005 0.004 0.017 0.038

xπ 0.000 0.000 0.000 0.000 0.000 0.000

xf −0.002 -0.001 0.000 0.000 −0.001 −0.002

xλ −0.695 −0.307 −0.076 −0.074 −0.289 −0.635

Panel C: Linear γt with jumps in consumption and dividend growth

All factors −0.099 −0.047 −0.013 −0.015 −0.064 −0.155

Individual factors

xd 0.047 0.020 0.005 0.005 0.018 0.039

xπ 0.000 0.000 0.000 0.000 0.000 0.000

xf −0.004 −0.002 0.000 0.000 −0.001 −0.003

xλ 0.000 0.000 0.000 0.000 0.000 0.001

Table A1: Approximation errors of νAPt
The value function is approximated as νAPt = exp{µν + b′νxt}. The table reports e2,t/ν

AP
t

in percentage terms, where e2,t stands for a pseudo approximation error defined as e2,t =

Et[(ν
AP
t+1e

∆ct+1)1−γt ]β/(1−γt) − νAPt . The values of e2,t are computed at the values of the fac-

tors above or below k (= 1, 2, 3) standard deviations (S.D.) from the mean (i.e., zero). In each

panel, the label “All factors” indicates that all factors change proportionally, whereas the label

“Individual factors” indicates that only a factor in each row changes with the other factors

fixed at the mean. By construction of the approximation, e2,t = 0 at xt = 0 (mean). Panels

A and B are for a linear risk-aversion and a quadratic risk-aversion, respectively, evaluated at

the parameter values given in Tables 2 and 4. Panel C is for a linear risk-aversion with jumps

in consumption and dividend processes, evaluated at the parameter values given (partially) in

Table 6.
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(a) Risk aversion γt

0.000

0.001

0.002

0.003

-300 -200 -100 0 100 200 300 400 500 600

(b) Subjective discount factor βt

0

50

100

150

0.97 0.975 0.98 0.985 0.99 0.995

Figure 1: Unconditional distributions of state-dependent preferences

The distributions are drawn at Solution (e) of Table 3. The risk-aversion coefficient is specified

as γt = µγ + b′γxt and the subjective discount factor as βt = 1 − exp{µβ + b′βxt}, where xt is a
Gaussian state vector.
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(a) Loading on xd,t
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Figure 2: Log price loadings on state variables Bi
n (i = {R,N,D})

The log prices for real bonds (R), nominal bonds (N), and dividend strips (D) are given by

lnP it,n = Ain + Bi ′
n xt (i = {R,N,D}). Panel (a) plots against n (quarters) the loadings on xd,t

(expected dividend growth), multiplied by the unconditional volatility of xd,t hence normalized

in that they are the loadings on the factor with unit volatility. Panels (b)–(d) plot the analo-

gous loadings on xπ,t (expected inflation growth), xf,t (risk-free rate), and xλ,t (price of risks),

respectively.
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(a) Real; Level
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(c) Real; Volatility
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Figure 3: Average term structures of interest rates and volatilities

In Panels (a) and (b), the term structures of 4E[Y i
t,n] (i = {R,N}) (annualized) are plotted

against n (quarters), where Y i
t,n is the yield to maturity of a zero-coupon bond at time t. In

Panels (c) and (d), the term structures of
√
4var[Y i

t,n] (i = {R,N}) (annualized) are plotted.

The solid (dotted) line is for the proposed (LW) model.

72



(a) Real; xf,t = µf , +2SD, −2SD
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(c) Real; xλ,t = µλ, +2SD, −2SD
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(e) Real; good and bad states
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(b) Nominal; xf,t = µf , +2SD, −2SD
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(d) Nominal; xλ,t = µλ, +2SD, −2SD
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(f) Nominal; good and bad states
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Figure 4: Conditional term structures of interest rates for the proposed model

Panels (a) and (b) plot the term structures when the risk-free-rate factor xf,t is above (+2SD)

or below (−2SD) two standard deviations from the mean with the other factors fixed at the

mean. Panels (c) and (d) plot the term structures when the price-of-risk factor xλ,t is above

(+2SD) or below (−2SD) two standard deviations from the mean with the other factors fixed

at the mean. Panels (e) and (f) plot the term structures when the economy is “Good” or “Bad”

with a good (bad) state defined as when xλ,t is below (above) two standard deviations from the

mean and the other factors are above (below) two standard deviations from the mean.

73



(a) Risk premiums
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Figure 5: Average term structures of risk premiums, volatilities, and Sharpe ratios

for dividend strips (annualized)

74



(a) Risk premiums
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Figure 6: Conditional term structures of dividend risk premiums and Sharpe ratios

for the proposed model (annualized)

The term structures are plotted when the price-of-risk factor xλ,t is above (+2SD) or below

(−2SD) two standard deviations from the mean.
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(a) Real interest rates
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(c) Dividend risk premiums

-0.03

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0 40 80 120 160

LW Proposed

(b) Nominal interest rates
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(d) Dividend Sharpe ratios
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Figure 7: Average term structures of zero-coupon bonds and equities for ρdx3 = 0.1

ρdx3 stands for the correlation between innovations in dividend growth and risk-free-rate factor.

It is first changed from −0.3 to 0.1 in the LW model, and then the parameters of the proposed

model are re-calibrated in the same procedure as explained in Section 3.2.
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(a) Real; bγ2 = 0, 90
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(c) Real; bβ2 = 0, 2
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(b) Nominal; bγ2 = 0, 90
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Figure 8: Average term structures of interest rates for bγ2 = 90 or bβ2 = 2

bγ2 is the coefficient of the expected inflation-growth factor xπ,t in the risk aversion γt and bβ2
is the analogous coefficient in the log subjective discount rate ln(1 − βt). These coefficients,

originally set at zero, are changed as indicated above while the other parameters are held fixed

at the values presented in Table 5. In each panel, the plot labeled as bγ2 = 0 or bβ2 = 0 is the

same as shown in Figure 7(a) (real) or Figure 7(b) (nominal).
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(a) Risk aversion γt
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(b) Subjective discount factor βt
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Figure 9: Unconditional distributions of state-dependent preferences with and with-

out jumps when the mean and volatility of xλ,t are reduced

The distributions are drawn at the parameter values given (partially) in Table 6. The risk-

aversion coefficient is specified as γt = µγ + b′γxt and the subjective discount factor as βt =

1− exp{µβ + b′βxt}, where xt is a Gaussian state vector.
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(a) Real; Level
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(c) Real; Volatility
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(d) Nominal; Volatility
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Figure 10: Average term structures of interest rates and volatilities with and with-

out jumps when the mean and volatility of xλ,t are reduced

In panels (a) and (b), the term structures of 4E[Y i
t,n] (i = {R,N}) (annualized) are plotted

against maturity n (quarters), where Y i
t,n is the yield to maturity of a zero-coupon bond at

time t. In panels (c) and (d), the term structures of
√
4var[Y i

t,n] (i = {R,N}) (annualized) are
plotted. They are drawn at the parameter values given (partially) in Table 6.
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(a) Risk premiums
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(b) Volatilities
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Figure 11: Average term structures of risk premiums, volatilities, and Sharpe ra-

tios for dividend strips (annualized) with and without jumps when the mean and

volatility of xλ,t are reduced
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