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Abstract

This study proposes an equilibrium model of the term structures of bonds and equities,
which has a similar descriptive ability to the reduced-form model proposed by Lettau and
Wachter (LW) (J. Financial Economics, 2011), and yet offers economic implications about
preferences and consumption dynamics. The ability is obtained by letting the parameters
of recursive utility depend on state variables of the economy. The model is calibrated by
matching it with the LW model, showing that it can produce the term structure of real
interest rates with either a positive or a negative slope and the term structure of dividend
risk premiums with a negative slope, both of which stand as challenges to current pricing
models. It also shows that while the implied behavior of state-dependent time preference
is reasonable, modifications of parameter values and cash-flow processes are necessary for

state-dependent risk aversion to behave reasonably.
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1 Introduction

The pricing of cash flows at various points in time is one of the central issues in finance. The
term structure of interest rates, which has long been studied, is based on fixed cash flows.
Stochastic cash flows such as dividends lead to the term structure of dividend strips or zero-
coupon equities, which is of relatively recent focus. This study builds an equilibrium model
of the term structures of zero-coupon bonds and equities and discusses the preferences and
consumption dynamics implicit in these term structures.

Essentially, any equilibrium model can price any asset. However, few models aim to explain
both zero-coupon bonds and equities from a term-structure perspective. To model their term
structures, at least two challenges are known. The first is the term structure of real interest
rates, which is upward-sloping, flat, or downward-sloping. This indecisive shape in turn requires
a model to be flexible. The second is the term structure of risk premiums of dividend strips,
which is on average downward-sloping, as evidenced by various data sources such as index options
(van Binsbergen, Brandt, and Koijen, 2012), index dividend futures (van Binsbergen et al., 2013;
van Binsbergen and Koijen, 2017), and the cross-section of stocks (Weber, 2017).! However, as
illustrated by van Binsbergen et al. (2012), the downward slope is difficult to explain by using
well-established equilibrium models such as the external habit model of Campbell and Cochrane
(1999), the long-run risks model of Bansal and Yaron (2004), and the disaster models of Barro
(2009) and Gabaix (2012). These challenges motivated recent studies to improve equilibrium
models, which are compared with ours below.

Without imposing equilibrium conditions, it may not be very difficult to model the term
structures of real interest rates and dividend risk premiums consistently with the stylized facts.
Indeed, Lettau and Wachter (2011) (hereafter LW) propose a reduced-form model that can
explain these term structures. The key driver behind their success is the specification of the
stochastic discount factor (SDF), which increases in response to a negative shock to realized
dividend growth. This specification is effective for raising the risk of holding short-term dividend
strips. Furthermore, LW assume that a negative shock to realized dividend growth is highly likely
to raise expected dividend growth. This assumption makes long-term dividend strips less risky
because they rise in value when the SDF is high. Consequently, the term structure of dividend

risk premiums slopes downward. In addition, the LW model can generate an upward-sloping,

1See also Schulz (2016), who points out that the evidence of a downward slope is inconclusive when returns to

short-term dividend claims are adjusted for taxes or liquidities.



flat, or downward-sloping term structure of real interest rates by simply controlling for the
correlation between realized dividend growth and real risk-free rate.

These important mechanisms of the LW model are exogenous. Our goal is to endogenize
them. The purpose of this study is to develop an equilibrium model that offers implications
about the preferences and consumption dynamics and yet has a similar descriptive ability to
the reduced-form model proposed by LW. For this purpose, we ask what kind of utility function
supports LW’s SDF. Our answer is to let the parameters of a recursive utility function of the
representative agent depend on the state variables of the economy. Meanwhile, we model cash-
flow processes as simply as in the original LW model, although we later consider a minimal
extension of these processes.

The idea of state-dependent preferences itself is not new. In fact, Gordon and St-Amour
(2000, 2004), Melino and Yang (2003), Chabi-Yo, Garcia, and Renault (2008), Berrada, De-
temple, and Rindisbacher (2013), and Dew-Becker (2014) consider models in which preference
parameters themselves change over time. A distinct feature of the current model is that both
the risk-aversion and time-preference parameters are driven by many state variables such as
(expected) consumption and inflation growth as well as financial variables such as the risk-free
rate and price of risks, meaning that the agent can fine-tune her preferences by looking at the
economy and asset markets.

A state-dependent risk aversion is beneficial for amplifying the variation in the SDF and
hence capturing high equity risk premiums. Moreover, it leads to time-varying price of risks,
which naturally explains time-varying risk premium (the product of the price of risks and an
asset-specific quantity of risks) with the source of variation not limited to stochastic volatility,
or stochastic intensity in the case of jumps, of cash-flow processes. Furthermore, it offers an
additional channel of raising the slope of the term structure of nominal interest rates other than
the standard channel of a negative correlation between consumption and inflation growth. A
state-dependent time preference also has the advantage of generating various shapes in the term
structure of real interest rates. Suppose, for example, there is a shock that raises the SDF'. If this
shock also affects agent’s time preference in a way in which she more heavily discounts (utilities
from) future cash flows, the prices of real bonds will fall, with the fall more significant for longer-
term bonds because of the compound effect. Real bonds therefore cannot be hedging instruments
against events that raise the SDF, and the real term structure will thus slope upward.

The parameters of the proposed model are calibrated by matching it with the LW model,



which has two advantages. The first is to achieve a similar descriptive ability to the LW model.
Indeed, the proposed model can closely replicate various term-structure shapes generated by
the LW model. The second is to obtain an equilibrium foundation of the LW model. It is
possible to imply the preferences and consumption dynamics from the LW model through the
calibration of the proposed model. This calibration approach is similar in spirit to Backus,
Boyarchenko, and Chernov (2018), who first establish the facts about the level and shape of
the various term structures and then identify the features theoretical models (in both reduced
and structural forms) should possess to be consistent with the facts. As the facts here, we use
the term structures generated by the LW model. Unlike Backus et al. (2018) focusing on the
extension of cash-flow processes while using the standard recursive utility, we extend the utility
function with cash-flow processes kept simple.

The calibration results contain unrealistic implications about the preferences and/or con-
sumption dynamics. Most notably, given consumption volatility of less than 4% per year, the
mean and standard deviation of state-dependent risk aversion reach 150 and 128, respectively.
Conversely, when mean risk aversion reduces to 30, then the implied consumption volatility
reaches nearly 9%.

One possibility of these implications is that the parameter values originally calibrated by LW
are unrealistic. Since the LW model is a reduced-form model, it allows for many combinations
of the parameter values, any of which can explain the observed term structures. However, once
some equilibrium conditions are imposed, few combinations of the parameter values are consis-
tent with not only the observed term structures but also realistic preferences and consumption
dynamics. Our model uncovers which combinations are more appropriate. Another possibility
is that the dynamics of cash flows in the LW model are too simple. We then slightly deviate
from the LW model by introducing jumps into consumption and dividend growth, which are in-
terpreted as disasters. The change in parameter values and modification of cash-flow processes
together are shown to be effective for making risk aversion and consumption growth economically

plausible, while retaining the ability to explain the various term structures.

Related literature

Our model extends the recursive utility function of Epstein and Zin (1989, 1991) and Weil
(1989) in a way in which the risk-aversion and time-preference parameters depend on the state

variables of the economy. Melino and Yang (2003) consider the recursive utility function with



state-dependent parameters more generally in that the elasticity of intertemporal substitution
(EIS) is also state-dependent; however, they do not model how these parameters evolve over
time. The law of motion of risk aversion is modeled by Gordon and St-Amour (2000), and
Chabi-Yo et al. (2008) by using Markov-switching processes. Berrada et al. (2013) also use
them for driving both risk aversion and time preference. Gordon and St-Amour (2004) and
Dew-Becker (2014) model risk aversion as driven by autoregressive processes. Our model is
similar to the last two studies regarding how to model time variation but different from them
in that time preference is also state-dependent and that the preference parameters are driven
by many state variables that drive the economy. Mehra and Sah (2002) study the impact of
changes in a time-preference parameter or a risk-aversion parameter on the volatility of stock
returns. We address the importance of time-varying preference parameters for describing the
term structures.

Whether and how risk preferences vary has been examined using surveys and/or experiments.
Andersen et al. (2008) perform field experiments using lottery choices with real monetary
rewards and find that risk preferences are state dependent with respect to personal finances but
not macroeconomic perspectives. Brunnermeier and Nagel (2008), Chiappori and Paiella (2011),
and Liu, Yang, and Cai (2016) ask whether wealth drives risk preferences, proxied by a share
of risk assets in wealth portfolio, reporting mixed results. Kuhnen and Knutson (2011), Cohn
et al. (2015), and Guiso, Sapienza, and Zingales (2018) relate the change in risk preferences
to emotions and find evidence that anxiety or fear can raise risk aversion by an economically
significant magnitude?

The possibility that time preference is varying over time and/or across individuals has also
been considered; see Frederick, Loewenstein and O’Donoghue (2002) for a review and Halevy
(2015) for recent experimental evidence of the variation in subjective discount rate. Becker and
Mulligan (1997), and Stern (2006) model an endogenous subjective discount rate as a function
of future-oriented capital, invested for increasing the propinquity of future utilities. Unlike their
work, time preference in our model is driven by exogenous variables, which simplifies the con-
sumption problem and keeps the model tractable for asset-pricing purposes. The exogenous sub-

jective discount rate in this study is also different from the well-established, horizon-dependent

2In Cohn et al. (2015, pp. 863-4): “In standard theory, expectations typically do not affect preferences. If,
however, price expectations affect fear levels, they may also directly affect risk preferences.” We model preference

parameters as a function of state variables including those affecting expected cash-flow growth.



time preference that discounts nearby cash flows more heavily than distant ones; see, for exam-
ple, Thaler (1981). However, Harris and Laibson (2001) and Luttmer and Mariotti (2003) show
that the horizon-dependent time preference leads to an effective subjective discount rate that
depends on the state variables affecting endowment growth (unless the agent has log utility).

Recent studies develop equilibrium asset-pricing models to explain the stylized facts about
dividend strips. We limit our attention to some of these studies that explicitly present the results
for the entire term structures of risk premiums and return volatilities of dividend strips, which
are summarized in Table 1; see van Binsbergen and Koijen (2017) for a broader review.

There are two main approaches to improving equilibrium models: one is to improve prefer-
ences and the other cash flows. This study belongs to the former. Recent studies taking the
preference approach are as follows. Curatola (2015) considers heterogeneous agents who have
loss-averse utility, in which the reference point between gain and loss is set at the external con-
sumption habit, so that unlike many standard habit formation models, consumption is allowed
to be below the habit. Because the loss-averse agents are willing to hold long-term dividend
claims to hedge the risks of future consumption being below the habit, the term structure of
dividend risk premiums slopes downward. Meanwhile, the term structure of real interest rates
slopes upward because long-term real bonds cannot hedge increase in the habit and hence de-
crease in the surplus consumption. Doh and Wu (2016) impose a structure on the long-run
risks model such that both the equilibrium wealth-consumption ratio and the price of a one-
period dividend strip are quadratic functions of the state variables and then reverse-engineer
the consumption and dividend processes consistent with the imposed structure. The resulting
risk premiums of dividend strips are first decreasing with maturity and then increasing, which
is not surprising as the premiums are also quadratic in the state variables. Our model is as
flexible as the reduced-form model proposed by LW and can generate both a downward-sloping
term structure of dividend risk premiums and either an upward-sloping or a downward-sloping
term structure of real interest rates. This flexibility is owing to state-dependent preferences.

Recent studies that modify cash-flow processes propose various mechanisms that make short-
run growth in dividends volatile and procyclical relative to long-run growth. Belo, Collin-
Dufresne, and Goldstein (2015) consider as a mechanism a stationary financial leverage ratio.
In their model, in response to a temporal increase (decrease) in corporate earnings measured
by EBIT, a firm is assumed to increase (decrease) debt to keep the leverage ratio to a station-

ary level, which further increases (decreases) the cash distributed to shareholders as dividends.



Consequently, dividends change more intensely than earnings in the short run. In the long run,
however, both EBIT and dividends are exposed to the same amount of risks because of the
stationarity of the leverage ratio, which makes EBIT and dividends cointegrated. Favilukis and
Lin (2016) consider as a mechanism wage rigidity in a production economy, where a negative
transitory shock to technology, corresponding to poor economic states, reduces dividends more
than wages that are settled infrequently. Lopez, Lopez-Salido and Vazquez-Grande (2015) con-
sider a similar logic but instead use nominal rigidity that induces a countercyclical wage share
of output and hence a procyclical dividend share. Marfe (2017) also uses the wage channel
together with the limited participation of asset markets. Specifically, in his model, shareholders
who receive and consume dividends provide wage insurance to workers, which is effective for the
short run but not for the long run because both dividends and wages are cointegrated (i.e., they
share the same long-run risks). Then, dividends, or equivalently shareholders’ consumption in
equilibrium, are more prone to transitory shocks than wages. Meanwhile, only shareholders can
access asset markets. Consequently, in the eyes of pricing agents (i.e., shareholders), short-term
dividend strips look riskier than long-term dividend strips.

Hasler and Marfe (2016) introduce recovery after disaster into cash-flow processes as well as
the stochastic mean of cash-flow growth and stochastic intensity of disaster occurrence. While
the latter two features alone may generate an upward-sloping term structure of dividend risk
premiums as does the Wachter (2013) model, the fast recovery in dividend growth after a large
negative shock reduces the risks of holding long-term dividend strips, more than offsetting the
long-run risks associated with the stochastic mean growth and disaster intensity.

A novel approach taken by Croce, Lettau, and Ludvigson (2015) for generating a downward-
sloping term structure of dividend risk premiums is that they do not change cash-flow processes
from those originally specified by Bansal and Yaron (2004) but do change the way in which they
are estimated. In their framework, the agent overestimates the impact of short-run shocks to
consumption growth on dividend growth because she erroneously revises a long-run component
of dividend growth that is irrelevant to short-run shocks to consumption growth. Consequently,
she requires high premiums for holding short-term dividend strips. Conversely, long-run shocks
to consumption growth, which are originally small, are difficult to infer from dividend growth
because they are contaminated by large idiosyncratic shocks to dividend growth. Then, long-
run consumption risks are not properly priced into long-term dividend strips, and they do not

command high risk premiums.



Our model taking the preference approach complements the models taking the cash-flow
approach. Indeed, it can easily be combined with more sophisticated cash flows, which further
improves statistical adequacy and economic plausibility.

The rest of the manuscript is organized as follows. Section 2 presents the model. Section 3
explains how to calibrate the parameters of the proposed model with a brief introduction of the
LW model. Section 4 verifies the performance of the proposed model and discusses the implied
consumption dynamics and preferences. Section 5 introduces jumps into cash-flow processes to
obtain more plausible economic implications. Section 6 concludes. The technical arguments are

collected in the appendices.

2 Model

Our model is built on a simple exchange economy, in which the flow of endowments is exogenously
provided and a rational, representative agent has recursive utility of Epstein and Zin (1989, 1991)
and Weil (1989). Section 2.1 first specifies the utility function and then extends it in a way in
which the risk-aversion and time-preference parameters depend on the state variables of the
economy. Sections 2.2-2.4 specify the endowment process and state-dependent preferences such
that the recursive equation for agent’s continuation value is solved in closed form for a certain
case, which is presented in Section 2.5. Section 2.6 derives an analytical approximation of the
continuation value for a general case, guided by the results of Section 2.5. Finally, Section 2.7
provides the pricing formulas for zero-coupon bonds and equities. The derivations of the key

equations are provided in Appendix A.

2.1 Preference

Let U; denote the time-t utility of the representative agent, which is specified by the following

recursive form:

Up = {(1 = B)CL + BE[U P -0y Ve (1)

where C is aggregate consumption at time ¢ to be determined by the agent (the decision variable)
and FE[-] stands for expectation conditioned on time ¢t. There are three parameters in U;: [
represents time preference or subjective discount factor (typically somewhat less than one), v is
a coefficient of risk aversion, and p is related to EIS as 1/(1 — p).

To capture the average term structures of zero-coupon bonds and equities, we let 8 and



v be state-dependent as in Melino and Yang (2003). Unlike their study, we set p to zero or
equivalently the EIS to unity. This restriction has the advantage of keeping the model simple
without reducing the goodness-of-fit to at least the average term structures. The unit EIS is
considered by Piazzesi and Schneider (2006) to model the term structure of interest rates. Hansen
et al. (2007) show that a model with the unit EIS can be used as a basis for approximating
more general models.

By substituting (8;, ) for (8, 7) and p =0 in (1),
Uy = G BU. 1 0 (2)

To solve the optimal consumption problem, we make the following assumptions: (i) £; and
are exogenous, and (ii) 0 < f; < 1 for all ¢. Assumption (i) is also considered by Gordon and
St-Amour (2004), who model the risk-aversion coefficient directly as a stochastic process. The
analogous assumption is made by Campbell and Cochrane (1999) in the form of the external
habit. Since 8; and ; are not affected by the decision variable, the optimal consumption problem
can be solved in the same way as in the case of constant preference parameters. Assumption
(ii) guarantees that the period utility in (2) is concave with respect to the decision variable (see
(83) in Appendix A) and that wealth is positive in equilibrium (derived just below).

Let Cf > 0 be the time-t endowment and W; be time-t wealth, which in the endowment
economy is the cum-dividend value of a claim to the flow of endowments. The gross rate of
return to wealth, Ry ¢11, is defined by

Wi

R, =—. 3
A AT (3)
Then, the budget constraint for the agent is

Ry i1(Wy — Cy) = Wigq . (4)

Let V; be the continuation value, which is the solution to the following problem:
Vi = max Uy subject to (4) . (5)
t

Because of the unit EIS, the optimal consumption, C}, has a closed form irrespective of how 3;
and ~; are specified:

Cf =(1—B)We. (6)

Unlike a constant-parameter case, the wealth-consumption ratio, W;/C}, varies over time even

for the unit EIS.



The equilibrium condition is that the agent consumes the given endowment, C} = Cf.
Wealth in equilibrium, W, is then solved as W} = %&CE from (6). By substituting W;" into
(3), the equilibrium gross rate of return to wealth, Ry, , is

« 1 1-5 Ciy

WAL 31— B CF

The continuation value in equilibrium, V;*, is the solution to the following recursive equation.

Define vy = V;*/Cf, and 1y satisfies 3

(7)

. l( Cf+1>1—7t]ﬂt/(17t) (8)
Dt = Ly || V41— ~¢ .
+ Ct
The SDF, M1, is obtained as
1—yt _
oL =Be [ ) "
My = Br—— 5, <th/6t (Cf ) : 9)

In general, the recursive equation for 14 cannot be solved in closed form, which makes the
SDF unavailable in closed form. In the next subsections, we specify the endowment process and
state-dependent preferences in a way in which 4 is solved in closed form for a constant time

preference and approximately for a state-dependent time preference, keeping accuracy in mind.

2.2 Dynamics

Following LW, all the variables are assumed to be homoscedastic. Define ¢; = In Cf and Acyy1 =
ct+1 — ¢¢. The evolution of the rate of growth in endowment, which is equal to aggregate

consumption in equilibrium, is specified as
Acpi1 = pe + b;.ﬁt + Jézt_;_l , (10)

where . is the unconditional mean of the consumption-growth rate (given that the unconditional
mean of x; is zero), z; is a d-dimensional vector of state variables, and 2.4 is a (d+3)-dimensional
vector of i.i.d. normal random variables. The reason for the (d + 3) dimension will be clear
soon.

To price nominal zero-coupon bonds, a general price index, Il;, is introduced, which is
assumed to be determined exogenously. Define my = Inll; and Amyy1 = mep1 — 7. Then, the

evolution of the rate of inflation growth is specified as

ATyp1 = flr 4 Ui + 07 2041 (11)

3We call v, the continuation value unless otherwise noted because V;* does not explicitly appear in the discus-

sions to follow.
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where the parameters and variables are interpreted similarly to the consumption process in (10).
To price dividend strips, the flow of aggregate dividends needs to be specified. Let D; be
the aggregate dividend paid at time t. Define d; = In Dy and Ady+1 = diy1 — di. Then, the

evolution of the rate of dividend growth is specified as
Adiy1 = pug + bzl.%'t + UQZt_H . (12)

The aggregate dividend can be regarded as levered consumption in an endowment economy.
The most direct description of this relation is D; = (Cf)® for some constant a > 1 (Abel,
1999; Campbell, 2003). In addition, it is often assumed that Acy41 and Ady41 are cointegrated
(Bansal, Gallant, and Tauchen, 2007). We consider their link when calibrating the parameters
in Section 3.2.

Finally, a d-dimensional state vector x; is assumed to follow
Ti41 = (I);It + U;Zt+1 . (13)

Notice that the unconditional mean of x; is zero and that there are (d + 3) variables in the
economy.

For notational convenience, define s;; = o}0;. For example, the covariance between innova-
tions in Acgpq and Adyyq is denoted as s.q = olog (scaler). Likewise, the covariance between
innovations in Acyy1 and xp4q is denoted as s.; = olo. (d x 1 vector) and the variance of

innovation in @141 as Syp = 0h0, (d X d matrix).

2.3 Risk aversion

We specify the coefficient of risk aversion as a linear function of the state vector:
V= py blth : (14)

The linear specification has the advantage of obtaining the SDF in closed form when time
preference is constant. It is also useful for a state-dependent time preference, which is discussed
in Section 2.6.

One caveat is that since z; is Gaussian, v becomes negative with a positive probability. This
shortcoming is also seen in the previous work. Gordon and St-Amour (2004) and Dew-Becker
(2014) specify v; as a part of the VAR(1) system and an AR(1) process, respectively; however,
they do not theoretically impose the positivity of 7. The probability of v+ < 0 in this study is

addressed after calibrating the parameters in Section 4.1.
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2.4 Time preference

We consider the following two specifications:

(S1 B = B, (15)
(S2) B = 1—explus+ Vet (us<0). (16)

S1 allows us to solve the recursive equation (8) for 14 in closed form. The resulting formula
is exponentially linear in x;, leading to the SDF of the affine class. The prices of zero-coupon
bonds and equities are therefore available in closed form, which are also exponentially linear in
xy.

For any specification of S; except S1, 14 has no closed form. To retain tractability, we thus
perform an analytical approximation of 4 in a way in which the affine-pricing framework is
available as for S1. S2 aims to retain the accuracy of the approximation rather than being based
on economic reasoning or statistical adequacy. Specifically, once In 14 is approximated as a linear
function of x; (this approximation is inevitable for any specification of 3;), the price of risks is
derived as a linear function of x; without further approximation. Intuitively, this is understood
by noting that the SDF given in (9) has a term 1 — 5,41, which in S2 is exponentially linear in
x44+1. Moreover, the wealth-consumption ratio given in (6) is log-linear in x;.

One caveat of S2 is that [3; becomes negative with a positive probability, violating the lower
bound constraint in Assumption (ii). The severity of this violation depends on the parameter

values and therefore is addressed after the calibration in Section 4.1.

2.5 SDF for S1

We derive the continuation value and SDF for S1. Although our interest is in S2, the results for
S1 are worth presenting for three reasons. First, they are an extension of the results presented
by Hansen, Heaton and Li (2008). The extension is in the coefficient of risk aversion: this is
constant in Hansen et al. (2008), whereas it is a linear function of the Gaussian state vector
in this study. Second, the fact that the SDF for S1 derived here is exact while that for S2 is
approximate clarifies the source of the approximation and provides the sense of the accuracy
(the cost of S2). Third, through the comparison with S1, it is highlighted how the risk-free rate
and price of risks are extended (the benefit of S2).

The recursive equation (8) for v; is solved as

v = exp{p, + bja} (17)

12



where u,, and b, are the solutions to the following simultaneous equations:

1
Hv = B {;UJV + pe — §Ucu(ﬂw - 1)} ) (18)
1
b, = B <bc+CI>be _ QUCV%) , (19)
where
Ve = vargInver 1 + Acpp1] = b, 820by + 2506y + See - (20)

(18) and (19) are quadratic equations because v, is quadratic in b,. Appendix B provides the
condition for y, and b, to be real and addresses which real root to select. It is noted that setting
by = 0in (19) (i.e., a constant risk-aversion coefficient) leads to the continuation value presented
by Hansen et al. (2008).

Next, we drive the price-of-risk vector, denoted as ;. This is the (negative) loading on the
innovation vector z;4+1 in the SDF. By taking the log of (9) with /; replaced by £ and defining
myy1 = In Myyq,

myr1 = (L — ) Invgpr — yAceyr +resy” (21)

where res}” collects the remaining terms observed at time ¢. By substituting (17) and then (10)

and (13) into (21), we have my11 — Ex[mi+1] = — N, 2141, where
)\t = (O-ijy + O'C)")/t — O'mbl, . (22)

Since «y; is assumed to be linear in z;, so is A;. Owing to 4, the risk premium of any asset is
also time-varying even without time-varying volatility of cash flows. A potential drawback of A
in (22) is that it is driven by ; alone, which is a certain linear combination of the d-dimensional
state vector as given in (14). This implies that the correlation between risk premiums of any
pair of assets is one in absolute value. LW make a similar assumption that the price-of-risk
vector is driven by one factor and point out the drawbacks of this assumption.

The one-period real risk-free rate, denoted as 7f;1, is the solution to the following Euler

equation: rgsy1 = —In Ey[M;11]. Then, it is also derived as a linear function of z:
riee1 = Ap + Byay (23)
where
1 /
Ay = —InfB+ pe— oSec ~ (Sexby + Sce)(py — 1), (24)
By = be— (slyby + Sce)by - (25)
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Finally, my41 can be rewritten in a conventional form as
_ 1 / /
Mmiy1 = —Tft41 — 5)\t)\t — NZte1 - (26)

Since both rf;41 and A; are linear in x, my41 falls into the affine class.

2.6 SDF for S2

The recursive equation (8) for 14 cannot be solved in closed form for a state-dependent time
preference, which is denoted here as 5(z;) to clarify the dependence on x;. To retain tractability,
we therefore approximate v, as an exponentially linear function of z;. First, 8(x;) and B(x¢)xy

are linearized around z; = 0 (the unconditional mean):

Bxe) ~ Bo+ P, (27)

B(xy)xy ~ Bowy (28)

where Sy = 5(0) and 1 = d@git)ut:o. For S2, these are, respectively, Bp = 1 — e and
B1 = —elfbg. Then, v; is approximated by an exponentially linear function of x; as given in

(17), where the coefficients satisfy the following simultaneous quadratic equations:

1
Ky = 60 {Mu + e — 5’001/(:“7 - 1)} y (29)
1 1
b, = ﬂ[) (bc + q)xbl/ - 2'Ucyb'y> + Bl {,Uy + e — 57)61/(///7 - 1)} 5 (30)

where v, is given in (20). Notice that the second term on the RHS of (30) is newly added by
S2.

The accuracy of the approximation of 14 is examined in Appendix C. In brief, it seems to be
maintained for the parameter values determined by the calibration procedure in Section 3.2 and
given specifically in Tables 2 and 4. Intuitively, the reason for the high accuracy is that S(z;)
changes little, as will be addressed in Section 4.1 and Figure 1(b). Then, (27) and (28) are not
bad approximations after all.

Once In v is approximated as a linear function of x;, the price-of-risk vector \; is derived as
linear in z; without further approximation, which is due to S2 together with a linear specification

of 4. Specifically, from (9), the log SDF can be written as

me+1 = 11’1(1 — Bt+1) + (1 — ’yt) In Vi1 — 'YtACt—&—l + 7“68?1 y (31)
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where res}” collects the remaining terms observed at time ¢. By substituting (16) and (17) and

then (10) and (13) into (31), we have as before myy1 — Ei[myy1] = —Aizi4+1, where
)\t = (O’mby + O'c)")/t — O'x(bﬁ + by) . (32)

From the linear specification of +; given in (14), A; is also linear in xy. Apart from b, that is
different between S1 and 52, —o,bg is newly added by the extension to state-dependent time
preference.

Finally, to obtain the one-period real risk-free rate 77,1 as a linear function of x;, we need
to rely on another approximation, which is to linearize In f(z;) around z; = 0. Specifically for
S2,

]
Wz (33)

(1 —exp{ug + bgze}) ~ In(1 — ) — —— b,

Again, this approximation may not be a serious concern because of the small variation in ()

noted above. Then, r¢4; is approximated as given in (23), where the coefficients are as follows:

1
Ay = —InBo+ pe — chﬁ — (py — 1)(sL.by + See) + (tty — 1) (52200 + scx)'bﬂ , (34)
1
Bf = be—(slyby + Scc)by + {ﬁIdxd — Dy + by(5gaby + scx)’} bs , (35)
0

where I;xq4 is a d-by-d identity matrix and
vep = var[In(l — fBi41) — Acyq1] = b%smbg — 2s'cxb5 + See - (36)

By setting bg = 0, Ay and By in (34) and (35) reduce to those in (24) and (25), respectively.

2.7 Prices of zero-coupon bonds and equities

Both the risk-free rate and the price of risks are derived as linear functions of the Gaussian
state vector exactly for S1 and approximately for S2. We now turn to the pricing of zero-coupon
bonds and equities by utilizing the affine framework.

2.7.1 Real zero-coupon bonds

Let Pt{%n be the time-t real price of a zero-coupon bond maturing at time ¢t+n with the face value
normalized to one unit of consumption. The Euler equation for an is an =L [Mt+1P£1’n_1]

with the initial condition Ptl,% = 1. The solution is of the form

Py = exp{A; + B, "z}, (37)
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where AR and B[ are determined recursively, starting with A% = 0 and B = 0. The recursive

equations are provided in Appendix D.

2.7.2 Nominal zero-coupon bonds

Let Pt% be the time-t real price of a zero-coupon bond maturing at time t+n with the face value
normalized to one in nominal terms or equivalently 1/II;1, in real terms. The Euler equation
for P, is PY), = Ey[My1 PfY,,, ;] with the initial condition PyIl; = 1. It follows that

e
44

Ptj,\q[mﬂt =k Mt+1(Pt]J\£1,n—1Ht+1) (38)
The solution to (38) is of the form

P = exp{A) + B 2}, (39)
where A and B}Y are determined recursively, starting with A)" = 0 and B{¥ = 0. The recursive
equations are provided in Appendix D.

2.7.3 Zero-coupon equities or dividend strips

Let Pt% be the time-t real price of a zero-coupon equity that pays Dy, at time t+n. The Euler

equation for P/} is P = Ey[My41 PR, ;] with the initial condition P/D; = 1. It follows

that
Pl PRy 1 Dy
SEN By | My, Rt 10
Dy DL Dy (40)
The solution to (40) is of the form
Pt%/Dt = exp{Aﬁ) + BE "4}, (41)

where AP and BY are determined recursively, starting with A = 0 and Bf = 0. The recursive

equations are provided in Appendix D.

3 Calibration

We calibrate the parameters of the proposed model by matching it with the LW model. Specif-
ically, both the one-period real risk-free rate ry; 1 and the price-of-risk vector \; are matched
between the two models, which means from equation (26) that the two models have the iden-

tical SDF and therefore that they agree with the price of any asset. This calibration approach
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has two advantages. First, it provides the proposed model with the opportunity to inherit a
high descriptive ability of the LW model with respect to the average term structures of zero-
coupon bonds and equities. Second, it provides the LW model with an equilibrium foundation,
thereby uncovering the preferences and consumption dynamics implicit in this reduced-form

model. Section 3.1 introduces the LW model and Section 3.2 explains the calibration procedure.

3.1 The LW model

The LW model has the following six variables (the notation is slightly different from the original

one):

Ad; : dividend growth rate

Am; : inflation growth rate

xq¢ - factor driving the expected dividend growth rate
zz¢ : factor driving the expected inflation growth rate
xypy : factor driving the real risk-free rate

xx; : factor driving the price of risks

Note that consumption growth rate does not appear in the LW model as it is a reduced-form

model. The last four variables are collected in a state vector, denoted as zF":

ofW = (ay Tax Tpe—pp Tag— ), (42)

where p1y and py are the unconditional means of zy; and x);, respectively (those of x4, and

Zr ¢ are implicitly assumed to be zero). The dynamics of these variables are specified as

Adiy1 = pa+ Tar+ ozt (43)
Amp1 = fr+ Tt + OnZit s (44)
thLJfll/ = (Pf;W/LIZ‘tLW + 0'£W/Zt+1 . (45)

The log SDF of the LW model, denoted as thﬂ/ , is specified exogenously as

1
LW 2 !
Mgl = —Tft = 58ddTx¢ — Tat0aZt+1 (46)

where sqq = 0/,04. A notable feature of me is that it is driven by the same innovation term
as driving dividend growth, o/z;11. The conditional correlation between mﬂ/‘f and Adgyg is

then —zy+/|z)|. Since the parameters calibrated by LW imply Pr{z); > 0} = 0.99, these two
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variables can safely be regarded as perfectly negatively correlated. That is, a negative shock to
dividend growth almost always raises the SDF. This mechanism is the key to generating high
risk premiums of short-term dividend strips that are strongly affected by shocks to dividend
growth. Risk premiums arising from shocks to the other variables are nonzero as long as these
shocks have nonzero correlations with the dividend-growth shock.

Table 2 summarizes the parameter values of the LW model, which are collected from ta-
bles 1-3 in LW (2011). The unconditional means, standard deviations, and autocorrelations
are expressed in annual terms, except for the conditional first and second moments of x) ; ex-
pressed in raw numbers. The annual numbers are transformed into quarterly raw numbers when
substituted into the models.

Several notes on the parameter values are in order. First, the autoregressive matrix of
etV ®LW s diagonal. The expected dividend-growth factor xq: and risk-free rate factor
x s are relatively persistent as the autoregressive coefficients are equal to and larger than 0.9,
respectively. Second, the correlation between innovations in Ad; and x4, is —0.83, indicating
that a negative shock to realized dividend growth is more likely to increase expected dividend
growth. An important implication of the negative correlation is that long-term dividend strips
are not as risky as short-term ones because a negative shock to realized dividend growth, which
always raises the SDF, raises the level of future dividends and thus the price of long-term
dividend strips. The negative correlation together with the innovation term of the SDF given in
(46) are the key factors behind a downward-sloping term structure of dividend risk premiums.
Third, the correlation between innovations in Am; and z,; is set to one, indicating that the
realized and expected inflation growth rates move one for one. Fourth, the correlation between
innovations in Ad; and m; is —0.3. Because m; and x,; are perfectly correlated, the correlation
between innovations in Ad; and x,; is also —0.3. Then, a positive shock to realized and expected
inflation growth is more likely to decrease realized dividend growth, which in turn raises the SDF.
Meanwhile, the rise in realized and expected inflation growth lowers the payoffs of nominal bonds
in real terms with both short and long maturities. Hence, nominal bonds cannot be hedging
instruments against events that raise the SDF, leading to an upward-sloping term structure of
nominal interest rates. Fifth, the correlation between innovations in Ad; and z; is —0.3. This
negative correlation contributes to generating an upward-sloping term structure of real interest
rates. Specifically, following a negative shock to realized dividend growth, the SDF rises and the

real risk-free rate tends to rise owing to the negative correlation. The rise in the real risk-free
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rate in turn lowers the prices of real bonds, indicating that real bonds cannot hedge the rise in
the SDF.

In summary, all the variables, except x,., are correlated negatively with Ad; and hence
positively with m;, which intuitively means that the agent dislikes increase in any of them. The
factor risk premiums, which are computed as —cov[m41,- ] = 542, are then negative except
those of Ad; and . In the last row of Table 2, the factor risk premiums evaluated at x ; =
are presented in annual percentage terms. First, by far the highest in absolute value is the factor
risk premium of Ady, 17% per year. Then, an asset that has a positive exposure to Ad;, such
as short-term dividend strips, is supposed to command a positive risk premium. In fact, the
risk premium of the one-quarter dividend strip is exactly 17%. Second, the factor risk premium
of x) is zero by the zero correlation between innovations in x); and Ad;. Then, although an
asset has either a positive or a negative exposure to x, this does not affect its risk premium.
However, the exposure to x); does affect the volatility and thus the Sharpe ratio of this asset.
Third, the factor risk premiums of the rest of the variables are negative. Then, an asset that
has a positive exposure to one of these variables commands a negative risk premium attributed

to the variable.

3.2 Calibration procedure

The most straightforward approach for replicating the SDF of the LW model with that of the
proposed model is to use the same variables. Specifically, we match z; = 2" and inherit the
dynamics of /"' as well as those of Ad; and Ar; into the proposed model. This means that
the parameters associated with these dynamics are not calibrated in this study (i.e., we simply
borrow them from LW). Then, the parameters to calibrate here are those associated with the
consumption dynamics and state-dependent preferences that do not appear in the LW model.

We first re-specify the consumption process as
Acir1 = ple + betar + oLzt (47)

which is similar to the dividend process given in (43). Precisely, the expected consump-
tion growth is driven by the same state variable (scaled by b.) as that driving the expected
dividend growth. The parameters associated with the consumption process are as follows:
(tey bey Scey Sedy Sems Sky). Among them, we fix (pe, b.) to maintain a reasonable relation-

ship between consumption and dividend growth. Specifically, we set p. = pg and b, = 1/3
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following Bansal and Yaron (2004). Then, seven consumption parameters need to be calibrated.

Next, the parameters of the state-dependent preferences are (g, b

%) in the risk-aversion

coefficient ~; and (g, b}}) in the subjective discount factor 8;. Among these preference param-
eters, some elements of b, can be determined immediately. Specifically, the price-of-risk vector

is driven by one factor, ) in the LW model and v; in the proposed model, leading to

Ve = Moy + bya(Tar — ) - (48)

Hence, by; =0 (i = 1,2, 3), resulting in seven preference parameters that need to be calibrated.

These unknown parameters are determined by numerically solving the following sets of con-
straint equations. The first set is obtained by matching the one-period real risk-free rate, which
is given as a state variable in the LW model and derived as a linear function of the state variables

in the proposed model. Specifically,
xpy = Ar+ Bpixae + Brotr s + Bpa(xys — puy) + Bra(zas — pa) - (49)
Equation (49) holds for any z;, leading to the five constraint equations:
Byy =By =By =0, Bypgs=1, Ay=upy. (50)

The second set of constraint equations is obtained by matching the factor risk premiums. In

the LW model (augmented with the consumption process given in (47)):

—covt[mfﬂ/, Acit1] = ScaZag s (51)
—covt[mfﬂ/, Adiy1] = s4aTag s (52)
—covt[mfﬂ/, A1)l = SdnTag s (53)

—covi[miN, aei1] = sawtay - (54)

Note that (54) is four dimensional. The corresponding factor risk premiums in the proposed

model are

—cove[myt1, Acip1] = (Shyby 4 See) vt — Shp(bs +by) (55)
—cove[myt1, Adir1] = (Shpby + Sea) vt — Sy (bg +by) (56)
—cove[mer1, Amepr] = (85pby + Ser) vt — Spo(bp +b0) (57)

—cove[mut1, Te1] = (Spaby + Sca) Ve — Spa(bp +by) - (58)
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By substituting (48) into (55)—(58) and then matching the resulting equations with (51)—(54),

we have the following fourteen equations:

(Slope) (Intersept)
bya(8ezby + Scc) = 8ed s (fy — byapin) (8eabu + Sec) — 8, (bp +b,) =0, (59)
bya(Slyby + Scd) = Sad s (y — byapin) (Sypby + Sed) — Sl (bg +by) =0, (60)
bra(Spby + Sem) = Sam» (Hy = byapa) (87 by + Sex) = 87 (b + b)) =0, (61)
bya(sheby + Scx) = Sda (Hy = byapin) (Sgzby + 8cx) — S5u(bg + b)) = 0. (62)

Taken together, there are fourteen unknown parameters: two in -, five in 3;, and seven for
consumption variance and covariances. Meanwhile, nineteen constraint equations are needed
for perfect replication: five from the risk-free rate and fourteen from the factor risk premiums.
Hence, perfect replication is impossible in the first place. This is so even if (u., b.) are free
parameters. In this case, these drift parameters are used for matching the factor risk premi-
ums rather than capturing expected consumption growth. Consequently, unrealistic values are
returned, and this is why we fix (., b.) for a realistic consumption process.

Among these equations, the five equations in (50) and the seven slope equations in (59)—
(62) are selected. By this selection, there is no difference in the loadings of each asset on the
state vector, B% (i = {R, N, D}), between the LW and proposed models; see Appendix D for
more details. Additionally, given that the factor risk premium of Ad; is by far the highest, the
intercept equation (60) is also selected. This means that the factor risk premium of Ad; is exactly
matched between the two models, and so is the risk premium of the one-quarter dividend strip
(17% per year). Finally, one free parameter is reserved for keeping positive definite the extended
correlation matrix, which includes consumption growth but excludes realized inflation growth
because of the perfect correlation with expected inflation growth. Without this constraint, a
negative definite correlation matrix is returned in exchange for a closer fit to the SDF of the LW
model.

Since the rest of the intercept equations, (59) and (61)-(62), are not satisfied, the average
term structures differ between the two models, as shown in Section 4.3. We prioritize the slope
equations over the intercept equations for two reasons. First, the constant terms in the pricing
formulas, A% (i = {R, N, D}), which matter for the average term structures, are computed
recursively and dependently on the loadings; see equations (145), (148), and (151) in Appendix
D. Second, it is difficult to find solutions to the intercept equations that satisfy the following
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two conditions: (i) (u,, b,) are real and (ii) the extended correlation matrix is positive definite.

4 Baseline results

This section addresses whether the proposed model can replicate the term structures of bonds
and equities generated by the LW model and discusses the preferences and consumption dy-
namics implicit in these term structures. There are numerous solutions to the set of constraint
equations presented in Section 3.2. In Section 4.1, we first select several solutions to discuss
their pattern and then describe one of them in Section 4.2. For this particular solution, we
generate the term structures of zero-coupon bonds and equities in Section 4.3. In Section 4.4,
we show that the model can also generate a downward-sloping term structure of real interest
rates without much affecting the other term structures. We further show in Section 4.5 that the
model can change the slope of the term structure of nominal interest rates without changing the

correlation between consumption and inflation growth.

4.1 Several solutions and their pattern

Table 3 presents several solutions in ascending order of mean risk aversion p.. First, there is
an inverse relationship between p, and the volatility of innovation in consumption growth ,/s...
In addition, this relationship is nonlinear: the rate of decrease in /s, is much slower than the
rate of increase in p.. Specifically, at 11, = 30, \/Scc is 8.84% per year, which is high relative to
the historical estimates discussed below and the corresponding dividend volatility set at 10%.
It becomes half at around s, = 120 and less than 4% at p, = 150. Further reductions in /sc.
are limited: (\/5ce, f1y) = (3.43%, 300), (3.32%, 500), (3.28%, 1000).

Second, the unconditional standard deviation of risk aversion, SD][v], also increases with
p~. In fact, the ratio of mean to standard deviation is nearly constant at 1.2 for any solutions.
Because the standard deviation is large relative to the mean, v, becomes negative with a non-
negligible probability. Figure 1(a) depicts the unconditional distribution of ; at Solution (e) of
Table 3 (i.e., uy = 150). The probability of v; < 0 reaches 12%.4 If a negative risk aversion is

4In lottery choice experiments, it is often observed that a certain proportion of the subjects exhibit a risk-
neutral or a risk-loving behavior. For instance, Holt and Laury (2002) and Dohmen et al. (2011) report that
around 80% of the subjects are classified as risk-averse and the rest as risk-neutral or risk-loving. Harrison, Lau,
and Rustrém (2007) obtain a similar result. More specifically, their figure 1 showing the distribution of subjects’

elicited relative risk-aversion coeflicients has a close resemblance to Figure 1(a) of the current research, although
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unacceptable, it can be avoided by specifying v as a positive function of z;. In Appendix C, we
consider a quadratic specification and examine the accuracy of the approximation for the con-
tinuation value v¢. Alternatively, it is also possible to virtually avoid negative values by reducing
the volatility of x ;. This is originally set at 4 (see Table 2). In Section 5, we change the values
of some of the parameters originally set by LW to see whether reasonable economic implications
are obtained without reducing the descriptive ability for the average term structures presented
in this section.

Third, the unconditional mean of the subjective discount factor, E[3;], expressed in quarterly
terms, increases with .. At p1, = 30, it is 0.969, which appears to be smaller than usually con-
sidered. At p, = 90, it increases to a reasonable value of 0.985. Conversely, the unconditional
standard deviation of the subjective discount factor, SD[3;], decreases with .. The inverse rela-
tionship between the mean and variance of 3; is a natural consequence of the specification given
in (16), which has the upper bound of one. Figure 1(b) depicts the unconditional distribution of
B¢ at Solution (e) of Table 3 (i.e., y = 150). Obviously, 5; does not vary largely. Consequently,
the unconditional probability of B; < 0 is negligibly low, indicating that the specification of £,
given in (16) is virtually consistent with Assumption (ii) (i.e., 0 < 8; < 1). Also of note is that
the small variation in B; is beneficial for the accuracy of the approximation of v;. As shown in
Section 2.6, the source of the approximation lies in (27) and (28), which implies that the smaller
the variation in [;, the more accurate is the approximation: in the limit where (3; is constant,
no approximation is necessary, as discussed in Section 2.5.

In summary, we face either large risk aversion or high consumption volatility, or both. This
is a typical trade-off in the literature of equity premium puzzles. However, here it results from
many equity risk premiums having the term structure with a sharply downward slope. This
trade-off implies that the specification of the SDF and/or the calibration of the parameters
provided by LW are not in fact realistic from an equilibrium point of view. While this problem
is masked in the reduced-form model, it emerges once economic structures are imposed. In
Section 5, we slightly change the specification of cash-flow processes as well as the values of

some of the parameters to resolve this trade-off and recover realistic economic implications.

the magnitude of the coefficients differs (ours are much larger in absolute value). Curatola (2015) assumes in his
model to explain a negative slope of dividend risk premiums that risk-loving agents represent a certain proportion

of the population.
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4.2 Implied consumption dynamics and preferences at a particular solution

Facing the trade-off between risk aversion and consumption volatility, we choose a reasonable
level of consumption volatility, while giving up a reasonable level of risk aversion. Specifically,
we focus here on Solution (e) of Table 3, characterized by p, = 150 and /sc. = 3.91%. The
consumption volatility of 4% seems reasonable based on U.S. historical data. For example, in
Barro (2006, table IIT), a sample standard deviation of real per capita GDP growth over 1890—
2004 is 4.5%. In Mehra and Prescott (1985, table 1), originally from Grossman and Shiller
(1981), a sample standard deviation of real per capita consumption growth over 1889-1978 is
3.6%.

We report all the calibrated parameters with particular attention to the following two points.
The first is the mechanism of implying a large ., and the second is the key parameters for
determining the shape of the average term structure of real interest rates. The parameters of the

consumption dynamics are first addressed, followed by those of the state-dependent preferences.

4.2.1 Consumption growth

Panel A of Table 4 presents implied correlations between innovations in consumption growth
Ac; and the other six variables in addition to the volatility of innovation in Ac¢;. First, the
correlation between Ac; and dividend growth Ady, denoted as p.q, is 0.88. Although this im-
plied value is larger than typical estimates from time-series data on aggregate consumption and
dividend growth, it may be rationalized by an economic theory of limited asset-market partic-
ipation. Specifically, as assumed by Marfe (2017), only shareholders who earn dividends and
consume them can have access to the markets, so that the SDF is that of shareholders. This
assumption then supports not only the SDF of the LW model but also a high correlation between
consumption and dividend growth.

Second, the correlation between Ac; and expected dividend-growth factor x4, denoted as
Pex1, is —0.76, which is close to the correlation between Ad; and x4, originally fixed at —0.83.
These negative correlations contribute to making longer-term dividend strips less risky than
shorter-term ones.

Third, the correlation between Ac; and expected inflation-growth factor =, denoted as
Pex2, 18 —0.09, which is somewhat lower in absolute value than the correlation between Ad;
and xr, originally fixed at —0.3. Note that the correlation between Ac; and realized inflation

growth A, is the same as pez2 because of the perfect correlation between A, and zr;. The
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negative correlations of consumption growth with realized and expected inflation growth are the
key channel through which equilibrium models generate a positive slope of the term structure of
nominal interest rates (e.g., Piazzesi and Schneider, 2006; Wachter, 2006). Empirically, however,
it may be difficult to find decisive evidence for a negative correlation. It is then beneficial to
create alternative channels through which longer-term nominal bonds are made riskier. Indeed,
the proposed model has such a channel, which is addressed in Section 4.4.

Fourth, the correlation between Ac; and risk-free rate factor s, denoted as p..3, is —0.05.
This is consistent in sign with, but smaller in magnitude than, the correlation between Ad; and
x s originally fixed at —0.3.

Finally, the correlation between Ac; and price-of-risk factor xy;, denoted as pez4, is 0.34,
which is higher than the correlation between Ad; and x) ; originally fixed at zero. The positive
Peza 18 from the positive covariance sc;4, which is needed to match the factor risk premium of
x), between the LW and proposed models. Specifically, recall that the fourth row of the slope
equation (62) is

bya(Sugaby + Scoa) = Saza (=0) (63)

where s.4 and sg.4 are, respectively, the fourth row of s., and sg, (the vectors consisting of the
covariances of innovation in z; with innovations in Ac¢; and Ad;) and $;44 is the fourth column
of sz, (the variance matrix of innovation in x;). Note that sg,4 is originally set to zero by LW.
On the LHS of (63), s,,4b, = covi¢[zr 41, Inrsyq] turns out to be negative, which is intuitive
because a positive shock to the price of risks tends to lower the continuation value. It then
follows that sepq = —$.,4b, > 0.

The positive correlation between Ac; and x; appears counterintuitive, as a positive shock
to consumption growth tends to raise the price of risks. Furthermore, since a positive shock to
consumption growth lowers the SDF, it may be concerned that the SDF falls in response to a
rise in x) ;. However, we show below that the SDF is in fact correlated positively with x ;.

Taken together, the implied parameters of the consumption process are basically consistent
with the predetermined parameters of the dividend process. Although the correlation between
innovations in consumption growth and price of risks becomes positive, this is inevitable based

on the calibration procedure.
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4.2.2 Preferences

To ease our explanation, we call 1 — 5; the subjective discount rate. Panel B of Table 4 presents
the implied parameters of risk aversion ; and log subjective discount rate In(1 — 3;), together
with the calculated parameters of the log continuation value In v.

First, the loadings on the expected inflation-growth factor z ; are zero for all these functions.
That +; does not depend on z; is noted in Section 3.2. z; does not affect In(1 — ;) because
it does not enter into the risk-free rate owing to the constraint By = 0 given in (50). Since z

has no influence on ¢, B¢, or Ac;, it has no channel of affecting v4.

Risk aversion

As reported in Table 3, the standard deviation of ; is 128. Behind such a large value, b,4 (the
coefficient of x ;) is implied to be 8.94. A large b,4 together with a large p., are a consequence
of explaining the high factor risk premium of Ad; set by LW. Specifically, recall that the slope

equation for matching the factor risk premium of Ad; is
bya(Sazby + Sca) = Sdd - (64)

On the LHS, s/,,b, = cov¢[Adiy1, Invyqq] turns out to be negative, indicating that a positive
shock to dividend growth tends to decrease the continuation value. This relation can intuitively
be understood by recalling that from pg,; = —0.83 a positive shock to Ad; is more likely to
reduce x4, and hence Inv; that has a positive coefficient of 24, b,1 = 8.86. Meanwhile, both b4
and sqq in (64) are positive. It follows that s.q > —s/;, b, > 0. However, because Scq = \/SccSddped
is much smaller than s4q given a reasonable |/s.. (around 4% per year) and peg < 1, bys must
be large to equate the LHS with sg44.

This logic can also be used to explain why a large /s is required to reduce b,4. For a small
bya, Scq must be large to satisfy (64). However, because sqq is fixed at 10% per year and p.q has
an upper limit of one, \/s.. must increase.

A large b4 leads to a large 1, which is explained by using the intercept equation for matching

the factor risk premium of Ad;:
(iu"/ - 674#)\)(821381)1/ + SCd) = Sldm(bﬁ + bV) : (65)
The RHS of (65) is

Suz(bg + by) = covi[Adpr1, Invgpq] + covi[Adipr, In(1— Bigr)] . (66)
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As noted above, the first term on the RHS of (66) is negative. The second term on the RHS
turns out to be positive but is dominated by the first term. Then, the RHS of (65) is negative
but not very large in absolute value. Meanwhile, by4 on the LHS of (65) is large to satisfy (64)
and py is originally fixed at 17. To offset a large b4y, f14 must also become large.

These explanations clarify why we face the trade-off between the reasonable values of risk
aversion and consumption volatility. To reduce p, by4 must also be reduced. However, this is
possible only by increasing the consumption volatility.

Because of byy = 8.94, the risk aversion increases with the price-of-risk factor. Since the
correlation between Ac; and x; is positive (i.e., pega = 0.34), so is the correlation between Ac;
and ¢, which may be counterintuitive. However, this relationship does not violate the inverse
relationship between Inv; and 7; because Inv; has a negative coefficient of ¢, b4 = —0.003.
In fact, the covariance between Inv; and 74 is negative, covi[lnviiq, Y1) = —0.24. This
negative covariance in turn implies a positive covariance between the log SDF m; and ~;, which
is fundamental for many models to explain high equity premiums. This relation is further

addressed after reporting the parameters of the subjective discount rate.

Subjective discount rate

First, the signs of the coefficients in In(1 — ;) are all opposite to those in In v, indicating that
the subjective discount rate moves inversely with the continuation value. This movement makes
sense by recalling that the wealth-consumption ratio is solved in equilibrium as In(W;/Cf) =
—In(1 — ;). Hence, the inverse relationship between In(1 — 3;) and Inv; is consistent with the
parallel movement between the continuation value and wealth.

More precisely, In(1 — 3;) increases with 2 and x); because of bgz = 30.2 and bgy = 0.014,
respectively. The positive relationship between the subjective discount rate and risk-free rate is
reasonable. The positive bgy implies that the agent raises her discount rate and hence becomes
less patient when she becomes more risk averse. Conversely, the increase in x4, lowers In(1— ;)
because of bg; = —8.66. This implies that the agent lowers her discount rate and hence becomes
more patient when she has brighter prospects for future consumption.

Finally, we discuss the implied conditional covariances between m; and state-dependent

preferences:

cove[miy1, V1] = blw{sm(bﬁ +by) = (Saaby + 5ca) 1t} = 1.53 (67)

covi[mes1, In(1— Bipq)] = b'ﬁ{sm(bg +by) — (Sgzby + Scx) 1t} = 10_5(292 — 1.67) . (68)
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The conditional covariance between my; 1 and 7:y1 is positive, which is consistent with many
equilibrium models in that the SDF increases with increasing risk aversion. It is constant because
only the fourth element of b, is nonzero and the fourth element of (s;.b, + s¢z) is zero from
the slope equation (62) for matching the factor risk premium of x;. Meanwhile, the conditional
covariance between m;41 and In(1 — 3;41) depends on 7. It is positive at p, = 150 and remains
so for v, < 180, suggesting that the agent is more likely to raise her discount rate when the SDF
is high. Because future cash flows are discounted to a larger extent by the compound effect,
real bonds are devalued, with the devaluation more significant for longer-term bonds. They
therefore command high risk premiums and the resulting term structure of real interest rates
slopes upward.

In summary, when consumption volatility is reasonable, the implied parameters in ; are
large. They are mostly determined by the factor risk premium of dividend growth. On the
other hands, the parameters in ; are more closely related to (real) bonds and calibrated to
explain the term structure of (real) interest rates. In Section 4.3, we generate the average term

structures of zero-coupon bonds and equities at Solution (e) of Table 3.

4.3 Term structure shapes

All solutions, some of which are presented in Table 3, lead to similar average term structures
because the factor loadings B!, (i = {R, N, D}) are the same among the solutions, which are in
fact identical to those in the LW model by construction of the calibration. The constant terms
Al (i = {R,N,D}) differ among the solutions because not all of the intercept equations are
satisfied and the resulting errors have different patterns. Still, A%s differ little because they are

computed dependently on the (identical) loadings.

4.3.1 Factor loadings

We first show the term structure of factor loadings for the log-price of zero-coupon bonds and
equities, B! (i = {R, N, D}). The sign and shape of B! give us a clue about the term structure
of risk premiums. Since we know the sign and magnitude of the factor risk premiums, which are
presented in Panel C of Table 4, we understand the risk premium of an asset if we know an asset-
specific quantity of risks, which is associated with the loadings on the factors. Additionally, the
shape of the term structure of excess-return volatilities can roughly be captured by examining

the loadings.
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Figure 2 plots B! against n (quarters), which are normalized by multiplying the uncondi-
tional standard deviation of each factor, and hence interpreted as the loadings on the factors
with unit volatility. Panel (c) shows the (normalized) loadings on the risk-free rate factor xy,
which is a common factor for all assets, generating the baseline risk. They are identical for all
assets, negative for all n > 1, and decrease with n. Since the factor risk premium of x; is neg-
ative (—0.11% per year), the negative loadings on x s, lead to positive risk premiums attributed
to xy, for all assets. Furthermore, the risk premiums are expected to increase with n as the
loadings decrease with n. Since, for real bonds, the loadings on the other factors are zero as
seen in the other panels of Figure 2, the term structure of real interest rates is expected to be
upward-sloping.

Panel (b) shows that only nominal bonds have nonzero loadings on the expected inflation-
growth factor xr;, which are negative for all n > 1 and decrease with n. Since the factor risk
premium of x,; is negative (—0.18% per year), the risk premiums attributed to z,; become
positive for all n > 1 and increase with n. These premiums are added to those attributed to
xs4, and the resulting term structure of nominal interest rates will be above that of real interest
rates with the difference between the two curves widening with n.

Panel (a) shows that only dividend strips have nonzero loadings on the expected dividend-
growth factor x4, which are positive for all n > 1 and increase with n. Since the factor risk
premium of 24 is negative (—0.46% per year), the risk premiums attributed to z4; are negative
for all n > 1 and more so for longer n. This means that a dividend strip has two opposing
components of the risk premium: one is a positive risk premium attributed to z¢; and the other
is a negative risk premium attributed to x4;. The latter dominates the former. Specifically,
while the magnitude of the normalized loadings is similar in absolute value between z4; and
xy; as seen in Figures 2(a) and 2(c), the normalized factor risk premium of x4, is about three
times larger in absolute value than that of xy;. Consequently, the term structure of dividend
risk premiums will have a downward slope.

Finally, in Panel (d), the loadings on the price-of-risk factor x); are presented, which are
negative for all assets. They differ in shape, however. They decrease monotonically with n
for real and nominal bonds whereas they are inversely hump-shaped for dividend strips. These
shapes do not matter with the risk premium of any assets in the original LW model, however,
because the factor risk premium of x); is zero. They do matter with the volatility and hence

the Sharpe ratio. Specifically, the negative hump around n =35-40 is expected to increase the
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volatility of returns to dividend strips with these maturities. In contrast to the LW model,
the negative loadings on z) ; also matter with any assets’ risk premiums in the proposed model
because the factor risk premium of x ; is negative, as presented in Panel C of Table 4. Hence, the
negative loadings on x); generate additional risk premiums. Consequently, the term structures
of risk premiums in the proposed model will be above those in the LW model, which is indeed

the case as seen below.

4.3.2 Level and volatility of real and nominal interest rates

Let Y/, (i = {R,N}) be the yield to maturity of a zero-coupon bond maturing in n periods:
Vi, =—1InP}, . By substitution of (37) and (39),

Via= (44 Bilm) (= {RN)). (69)

Then, the unconditional mean and variance of Y/, are —Al, /n and B,'var[z] B}, /n?, respectively.
These moments, expressed in quarterly terms, are annualized by multiplying by four.

Figure 3(a) plots the annualized unconditional mean of real interest rates, 4E [}Qﬁl], against
n (quarters) produced by the LW (dotted line) and proposed (solid line) models. The two plots
are upward-sloping. By construction of the calibration in which the real risk-free rate is matched
exactly between the two models, these plots start from the same point at n = 1. By increasing
n, they deviate gradually. At n = 160 (40 years), the mean real interest rate for the proposed
model is higher by 1% than that for the LW model in line with the argument in Section 4.3.1.

Figure 3(b) plots the annualized unconditional mean of nominal interest rates, 4E[Yt]\fb]
Again, the two plots are upward-sloping and above those for real interest rates because of the
additional risk premiums attributed to Am, and ;. These plots start from almost the same
point at n = 1 and deviate gradually, with the proposed model producing higher nominal rates.
The deviation reaches 1.65% at n = 160.

Figures 3(c) and 3(d) plot the annualized unconditional standard deviation of real and nom-
inal interest rates, \/4var[Yy,] (i = {R,N}). Both plots are downward-sloping. There is no
discrepancy between the LW and proposed models because the loadings B: (i = {R, N}) are
the same for both models for any n.

Figures 4(a) and 4(b) plot the term structures of real and nominal interest rates generated
by the proposed model when the risk-free rate factor x s, is above (+2SD) or below (—2SD) two

standard deviations from the mean, while the other factors are fixed at the mean. Consistent
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with our intuition, when z ¢, is high (low), both real and nominal curves shift upward (downward)
with the shift more significant at the short end.

Analogous plots are shown in Figures 4(c) and 4(d), where the price-of-risk factor ) is
above or below two standard deviations from the mean with the other factors fixed at the mean.
This is equivalent to changing the risk-aversion coefficient ¢ by plus or minus two standard
deviations from the mean by the specification of 4 given in (48). Also consistent with our
intuition, when the agent becomes more risk averse (i.e., y; is high), both curves shift upward.
When she is less risk averse (i.e., v is low), both real and nominal interest rates first decrease
up to n =12-16 (three to four years) and then increase because of the constant term, —A? /n,
which is increasing in n as shown in Figures 3(a) and 3(b).

The term structures of interest rates in Figures 4(e) and 4(f) are drawn when the economy
is “good” and “bad,” respectively. We arguably define a good (bad) state of the economy as a
state with low (high) ), and high (low) (zat, @z, 2f:). The high (low) value corresponds
to two standard deviations above (below) the mean. When the economy is good, both real and
nominal interest rates start from high levels, decrease with increasing n up to around n = 40 (10
years), and then turn slightly increasing. Overall, both real and nominal curves can be regarded
as downward-sloping or flat. By contrast, when the economy is bad, these curves are sharply
upward-sloping, starting from low levels. The nominal interest rate at n = 1 is negative as the
model consists of the Gaussian state vector. These plots do not seem to deviate largely from

real observations of the economy, although some level adjustments may be necessary.

4.3.3 Risk premium, volatility, and Sharpe ratio of dividend strips

Let rBan_l be the log return to a dividend strip, defined and developed as

1 Pt?rl,n— 1
n 7PD
t,n

PP, /D D
In t+1,nD1/ t+1 +1n< t+1)
Pt,n/Dt Dy

= (UxBrLL)—l +0q) 241 + TeStD ) (70)

D
Tt41n—1

where resP collects the remaining terms observed at time t. We define the risk premium of

a dividend strip, denoted as RPtl?

_1, based on the excess log return adjusted for convexity or

Jensen’s inequality term:

1
D D D
RPt,nfl = Lk [TtJrl,nfl] —Tfi+1 T §Val"t[7”t+1,nfﬂ
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= _COVt[mtJrh Tt[—)‘,—l,n—l] ’ (71)

where the second equality follows from the Euler equation, F; [emt“”tDH,nfl] = 1. By developing

the conditional covariance in (71),

RPg = A0 + B (72)
where
AEY = b+ b)) (saaBily + sas) (73)
BEPD = by + 5ca+ (Szaby + 5c0)' BY ;. (74)
The unconditional risk premium is then obtained as [RPt7Dn_1] = ARPD  BRPD

Figure 5(a) plots the annualized unconditional mean of risk premiums, 4F [RP&_I], against
n (quarters) implied by the LW (dotted line) and proposed (solid line) models. Both plots are
downward-sloping. They start from the same point, 17%, which is remarkably high. By increas-
ing n, they deviate gradually, with the proposed model again producing higher risk premiums.
At n = 160, the risk premiums implied by the LW and proposed models are, respectively, 4.4%
and 5.8%, and the two curves are almost flat.

Next, we compute the unconditional variance of excess return to a dividend strip, var[rgrlm_l —

7¢441). First, it can be decomposed as

Val"[TtDH,nq - Tf,t+1] = Val"[Et[TtD+1,n71 - Tf,t+1]] + E[Vart[rtDJrl,nfl - Tf,t+1]] : (75)
The first term on the RHS of (75) is developed as

var[Ey[rily noy — rrenl] = var[RP, ] = Biivar[y] By . (76)

n—1

The first equality in (76) follows from the definition of the risk premium given in (71), where
vary [rﬂlm_l] is actually constant. The second equality follows by substituting (72). From (14),

var[yi] = b var[z;]b,. The second term on the RHS of (75) is developed as
El[vary V’tlzrl,n—1 — rfer1]] = varg [TtD+1,n—1] = Bl 502 Bl | + 250, BY | + sda , (77)

where the first equality follows because 7 ;1 is observed at time ¢ and var; [rﬂrl,n_l} is constant.

The second equality follows by substituting (70).

Figure 5(b) plots the annualized volatility, \/ 4var[7“tD+17n71 — rf4+1), implied by the LW and

RPD
Bn

proposed models. Both plots are the same because B2 and are the same for any n > 1.
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The reason for the same BY is that all the slope equations (59)-(62) are satisfied. In addition,
BIPD s the same because the intercept equation (60) associated with the factor risk premium
of dividend growth is also satisfied. The volatility curve is hump-shaped with the peak around
n =35-40, which corresponds to the trough of the term structure of loadings on x); shown in
Figure 2(d).

Finally, we compute the unconditional Sharpe ratio of dividend strips as a ratio of the

unconditional mean of risk premiums to the unconditional volatility of excess returns. Figure

5(c) plots the annualized ratio, 4E[RPt%_1]/\/4var[T£_17n_l — rf44+1). Both plots are sharply
downward-sloping with the curve for the proposed model less steep. As seen in Figures 5(a) and
5(b), the risk premiums are high while the volatilities are low at the short end. This combination
produces high Sharpe ratios. In the medium maturity range, the risk premiums decrease while
the volatilities increase, leading to a sharp decrease in the Sharpe ratio. At the long end, since
both risk-premium and volatility curves are almost flat, so is the curve of the Sharpe ratio.

Figure 6 presents the term structures of dividend risk premiums and Sharpe ratios generated
by the proposed model when the price-of-risk factor x ; is above (+2SD) or below (—2SD) two
standard deviations from the mean. It is noted that since the risk premiums are driven by -,
which is a linear function of x); alone, changing the values of the other factors does not alter
the plots. In addition, since the excess-return volatilities are constant for all maturities, the
volatility curve does not change by changing the factor values. Accordingly, it is not surprising
that only a parallel shift is observed in the risk-premium and Sharpe-ratio curves. Consistent
with our intuition, the curves shift upward (downward) when x; and thus ~; is large (small).

To see a more flexible shift in the risk-premium curve such that the curve slopes upward in
times of a good economy, it may be necessary to incorporate stochastic volatility into cash-flow
processes.

In summary, the proposed model can produce the average term structures of zero-coupon
bonds and equities that are close to those produced by the LW model. In the next subsection,
we further examine whether the proposed model can also generate the term structure of real
interest rates that is flat or downward-sloping without much affecting the shapes of the other

term structures.
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4.4 Changing the shape of the real term structure

The LW model can easily change the shape of the average term structure of real interest rates.
This ability is rooted in the SDF driven by the same innovation term as that driving dividend
growth, which makes it easy to change the correlations between the SDF and factors affecting the
real term structure. Since the proposed model does not have such a simple mechanism, it cannot
change the shape as easily as the LW model can. However, as demonstrated in Sections 4.1-4.3,
the proposed model can replicate the LW model, which motivates us to take the following two
steps to generate a downward-sloping term structure of real interest rates: (i) generate it by
using the LW model, and (ii) replicate the LW model by using the proposed model.

In the first step, we change the correlation between innovations in dividend growth Ad; and
risk-free rate factor x;, denoted as pg,3, from —0.3 to 0.1 while keeping the other parameters
unchanged in the LW model. When pg,3 = 0.1, the factor risk premium of z; is now positive
because a positive shock to zy; is more likely to increase Ad; and hence decrease the SDF.
Meanwhile, regardless of the value of the correlation parameter, the (log) price of real bonds is
negatively exposed to xy; and the negative exposure is increasing with maturity. Hence, the
combination of a positive factor risk premium and increasingly negative exposures associated
with 7, results in increasingly negative risk premiums of real bonds. The term structure of
real interest rates then has a negative slope. To lower the slope further, we simply increase the
value of pgz3 (up to one). However, since the loadings on x¢; are the same for all the assets as
shown in Figure 2(c), a positive slope of the term structure of nominal interest rates becomes
less steep and a negative slope of the term structure of dividend risk premiums becomes steeper
for a larger pg.3.

In the second step, this exogenous mechanism through the correlation parameters is again
endogenized by the proposed model using the parameters of the consumption dynamics and
state-dependent preferences. These parameters need to be recalibrated entirely even though
only a single parameter is changed in the original LW model. As in the baseline calibration,
there are numerous solutions to the set of constraint equations presented in Section 3.2. We
thus select a solution with p, = 150 to ease comparison with the baseline calibration.

In Figure 7, the average term structures generated by the LW (dotted line) and proposed
(solid line) models are presented. (Those of volatilities are not shown to save space.) Each term
structure starts from the same point as that in the baseline calibration presented in Figures 3

and 5. First, Figure 7(a) shows that the real term structure is indeed slightly downward-sloping.
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The proposed model generates higher rates with the deviation reaching 0.55% at n = 160 (40
years). Second, Figure 7(b) shows that the term structure of nominal interest rates is flattened
for both models, reflecting a downward-sloping real term structure. The nominal term structure
is still positively sloped because of the positive risk premiums attributed to z ;. It is possible to
further steepen this slope by increasing these risk premiums. In the LW model, this is achieved
by making the correlation between dividend growth and realized /expected inflation growth more
negative (up to minus one). In addition to this correlation channel, the proposed model has
an alternative channel through the state-dependent preferences, which may be beneficial when
empirical evidence of the correlation channel is weak. The benefit of this alternative channel is
discussed in Section 4.5. Third, in Figures 7(c) and 7(d), the average term structures of dividend
risk premiums and Sharpe ratios remain sharply downward-sloping. In fact, the downward slope
is reinforced by pg.3 = 0.1 as expected.

Table 5 presents the calibrated parameters for pg,3 = 0.1. Panel A shows two major changes
in the consumption process. First, the consumption volatility /sc. increases from 3.91% to
4.96%, which can also be explained by using the slope equation (64) for matching the factor
risk premium of Ady;. In this equation, s/.b, = covi[Adi11, Inveyq] becomes more negative
than in the baseline calibration because increase in xf; 1, which decreases the log continuation
value In1411 in the previous and current calibrations because of b,3 < 0, now tends to increase,
rather than decrease, Ad;41 by changing pg.3 from —0.3 to 0.1. Second, the correlation between
innovations in Ac¢; and x4 (i.e., per3) increases from —0.046 to 0.085 consistently with the
change in pg,3 from —0.3 to 0.1.

Panel B of Table 5 presents the preference parameters. Overall, the signs of the parameters
do not change from those in the baseline calibration shown in Table 4. Since we originally
selected a particular solution with ., = 150, the implied value of b4 (the coeflicient of x) ,
in ¢) changes little from that in the baseline calibration. Instead, the implied parameters in
In(1 — B;) exhibit some changes. Specifically, the unconditional mean of 3, increases from 0.987
to 0.998 mainly because of the decrease in pg from —4.39 to —6.34. Furthermore, the implied
values of bg change toward reducing the conditional covariance between In(1 — ;) and m;.
Specifically, cov¢[mit1, In(1 — Ber1)] = 107°(171 — 11.57;), which is now negative at u, = 150,
indicating that the agent tends to lower her discount rate when the SDF is high. The decrease
in this covariance is mainly attributed to the decrease in bg; from —8.66 to —12. Then, a

positive shock to x4, which increases m; as reflected in the negative factor risk premium of
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x4y, decreases In(1 — ;) more than previously. Furthermore, the increase in bgs from 30 to 45
makes an additional contribution to decreasing this covariance. Specifically, a positive shock to
xy, increases In(1 — ;) more than previously, while it is more likely to decrease m; because of
pdz3 = 0.1.

In summary, the proposed model is shown to be as flexible as the LW model in terms of
generating the average term structure of real interest rates. This flexibility is crucial as the
shape of the real term structure is indecisive. The state-dependent time preference contributes

to this flexibility.

4.5 Raising the slope of the nominal term structure

As seen in Section 4.4, the real term structure slopes downward by setting pg.3 = 0.1; however,
at the same time, the nominal term structure is flattened. We attempt to steepen the nominal
slope while keeping the real slope negative by changing some of the preference parameters rather
than the correlation parameters.

There are two approaches for this purpose. The first is a direct approach, which is to increase
b2 (the coefficient of z,; in ), originally set at zero. Specifically, we set b2 = 90. Then, the
agent dislikes increase in x,; more than previously as it increases the risk-aversion coefficient
and thus the log SDF m;. Consequently, she requires higher risk premiums for holding nominal
bonds, and the term structure of nominal interest rates will be more positively sloped. It is
noted that after changing the value of b2, we need to solve the recursive equation (8) for the
continuation value v;. Then, the solution would not exist if b,2 were changed largely from zero
(the original value) because the rest of the parameters regarding the consumption dynamics and
state-dependent preferences remain unchanged.

Figures 8(a) and 8(b) plot the average term structures of real and nominal interest rates
for by = 90 together with those for by = 0 (the same plots shown in Figures 7(a) and 7(b)).
The nominal term structure shifts upward, with the shift more significant at the long end.
Consequently, the nominal spread between n = 160 and n = 1 increases from 1.44% for by =0
to 1.79% for b,s = 90.

The second is an indirect approach, which is to increase bgy (the coefficient of z; in In(1 —
Bt)), originally set at zero. Specifically, we set bga = 2. The reason that a positive bgy steepens
the slope of the nominal term structure is less obvious but will be understood by recalling the

inverse relationship between In(1 — ;) and Iny; (see Tables 4 and 5). By setting bga > 0,
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therefore, it is not surprising that the value of b,2, which is the coefficient of x; in Inv; and
obtained as a solution to the recursive equation (8), is negative. For b5 < 0, the agent dislikes
increase in x+ more than before (i.e., bys = 0) as this reduces the continuation value. As is
the case for byo, if bgy were changed largely from zero (the original value), there would be no
solution for v;.

Figures 8(c) and 8(d) plot the average term structures of real and nominal interest rates
for bgy = 2 together with those for bgy = 0 (the same plots shown in Figures 7(a) and 7(b)).
Again, the nominal term structure is more upward-sloping with the spread between long-term
and short-term rates increased to 2.14%.

In summary, the proposed model can steepen the slope of the term structure of nominal
interest rates when the term structure of real interest rates is downward-sloping and the cor-
relation between consumption and inflation growth is moderate. The key factor is again the

state-dependent preference parameters, which control agent’s aversion to inflation risks.

5 Alternative parameter values and cash-flow dynamics

While the proposed equilibrium model can generate the term structures of zero-coupon bonds
and equities as flexibly as the reduced-form LW model, it obtains some counterfactual impli-
cations about the consumption dynamics and/or preferences. The purpose of this section is
therefore to make the proposed model plausible from an economic point of view through two
steps. First, in Section 5.1, we change some of the parameter values originally calibrated by
LW and recalibrate the parameters of the proposed model by adopting the same procedure as
explained in Section 3.2. This change aims to reduce the mean and standard deviation of state-
dependent risk aversion without much increasing the volatility of consumption growth. Second,
in Section 5.2, we slightly deviate from the LW model and incorporate jumps into cash flows to

further reduce the consumption volatility.
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5.1 Changing some of the parameter values of the LW model and recalibrat-

ing the proposed model

The values of the following three parameters are changed, while the other parameters are kept

fixed at the values presented in Table 2:

vargzys41] 4 — 0.2,
vargAdeer] 0 10% —  18% (per year) ,
Elzyy] 17— 262 (=0.085/0.18%),

where x); is the price-of-risk factor and Ad; is realized dividend growth. The reduction in
the volatility of ) ; from 4 to 0.2 aims to reduce the variance of state-dependent risk aversion
specified as 7 = piy + bya(xrs — pr). This change, however, also reduces the volatility of
returns to dividend strips, shifting downward the volatility term structure with the shift more
significant at the short end. To offset this downward shift, the volatility of innovation in Ady,
simply denoted as /sqq, is increased from 10% to 18% per year, which seems to remain within
an acceptable range. In the LW model, the increase in s4q directly increases the factor risk
premium of Ady, or equivalently the risk premium of the one-period dividend strip, as it is given
by E[—covimiY, Adii1]] = sgapr. To keep this in a reasonable range as well, uy(= E[zy4])
is decreased from 17 to 2.62. Through this change, the factor risk premium of Ad; is halved
to 8.5% per year. Nonetheless, a level of 8.5% still seems to stand as a challenge to existing
equilibrium models (see Table 1). In short, these changes shift part of risks from the price-of-risk
factor to realized dividend growth.

After changing the values of the three parameters in the LW model as above, the parameters
of the proposed model are calibrated by the same procedure as explained in Section 3.2. Again,
among the numerous solutions to the set of constraint equations, we focus on the solution with
E[v] = py = 30, aiming to highlight the degree to which the volatility of consumption growth
decreases. While a level of 30 may still be high, this is within the range of values considered or
estimated by the previous work: 21 (Bansal and Shaliastovich, 2013), 50 (Doh and Wu, 2016), 66
(van Binsbergen, Fernandez-Villaverde, Koijen, and Rubio-Ramirez, 2012), and 75 (Rudebusch
and Swanson, 2012).

The “No JUMP” row of Table 6 provides the results of the calibration. Total volatility

(Total vol.) is computed as /var;Acs41] for consumption growth and \/var;[Ad;1] for dividend
growth. These are the same as /s (= \/oL0.) and /544 (= \/0},04), respectively, in the current
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model. In the extended model in Section 5.2, which introduces jumps into cash flows, /s.. and
\/8da correspond to the Gaussian components of the total volatility.

The implied /5. is 5.05% per year, which is lower than 8.84% in the baseline calibration
presented at Solution (a) of Table 3 but still seems to be high relative to the historical estimates.
An intuitive explanation of why /s. is lower even though /544 is raised from 10% to 18% is
as follows. By decreasing the volatility of ), b4 (the coefficient of x) ; in ;) increases more
rapidly than /sgq for v; to retain a sufficient variation. It then follows from the slope equation
for the factor risk premium of Ady, given by by4(s),b, + Scd) = Saq, that the consumption
volatility, which appears in s.q = \/SccSddped, does not need to be as high as that in the baseline
calibration.

The unconditional standard deviation of 4, denoted as SD][y], is implied to be 8.6, which is
below 25 in Table 3. Panel (a) of Figure 9 depicts the unconditional distribution of ;. Although
still nonzero under the normal distribution, the probability of v; < 0 is negligibly low, showing
that one of the shortcomings of the proposed model is resolved.

The unconditional mean and standard deviation of subjective discount factor, denoted as
E[B:] and SD|B], are 0.996 and 0.00085, respectively. Compared with the corresponding values
at Solution (a) of Table 3, the mean is more reasonable and the standard deviation is much lower
because of the lower volatility of x ;. As noted in Sections 2.6 and 4.1, the lower volatility of
B¢ improves the accuracy of the approximation of the continuation value vy, which is beneficial
for the model. Panel (b) of Figure 9 depicts the unconditional distribution of §;, showing that
the peak is near the upper bound of one and that the left tail is not long.

Figure 10 presents the average term structures of real and nominal interest rates, where the
focus is now placed on the plots labeled “No Jump.” Panels (a) and (b) show that both real and
nominal yield curves slope upward. The slopes, however, are less steep than those in the baseline
calibration in Figure 3 because of the smaller mean of x) ;. Panels (c) and (d) show that both
real and nominal volatility curves slope downward. The negative slopes are more pronounced
than those in the baseline calibration because of the lower volatility of x ;.

Figure 11 presents the term structures of risk premiums, excess-return volatilities, and Sharpe
ratios of dividend strips, where we address the plots labeled “No Jump.” Panel (a) shows that the
proposed model can still generate a downward-sloping term structure of dividend risk premiums.
The risk premiums at n = 1 (one quarter) and n = 160 (40 years) are 8.50% and 5.77% per

year, respectively. Although the range is narrower than in the baseline calibration, it is still
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comparable to those for the previous models listed in Table 1. Panel (b) shows that the volatility
curve is first decreasing up to around n = 40 (10 years) and then turns slightly increasing. The
volatilities at n = 1,40, and 160 are 18.0%, 15.2%, and 16.3% per year, respectively. Compared
with the baseline calibration in Figure 5, the volatilities at the short end are higher, reflecting
the increase in the volatility of Ad;. In the medium maturity range, they are lower because
of the lower volatility of z) ;. At the long end, the volatilities in the baseline and alternative
calibrations converge to a similar level. Panel (c) shows that the model can also generate a
downward-sloping term structure of Sharpe ratios, ranging from 0.47 (n = 1) to 0.35 (n = 160).
This range seems to be comparable to those in the previous models although it is narrower than
in the baseline calibration.

In summary, the proposed model can still generate the term structures that stand as chal-
lenges to equilibrium models. However, changing the parameter values alone may be insufficient
because the volatility of Ac; still seems to be high. In Section 5.2, we modify the dynamics of
cash flows to overcome this problem. This modification is minimal as our fundamental interest
is in the extension of preferences rather than cash flows. Backus et al. (2018) also propose a
simple modeling of jumps, so that returns to contingent claims written on cash flows at distant

points in time are not excessively correlated.

5.2 Introducing jumps into cash flows

To further reduce the volatility of consumption growth, we introduce jumps into the consumption
and dividend processes. The (negative) jumps can be interpreted as disastrous events in line
with Reitz (1988), Barro (2009), Gabaix (2012), and Wachter (2013). The agent dislikes jump
shocks (infrequent but large negative shocks) to consumption growth more than Gaussian shocks
(small but frequent shocks) if these two types of shocks have the same volatility in a statistical
sense. Put it another way, for a given level of agent’s measure of consumption risks, it is possible

to reduce statistical measures of consumption risks by introducing jumps.

5.2.1 Cash-flow dynamics and the derived SDF

Our introduction of jumps is simple. We assume that realized consumption and dividend growth
alone can jump, whereas neither the inflation growth nor the state vector can. Additionally, we

assume that both the jump intensity and the jump size are constant. Then, we respecify the
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consumption and dividend processes as

Acit1 = pre+betar+ olzeir + (InE)Npjq (78)

Adiy1 = pra+xar + gz + k(In&)Nyjq (79)

where V; follows an i.i.d. Poisson distribution with intensity parameter [ > 0 and is independent
of the Gaussian shock z;. A jump size in consumption growth is captured by £ (0 < £ < 1).
When a single jump occurs at time t + 1 (i.e., Nypy = 1), Cf; = £Cf, ignoring the other
components. Multiple jumps at a point in time are also possible, which can be interpreted as
representing the severity of the disaster. Specifically, when Ny = n, Cf,; = £"Cf. However,
this interpretation makes it difficult to identify I and £ separately. Then, we fix [ at 1/40, which
roughly corresponds to the frequency at which a jump occurs once in every ten years on average.
It is noted that our purpose of implying a reasonable behavior of risk aversion together with a
realistic level of consumption volatility can be achieved for other values of I.

The same Ny is used for capturing jumps in dividend growth, which means that the jump
event occurs to both consumption and dividend simultaneously. However, the jump size for
dividend growth is amplified by k > 1 because Dy 1 = €™ Dy for Ny, 1 = n, ignoring the other
components.

A number of extensions are possible and accordingly the results below may further be im-
proved. First, the jump size can be stochastic. A conventional probability distribution such
as an exponential, gamma, or normal distribution does not violate model’s tractability. Sec-
ond, the jump intensity can be stochastic. Gabaix (2012) and Watcher (2013) demonstrate
the importance of time-varying jump intensity for capturing high equity premiums. Third, the
disaster can be followed by recovery. Hasler and Marfe (2016) model consumption and dividend
processes that mean-revert after a large fall, with the rate of mean reversion differing between
the two processes, and successfully explain a downward-sloping term structure of dividend risk
premiums.

For notational simplicity, we denote the consumption process by the sum of the Gaussian
and jump components as Acip1 = Acfy + Acf, |, where Ac/,; = (In&)Nypq and Acf,; is
the remaining Gaussian component. Likewise, the dividend process is denoted as Adiy1 =
Adfiy + Adf .

The log continuation value In 14 is also approximated by a linear function of the state vector

xy as Invy = p,, + b, 24, where (p,, b)) are the solution to the simultaneous quadratic equations,
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which are slightly modified by the jump component. Appendix A provides these equations and
Appendix C examines the accuracy of the approximation of v;.

The log SDF my, is derived as
1
mi41 = *Tf,t—l—l — 5)\:5)\15 — )\;Zt+1 — ’yt(lnf)NtJrl — l(g_% — 1) . (80)

The real risk-free rate 7,41 is also derived as a linear function of @;: vy = Ay + B}xt, where
(Ay, B}) are also adjusted for the jump component, presented in Appendix A. The price-of-risk
vector \; associated with z;11 is of the same form as that given in (32), which now depends
indirectly on the jump parameters through (., b.,).

The log prices of zero-coupon bonds and equities are approximated as linear in z;: In Pzn =
Al + Bi'z; (i = {R, N, D}). For real and nominal bonds, the recursive equations for (A%, B:/)
(1t ={R, N}) are of the same form as those without the jump component, although they contain
the jump parameters implicitly through (., b, Ay, B}) By contrast, for dividend strips,

the recursive equations for (AP, BP’) have additional terms related to the jump component

n

because their payoffs depend directly on future dividends that are exposed to jump shocks. The

price of a dividend strip when jumps are included is derived in Appendix D.

5.2.2 Calibration

The parameters of the extended model are calibrated by taking the following conditions into
account: E[y] = 30; E[Ac] = E[Ady] = 1.29% per year in equations (78) and (79) (the same
level as in the baseline calibration); var;[Act41] = 4% per year in equation (78); var:[Ady1] =
18% per year in equation (79); [ = 1/40; and the average term structures of interest rates and
dividend risk premiums are similar to those in Section 5.1.

The “JUMP” row of Table 6 provides the results of the calibration. The continuation value
and hence the SDF exist that satisfy the conditions listed above. Indeed, we can successfully
reduce the volatility of consumption growth while keeping reasonable the behavior of state-
dependent preferences. Of the total volatility of Ac; set at 4%, the Gaussian component /sc.
reaches 3.98%. Once a jump event occurs with the intensity set at [ = 1/40, the current
consumption falls by 1.26% (computed by £ — 1) from the previous quarter. These results imply
that the role of jumps is not crucial for consumption growth. It is, however, for dividend growth.
Of the total volatility of Ad; set at 18%, the Gaussian component /sqq is 16.52%, and upon

the occurrence of a single jump, the dividend falls by more than 20% (computed by ¢* —1) from
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the previous quarter.

The standard deviation of state-dependent risk aversion decreases from 8.6 to 8.1 when
jumps are included. The difference, however, does not seem to be economically large, based on
the unconditional distribution of ; in Figure 9(a). In both cases, the probability of v < 0 is
negligibly low.

On the contrary, the inclusion of jumps can change the mean and standard deviation of
subjective discount factor ;. The unconditional mean E[f3;] decreases to 0.986, which remains
within a reasonable range. The unconditional standard deviation SD][S;] increases to 0.00232.
Consequently, the accuracy of the approximation of the continuation value v; is maintained even
by the introduction of jumps (see Appendix C). Figure 9(b) plots the unconditional distribution
of B;. It shifts leftward and has a longer left tail, which is explained intuitively as follows. We
do not change the level of the one-period risk-free rate between with and without jumps in the
calibration procedure. With jumps, however, there is a downward pressure on the one-period
risk-free rate because the agent is more willing to hold real bonds to hedge jump risks. To offset
this downward pressure, the subjective discount rate 1 — 8, must instead rise and hence (; falls.
Furthermore, since §; shifts away from the upper bound of one, there is more room for g; to

fluctuate.

5.2.3 Term structures

Figure 10 plots the term structures of interest rates and their volatilities. By construction of the
calibration procedure explained in Section 5.2.2, each plot is similar with and without jumps.
The same is true for the term structure of dividend risk premiums in Figure 11(a). On the
contrary, a difference appears in Figure 11(b), which shows the term structure of excess-return
volatilities of dividend strips. By including jumps, the volatility curve in the medium to long
maturity range shifts upward while at n = 1, the volatility is similar with and without jumps
because of the constraint that the volatility of dividend growth is the same, set at 18%. At
n = 160, the excess-return volatility with jumps is 17.0%, higher than that without jumps,
16.3%. The higher volatility arises from a higher covariance between realized and expected
dividend growth. The covariance is higher (less negative) because jumps are introduced only
into realized dividend growth while keeping its total volatility fixed. Since the excess-return
volatility is slightly higher with jumps than without, the Sharpe ratios with jumps decrease

slightly faster, as shown in Figure 11(c).
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In summary, the change in some of the parameter values and the inclusion of jumps into
cash flows together are helpful for improving the proposed model, which now offers economically
reasonable implications about the consumption dynamics and preferences while keeping the

ability to generate the various term structures.

6 Concluding remarks

This study proposes an equilibrium asset-pricing model that jointly produces the term structures
of zero-coupon bonds and equities. For this purpose, we extend a recursive utility function in
a way in which the parameters capturing risk aversion and time preference are driven by state
variables of the economy and asset markets. The parameters of the proposed model are calibrated
by matching the stochastic discount factor of the proposed model with that exogenously specified
by Lettau and Wachter (2011; LW). This calibration approach allows the proposed model to
have a similar descriptive ability to the LW model, and the LW model to have an equilibrium
foundation. With the help of the LW model, the proposed model can produce a downward-
sloping term structure of dividend risk premiums when the term structure of real interest rates
slopes either upward or downward. Explaining these term structures is considered to be a
challenge for equilibrium models.

In terms of an equilibrium foundation, we find that the values of the parameters originally
calibrated by LW may be unrealistic when more economic structures are imposed. Most notably,
it is implied that the mean and variance of state-dependent risk aversion is too high under a
reasonable level of consumption-growth volatility. We then change some of the parameter values
of the LW model, which shifts part of risks from a price-of-risk factor to realized dividend
growth. We further introduce jumps into the consumption and dividend processes, which can
be interpreted as disasters. The modified version of the model then implies an economically
plausible behavior of the preferences and consumption growth without losing the descriptive
ability for the average term structures.

While this study shows that the state-dependent preferences are useful for endogenizing the
key mechanism of the LW model, it does not address which state variables are effective from
actual data on cash flows and market prices. A further challenge is to present micro evidence on
the state-dependent preferences. Even though we accept that the preferences are changeable, it

is unclear whether they change as predicted by the model. These important questions are left
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for future research.
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Appendix A: Derivation of key equations

The optimal consumption given in equation (6)

Substitute V; into (2) with Cy replaced by Cf (the optimal consumption for the agent):
V= G BV 1)

Assume that V; is of the form V; = ¢, Wy, where ¢, is a state-dependent variable identified below.
Substitute first this form and then the budget constraint given in (4) into the RHS of (81):

V= O:l_ﬁt(wt _ Ct*)ﬁtEt[(¢t+1Rw7t+1)17%]&/(17%) ) (82)

(82) satisfies the first order condition (FOC): 0V;/0C} = 0. Given that 8; and ; are exogenous
by Assumption (i), solving the FOC yields C} given in (6). By Assumption (ii), the second
order condition is met:

0*V;

2
Wz—ﬁtu—ﬂtm{m)} <0. (3)

Gt (W = Cf
Finally, by substituting (6) into (82), V; is confirmed to be of the assumed form, where

B
1—p

Bt

Et[(¢t+1Rw,t+1)1_%]1/(1_%)} ) (84)

¢t:(1—5t){

Recursive equation (8) for the value function

Replace first Ry 141 with Ry, on the RHS of (84) and then substitute (7):

* x e N 1= Be/(1=7)
% _ E, ( Pit1 Cttl) . t ’ (85)
1 -5 1= B Cf

where ¢y is used in place of ¢; to emphasize the equilibrium. Meanwhile, the continuation value

in equilibrium is V;* = ¢; W} = 1?*& Cs. Define v, = V¥ /Cf = ﬁ;m. Substituting this into (85)
yields (8).

SDF given in equation (9)

A simple way of deriving the SDF is to use the Euler equation for wealth (a claim to the flow

1—7, _
<Vt+1 ) ‘ < f+1> O
ytl/ﬂt Cy Cy

of endowments). Rearrange (8):

1=E,

(86)
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By (7), .
t+1
Cy

Substitute (87) into (86) and rearrange the terms, we have 1 = E;[M;1 R}, ; 1], where My is

1= Bit1
1 _ /Bt w,t—i—l *

=B (87)

given in (9).

Value function given in equations (17)—(19)

Assume that the solution to the recursive equation (8) is of the following form: vy = exp{p, +

bl,x;}. Substitute this form into (8) together with 5; = S:

exp{py + b2} = Eylexp{(1 —v)(p + b}, x41 + Acyq) ]/
1
— exp {8 (Eubua) - 50— Dvanfel) (5%)
where

Xt = p + b3 + Acy . (89)

Note that
Et[Xt—i—l] = Uy + Uec+ (bc + (I):cbu)/J:t 5 (90)
varg[xer1] = b.szaby + 280,00 + See (= Ver) (91)

Substitute these conditional moments and v; = p, + b’th into the RHS of (88), and then take
the log of both sides:

1
py + by = {uu + pe + (be + @by) x — ivcy(uw + 0wy — 1)} : (92)

For the assumed form of v to be true, (92) must hold for any z:, leading to the simultaneous
equations for (u,, bl,) given in (18) and (19).
Risk-free rate given in equations (23)—(25)

By substituting (17) together with 8; = (3 into (9), the SDF can be rewritten using x¢+1 defined
in (89) as
_ —(1-v)/8 _ — A
M1 = By exp{(1 — 7)xt+1 Ct1} - (93)

Take the conditional expectation of both sides of (93):

Eq[Myi1] = Bry P By lexp{ (1= ye)xe41}] Eele 2] exp{ (7 — 1)cove[xer1, Acrsa]} . (94)
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Meanwhile, the recursive equation (8) can be rewritten using x; as

0 = Bylexp{(1 — ) xer1}] - (95)

Substitute (95) into the RHS of (94), develop the conditional moments, and rearrange the terms:

Tl = —InE[M;iq]

1
= —Inf+pc— g8ce (Seabv + Scc) by — 1) + {be = (seqbu + 8cc)by e . (96)
Collecting the intercept and slope terms of (96) into Ay and By, respectively, yields (24) and
(25).
Approximation of the value function given in equations (17) and (29)—(30)

Substitute vy = exp{u, + b, x¢} into the RHS of (8), develop the conditional expectation, and

rearrange the terms:

In (RHS of (8)) = B(x¢) {u,, + e + (be + @by wy — %vcy(uy + bfyxt — 1)} , (97)

which is basically the same as the RHS of (92) except that (3 is replaced by B(z:). Since (97)
is not equal to p, + b,z (the log of the LHS of (8)) for any xy, it is approximated as linear in
x¢. Specifically, nonlinear terms associated with 5(z;) and 5(z;)z; are linearized around z; = 0
(the unconditional mean) as given in (27) and (28), respectively. Then, matching the intercept

and slope terms yields (29) and (30).

Approximation of the risk-free rate given in equations (23) and (34)—(35)
By substituting (17) into (9), the SDF can be rewritten as

P —~(-w)/p:

My = Tz exp{(1 = y)Xt+1 + Vi), (98)

where x;41 is defined in (89) and
Py = ua + b/ﬁﬂj‘t — Ac . (99)
Take the conditional expectation of both sides of (98):
Et[Mt+l] — ﬂt l/i(li’yt)/ﬁt

1—-6"
X Exlexp{(1 — 7e)xe+1}] Bele '] exp{(L — v)covelxes1, $real} . (100)
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Note that the recursive equation (8) can also be rewritten as I/t(l_%)/ b~ E lexp{(1 —¢)xt+1}]-

Substitute this into the RHS of (100) and develop the conditional expectation:

1
Ey[My] = 5 ftﬁt exp {Et[%ﬂ] + gvarPraa] + (1 = ve)eove[xe+, ¢t+1]} : (101)
Note that
EiYi] = B — e + (q)wbﬁ - bC)/xt ) (102)
varg[r1] = bllgsmbg — 280,03 + See (= veg) (103)
COVt[Xt+17 ¢t+1] = (Sx:pbzz + Scx),b,B - (Séxbu + Scc) . (104)

Substitute these conditional moments together with (14) and (16) into the RHS of (101), and
rearrange the terms:
1
Trev1 = —In By + pe — 5”66 + {(Szzby + Scx)/bﬂ - (Slcxbu =+ SCC)}(M’Y -1)
+ [be + (Taxa — Pa)bg + {(Saaby + Scz)'bg — (Shaby + Sce) bo] @1 - (105)
The leading term on the RHS of (105), —In f, is nonlinear in ;. It is then linearized around

x; = 0 (the unconditional mean) as given in (33). Then, collecting the intercept and slope terms

into Ay and By, respectively, yields (34) and (35).
Risk premium of a dividend strip given in equations (72)—(74)
Note that
mip1 — Efmep1] = =Nz, (106)
Tt[—)‘rl,n—l - Et[rtD—i-l,n—l] = (2B} 1 +0a) 241, (107)
where A\ = (0,0, + o)y — 02(bg + b,). Substitute (106) and (107) into the RHS of (71),

RPt?z—l = {(ozby + o)y — U:Jc(bﬁ + b,,)}'(cprnD_l +04)

= —(bﬁ + by),(Smng_l + Sdg;) + {Szlxby + Sed + (smmby + Scm)/BT?_l}’Yt ) (108)

Approximation of the value function with jumps in consumption growth

By Ac, = In(Cg/C¢_ 1) = AcY + Ac/, the recursive equation for the log continuation value can

be written as

Iy = - B Bylexpl(1 = 70)(nvist + A, + Acl )} - (109)

- M
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Because Ac{ and Ac/ are mutually independent and because v; is a function of the state vector

that has no jump component, the RHS of (109) can be factorized as follows:

Iny = lﬁ (In Eyfexp{(1 — ) (I vep1 + A )} + In Effexp{(1 = w)Aci,1}]) - (110)
Mt

For Ac/, | = (In€)N,41, the second term on the RHS of (110) is developed as
t+1 +

LB —1
P Blexp{( - )Ny = HE L (111)
el el
To approximate Inv; as Invy = p, + b, 24, it is necessary to linearize the RHS of (111) as,
1Be(e —1
Mﬁ_) ~ —(1 — et8)lko + IK x4 (112)
M
where
lomy — 1
ko = > 113
e (113)
1 — ehs -
kh = 6“3k0b5+ l{koJrf By lnf}b,y . (114)
My —

It is noted that this approximation is unavoidable even for 5; = [ (constant). Then, it is
concerned that the approximation of 14 is less accurate, which is addressed in Appendix C.

By the additional approximation given in (112), (p,, b}) satisfy the following equations:

1
= (l—el‘ﬂ){uy+,uc—2vc,j(u7—1)—lko}, (115)

1 1
b, = (1—ets) (bc + Byb, — 2'Uc,jbfy) — o8 {uy + e = e (hy - 1)} bs + lk1 . (116)

Risk-free rate with jumps in consumption growth

We approximate the risk-free rate ry;11 as rp 1 = Ay + B}azt. First, the SDF given in (9) is

rewritten as My = MtcilMt‘]H, where

1-p v, e G
a — Pey1 [ Vi —pAc
Mg, = B 1- 35 <th/ﬁt> e th (117)
Mt{&-l — e n(mENepr (118)
Then, by the Euler equation, 77,41 = — In E;[MS ] — In E[M/;]. The conditional expectation

of the Gaussian part is the same as before and that of the Jump part is developed as

_1nEt[e—’Yt(1H§)Nt+1] =T —1). (119)
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This term is added to the previous equation for 77;,; without jumps. To approximate rs ;41 as

linear in z;, the RHS of (119) is linearized as,
=& = 1) = =l = 1) + 1M (In &bl s . (120)
Then, rfp1 = Af + B}xt, where

1
Ap = —In(1—e") 4 pe — 5 Ueh + (g = D{(saaby + Sca)'bg — (Seqbv + 5cc) }

-t =1, (121)

1
mldxd — &, + b'y(sxxbu + Sca:)/} b6(122)

By = be+{I&* In¢ — (sl,by + See) Yoy + { .

Appendix B: Condition for the continuation value to be real

For a state-dependent subjective discount factor, 5(x¢), the continuation value is approximated
as vy = exp{pu, +b,2:}, where p,, and b, are the solution to the simultaneous quadratic equations
given in (29) and (30). This appendix presents the condition on which y, and b, are real. Also,
it addresses which real root to select.

Recall that (29) and (30) are, respectively,

1
Hy = BO{MV_'_MC_QUCV(M’Y_l)})

1 1
b, Bo <bc + @b, — 2Ucub’y> + 51 {,U’V + fe — §UCV(:U”Y - 1)} .

By (29), ve, can be expressed as a linear function of p,. Then, substitute this into (30) and

rearrange the terms:

b, = co+cipy (123)
where
co = (Iixd — Bo®:) "o (bc - Iu'uilbw> ; (124)
Y
_ 1-—
a = (laxa = Bo®a)™" (gé + Hfi’%) : (125)
v

Substituting (123) back into (29), where v., = V], 8320, +25..,.b, + Scc, yields a quadratic equation
with respect to p, as

ag,u,% 4+ 2a1uy + g =0, (126)
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where

as = sz, (127)
1—fo
= d Lo+ 0 128
a1 CoSzzCl + SepC1 + ol —1)° (128)
/ / 2pc
Q) = C€)SzzC0o + 25¢yC0 + Scec — . (129)
py —1

Then, the condition for real y, is that the determinant of (126) is non-negative:
o —asag > 0. (130)

By (123), this is also the condition for real b,.

Which root to select

Given that (126) has two real roots, we always select a larger root in order to avoid a negative
value of p, if a smaller root is negative. It is likely that at least one root is positive for typical

sets of parameter values, which is explained as follows. (29) can be rewritten as

1
Hv =7 foﬁo {:uc - §UCV(M’Y - 1)} ) (131)

where fy = 1 —e#4. By pg < 0, it holds that 0 < fp < 1 and hence that 8y/(1 — By) > 0.
Furthermore, it is typically the case that the mean term (u. = F[Ac;]) dominates the (scaled)

variance term (ve, = varg[Inve 1 + Acey]) even if p1y is large.

Appendix C: Accuracy of approximation of the value function

We express here an approximation of the value function as /¥, which is derived as v’ =

exp{uy + b,z }. The approximation error is defined by
er = vy — v = By(vq €20 ) )8 ) oxp{y, + 0 ae ) (132)

Since the true form of 14 is unknown, it is difficult to evaluate the conditional expectation on
the RHS of (132) and hence the error e;. We therefore compute a pseudo approximation error.

First, we decompose e; as e; = e + €2, where

ery = Et[(yt+1eACt+1)1—%]575/(1—%) _ Et[(yﬁ_]ieACtJrl)1—7t]ﬁt/(1_7t) ’ (133)

car = Bal(fet ) 00 —explyn, + Y} (134)
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Then, s is a pseudo approximation error, where the log of Ey[(v{i eBce1) =718t/ (1=7) §5 equal
to (97). Unless e;; and ey offset each other, ey, undervalues the approximation error, which

requires caution for interpreting the results obtained in the following three cases.

C1. Linear risk aversion 7; with E[y] = 150

Panel A of Table Al presents e/ v in percentage terms when ~, is linear with the parameter
values given in Table 4. The errors are evaluated when the factors are above or below k (= 1, 2, 3)
standard deviations from the mean (i.e., zero). By construction of the approximation, ez = 0
at zy = 0. The label “All factors” indicates that all factors change simultaneously, whereas the
label “Individual factors” indicates that only a factor in each row changes with the other factors
fixed at the mean. All the errors in the z ;-row are zero as v; does not depend on z ;.

First, by changing all elements of x; proportionally, the pseud errors are at most —0.12%.
Second, by changing only the expected dividend-growth factor x4; or the risk-free rate factor
xf¢, the pseud errors are negligibly small. Third, since the price-of-risk factor x) ; varies more
intensively than the other factors, it is expected to have a larger impact on the accuracy of the

approximation. While this is indeed the case, the pseud errors are at most 0.1%.

C2. Quadratic y; with E[y] = 150

In Section 4.3, we refer to a quadratic specification of v to avoid negative values of ;. We
specify v = qo + qlxit with qo, g1 > 0. In order to derive Iny; as a linear function of x;, v

needs to be linearized around x); = py:

Ve & qo + quiiy + 2q1pn(Tag — f1y) - (135)

By matching the intercept and slope terms between (48) and (135), we have q1 = bya/(2p)
and qo = py — q1 ,u?\. By this matching, we do not re-calibrate the parameters of the model but
simply use those presented in Tables 2 and 4.

Panel B of Table Al presents ez ;/ V;“P in percentage terms for a quadratic ;. As expected,
the pseud errors are larger than those for a linear ; due to the additional approximation given

in (135). Still, they are less than 1% in absolute value.
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C3. Linear v; and jumps in cash-flow processes

To obtain In Z/£4P = py + bl,x; in the case of jumps, we need to rely on a further approximation
presented in (112), which is avoided if 7; is constant. Then, it follows that the smaller the
variation in 7, the more accurate is the (additional) approximation. Note that in Section 5.1,
we reduce the volatility of =) ; and hence the volatility of v, = f1 + bya(xx ¢ — p15), which works
for reducing the approximation error.

Panel C of Table Al presents eg,t/l/fp in percentage terms, which are computed at the
parameter values given (partially) in Table 6. As expected, the additional approximation is not
a serious concern. The pseud errors are at most —0.2% when all elements of x; are above three
standard deviations from the mean. When the value of each factor is changed, there is no case

in which the pseud error exceeds 0.1% in absolute value.

Appendix D: Term structure formulas

Risk-neutral drift

To simply express the recursive equations for the prices of zero-coupon bonds and equities, we
bundle model parameters into those in the risk-neutral probability measure. Specifically, we

first describe the risk-neutral dynamics as

Adppr = pd +03 0+ ozl (136)
AT['H_1 = qur) + b? ,wt + O';.Zgl s (137)
w1 = p9+ 0@+ olzl (138)

where zg_l is an 4.i.d. normal random vector in the risk-neutral probability measure. The

risk-neutral drift of Ad;y1 satisfies for any x;
,ug + bg 'v; = E, [Adii1] + covi[mysrr, Adpya] - (139)
The conditional covariance on the RHS of (139) is
cove[Adir1, mip1] = —oghe = 54, (b + by) — (Supby + Sca) ity — (Sgzby + 5ca)blas - (140)
Then, ,ug and bg on the LHS of (139) are identified as

/’LdQ = Hd + S&x(bﬁ + bl/) - Iu”/(sélxbl/ + SCd) ) bccl2 = bd - bV(SlebV + st) . (141)
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Likewise,

Mq? = fr + S;rx(bﬁ +by) — M"/(S;rbe + Ser) b? =br — b’Y(S;ra:bV + Sex) (142)

,U'gcp;) = Szx(bﬁ + bV) - N’y(sszu + Scw) s (pr =&, — b’y(sxxbu + Scx)l . (143)

By the calibration, the slope terms of the factor risk premiums are matched exactly between
the LW and proposed models. This is equivalent to matching the slope terms of the risk-neutral

drift (i.e., bdQ, b?, and ®Y) between the two models.

Real zero-coupon bonds

The price of a real zero-coupon bond maturing in n periods, Pf;“ satisfies the following Euler
equation:

Ptlfn = Et[Mt+1Pt§-1,n—1] = e_rf’t“EtQ [Pt}il,n—l] ) (144)

where the second equality is by the change from the physical to risk-neutral probability measures
and EtQ [-] stands for the conditional expectation under the risk-neutral probability measure. The
initial condition is P/ = 1. By substituting Pff, = exp{Af + BJf'2;} into the RHS of (144),
developing the conditional expectation under the risk-neutral probability measure, and matching
the intercept and slope terms on both sides, we obtain the following recursive equations for Aﬁ

and BE:

n—1>

1
AY = AL - A pd B+ iBrI?flﬁmBR (145)

BE = oYBE, - By, (146)

with the initial condition Aff =0 and B = 0.

®% in (146) is the same between the LW and proposed models as documented above. Also,
By, the loading on the state vector in the real risk-free rate ry;11, is the same between the two
models as (50) holds by the calibration procedure. Consequently, B is the same between the

two models for any n.

Nominal zero-coupon bonds

Rewrite the Euler equation (38) for the real price of a nominal zero-coupon bond as

IT;
I 41

IL;
i1

Pt{\"(]/]:[t = F; Mt"‘l(Pt]-\(-Ln—lHt—l-l) } — e_rf’t'HEtQ

(PN, 1 1iy1) ; (147)
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with the initial condition PyIl; = 1. By substituting P/ II; = exp{A} + BJ"z,} into (147),
developing the conditional expectation under the risk-neutral probability measure, and matching

the intercept and slope terms on both sides, we obtain the following recursive equations for Ag
and BY:

1 1
AN = AV - Ap -l o Smm T (19 — sma)'BY 1 + 537]1\[—,1%;337]1\[_1 ; (148)

BY = a9BY, - B, 19 (119
with the initial condition AY = 0 and B}’ = 0. Notice that B is the same between the LW
and proposed models for any n because @g, By, and bQ are the same between the two models
by the calibration.

Zero-coupon equities

Rewrite the Euler equation (40) for the price of a dividend strip as

h PR1in1 Dia o [Phin1 aa
L= By My ——"———| =e "MHE MR 150
Dy YD Dy "1 Dy (150)

with the initial condition P/y/D; = 1. By substituting P[),/D; = exp{ AL + BP 'z} into (150),
developing the conditional expectation under the risk-neutral probability measure, and matching

the intercept and slope terms on both sides, we obtain the following recursive equations for A?

and BP:

1 1
AD =AY = Ap g gsaa+ (0 + sa) By + 5B s By (151)

BP = ®YBP | —B;+b?, (152)
with AY = 0 and BP = 0. For the same reason as above, BY is the same between the LW and

proposed models for any n.

Zero-coupon equities with jumps in consumption and dividend growth

The SDE M, is decomposed into the Gaussian and jump components, which are mutually

independent, as

ME, M/
o 7 _ t+1 t+1
My = Mgy My, = e 70 Et[Mth-l] Et[Mt{i-l] .

Also, Adiy1 = Ad§ 4 +Ad], ;. Meanwhile, Pﬁlmfl/DtH is a function of x4 that has no jump

component. Then, the recursive equation (150) is developed as

D G D J
Ptan — e Tht+1 Et Mt+é Pt+11n_1 eAdtG+1 Et Mt+JI 6Ad;fi+1 . (153)
D, Ey Mg ,] Dt Ey[M{4]
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The first conditional expectation (multiplied by e~ "/t+1) on the RHS of (153) is the same as
that developed without jumps. The second conditional expectation is developed by substituting

MY = e mONe and Adf,, = k(In€)Nyyq as
Elexp{(k =) (In&)Newr — U = 1)}] = exp{l(¢" — 1)¢7"} . (154)
To derive In(PL),/Dy) as a linear function of z;, 7" is linearized as
€ € {1 — (€} (155)
Then, In(Pf),/Dy) = AP + BP 'z, where AD and BY are determined recursively as

1 1 _
A =AY Ap g+ saat (0E 4 sa) By 5B e By + 168 — 1)67#(156)

BP = o9BP | —B;+ bdQ — (" — 1) (In€)b,, (157)

with A =0 and Bf = 0.
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Ad Am Ty Tr Ty T

Unconditional means

1. 1.29% 3.68% — - 0.96% 17.0

Standard deviations of innovation terms

V5. 10.0% 1.18% 0.32% 0.35% 0.19% 4.00
Autocorrelations
diag(®,) - — 0.90 0.78 0.92 0.85

Correlations between innovation terms

Ad 1.00 ~0.30 ~0.83 ~0.30 ~0.30 0.00
An 1.00 0.00 1.00 0.00 0.00
T4 1.00 0.00 0.00 0.35
x 1.00 0.00 0.00
zf 1.00 0.00

Unconditional factor risk premiums
17.00% —0.60% —0.45% —0.18% —0.10% 0.00

Table 2: Parameter values of the LW model

These values are collected from tables 1-3 in LW (2011). Unconditional means, standard de-
viations, and autocorrelations are annualized, except for the unconditional mean of x); and
the standard deviation of innovation in x); expressed in raw numbers. The last row presents

annualized, unconditional factor risk premiums.
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Solution Consumption Risk aversion Subjective discount factor

Sce Ely] SD[v] E[B] SD|f]

(%, year) (x102)

(a) 8.84 30 25 0.969 1.097
(b) 5.89 60 51 0.981 0.532
(c) 477 90 77 0.985 0.392
(d) 4.22 120 102 0.986 0.331
(e) 3.91 150 128 0.987 0.298

Table 3: Moments for consumption and preferences at selected solutions

Table 3 presents the annualized volatility of innovation in consumption growth (y/sc:), and
the unconditional mean (E[-]) and standard deviation (SD[:]) of state-dependent preferences at
selected solutions to the set of constraint equations given in Section 3.2. The solutions are in

ascending order of E[vy].
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Panel A: Consumption volatility and correlations

Sce Pecd Pcxl Pcx2 Pcx3 Pcxa

3.91% 0.877 —0.755 —0.086 —0.046 0.341

Panel B: State-dependent preferences and continuation value

constant T4 Tr Ty Ty
Y 150 0.00 0.00 0.000 8.9357
In(1 — B) —4.392 —8.66 0.00 30.170 0.0136
In vy 0.071 8.86 0.00 —0.817 —0.0029

Panel C: Unconditional factor risk premiums

Ad Am Tq T xTf T

17.00% —0.60% —0.46% —0.18% —0.11% —0.172

Table 4: Implied parameters of consumption dynamics and preferences

Table 4 presents the calibrated parameters at Solution (e) of Table 3. Panel A presents the
annualized volatility of innovation in consumption growth (/s..) and the correlations between
innovations in consumption growth and the rest of the variables. The correlation with realized
inflation growth is not shown because it is the same as the correlation with ezpected inflation
growth (pey2). Panel B presents the parameters in risk aversion «y;, log subjective discount
rate In(1 — 3;), and log continuation value Inv;. All of these functions are linear in z; =
(Tdt, Trt, Tre—pof, Tae—py). Panel C presents annualized, unconditional factor risk premiums,

except for x) expressed in row numbers.
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Panel A: Consumption volatility and correlations

Sce Pecd Pcxl Pcx2 Pcx3 Pcxa

4.96% 0.898 —0.792 —0.069 0.085 0.281

Panel B: State-dependent preferences and continuation value

constant T4 Tr Ty Ty
Y 150 0.00 0.00 0.000 8.7817
In(1 — B) —6.337 —12.00 0.00 44.639 0.0025
In vy 0.458 12.36 0.00 —1.619 —0.0035

Panel C: Unconditional factor risk premiums

Ad Am Tq T xTf T

17.00% —0.60% —0.45% —0.18% 0.02% 0.015

Table 5: Implied parameters for pg,3 = 0.1
Pdz3 stands for the correlation between innovations in dividend growth and risk-free-rate factor.
It is first changed from —0.3 to 0.1 in the LW model, and then the parameters of the proposed

model are re-calibrated in the same procedure as explained in Section 3.2. The same legend as
in Table 4 follows.
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—3S.D. —2S.D. —1S.D. +1S.D. +2S.D +3S.D.
Panel A: Linear 4
All factors —0.060 —0.030 —0.008 —0.011 —0.048 —0.124
Individual factors
T4 0.046 0.020 0.005 0.004 0.017 0.038
T 0.000 0.000 0.000 0.000 0.000 0.000
Ty —0.002 —0.001 0.000 0.000 —0.001 —0.002
T 0.056 0.028 0.008 0.009 0.042 0.105
Panel B: Quadratic
All factors —0.812 —0.364 —0.092 —0.094 —0.378 —0.858
Individual factors
T4 0.046 0.020 0.005 0.004 0.017 0.038
T 0.000 0.000 0.000 0.000 0.000 0.000
Ty —0.002 -0.001 0.000 0.000 —0.001 —0.002
T —0.695 —0.307 —0.076 —0.074 —0.289 —0.635
Panel C: Linear ~; with jumps in consumption and dividend growth
All factors —0.099 —0.047 —0.013 —0.015 —0.064 —0.155
Individual factors
xq 0.047 0.020 0.005 0.005 0.018 0.039
T 0.000 0.000 0.000 0.000 0.000 0.000
Ty —0.004 —0.002 0.000 0.000 —0.001 —0.003
T\ 0.000 0.000 0.000 0.000 0.000 0.001

Table Al: Approximation errors of l/{‘P
The value function is approximated as v
in percentage terms, where ey; stands for a pseudo approximation error defined as ex; =
Ey|(vfAf eAeerr)l=n]8/(1=m) — AP The values of es; are computed at the values of the fac-
tors above or below k (= 1,2, 3) standard deviations (S.D.) from the mean (i.e., zero). In each
panel, the label “All factors” indicates that all factors change proportionally, whereas the label
“Individual factors” indicates that only a factor in each row changes with the other factors
fixed at the mean. By construction of the approximation, ea; = 0 at 2y = 0 (mean). Panels
A and B are for a linear risk-aversion and a quadratic risk-aversion, respectively, evaluated at
the parameter values given in Tables 2 and 4. Panel C is for a linear risk-aversion with jumps
in consumption and dividend processes, evaluated at the parameter values given (partially) in

Table 6.

= exp{p, + b,x¢}. The table reports ez,t/I/iAP
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(a) Risk aversion (b) Subjective discount factor S
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Figure 1: Unconditional distributions of state-dependent preferences

The distributions are drawn at Solution (e) of Table 3. The risk-aversion coefficient is specified
as v = iy + b’vxt and the subjective discount factor as f; = 1 — exp{ug + bea:t}, where z; is a
Gaussian state vector.
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Figure 2: Log price loadings on state variables B! (i = {R, N, D})
The log prices for real bonds (R), nominal bonds (N), and dividend strips (D) are given by

InP{, = Al + B}z, (i = {R,N,D}). Panel (a) plots against n (quarters) the loadings on zq,
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(expected dividend growth), multiplied by the unconditional volatility of x4+ hence normalized
in that they are the loadings on the factor with unit volatility. Panels (b)—(d) plot the analo-

gous loadings on x.; (expected inflation growth), zs, (risk-free rate), and x, (price of risks),
respectively.
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Figure 3: Average term structures of interest rates and volatilities
In Panels (a) and (b), the term structures of 4E[Y/, ] (i = {R,N}) (annualized) are plotted
against n (quarters), where Ytln is the yield to maturity of a zero-coupon bond at time ¢. In

Panels (c¢) and (d), the term structures of

The solid (dotted) line is for the proposed (LW) model.
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4var[Yy,] (i = {R,N}) (annualized) are plotted.



(a) Real; xf; = py, +25SD, —2SD (b) Nominal; x¢¢ = puy, +2SD, —2SD
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Figure 4: Conditional term structures of interest rates for the proposed model
Panels (a) and (b) plot the term structures when the risk-free-rate factor xs; is above (+2SD)
or below (—2SD) two standard deviations from the mean with the other factors fixed at the
mean. Panels (c) and (d) plot the term structures when the price-of-risk factor ), is above
(+2SD) or below (—2SD) two standard deviations from the mean with the other factors fixed
at the mean. Panels (e) and (f) plot the term structures when the economy is “Good” or “Bad”
with a good (bad) state defined as when z ; is below (above) two standard deviations from the
mean and the other factors are above (below) two standard deviations from the mean.
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(a) Risk premiums
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Figure 5: Average term structures of risk premiums, volatilities, and Sharpe ratios
for dividend strips (annualized)
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(a) Risk premiums (b) Sharpe ratios
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Figure 6: Conditional term structures of dividend risk premiums and Sharpe ratios
for the proposed model (annualized)

The term structures are plotted when the price-of-risk factor x); is above (+2SD) or below
(—2SD) two standard deviations from the mean.
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(a) Real interest rates (b) Nominal interest rates
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Figure 7: Average term structures of zero-coupon bonds and equities for pg,3 = 0.1
Pdz3 stands for the correlation between innovations in dividend growth and risk-free-rate factor.
It is first changed from —0.3 to 0.1 in the LW model, and then the parameters of the proposed
model are re-calibrated in the same procedure as explained in Section 3.2.
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a) Real; 02 = 0, ominal; 042 = U,
(a) R lb7 0,90 (b) Nomi lb7 0,90

0.014

0.012 ™.,

0.010 4
0.008 4
0.006 -
0.004 +

0.002 +

0.000 : : e
9 40 80 120 160 0.00 . , ‘ Quater

0 40 80 120 160

-0.002

(d) Nominal; bga = 0,2

0.014

0.012 4

0.010 +

0.008 +
0.006 +
0.004 +

0.002 +

0.000 : : -

-0.002

0 40 80 120 160

Figure 8: Average term structures of interest rates for b,2 = 90 or bgy = 2

b2 is the coefficient of the expected inflation-growth factor z,; in the risk aversion ; and bgo
is the analogous coefficient in the log subjective discount rate In(1 — ;). These coefficients,
originally set at zero, are changed as indicated above while the other parameters are held fixed
at the values presented in Table 5. In each panel, the plot labeled as b,2 = 0 or bgy = 0 is the
same as shown in Figure 7(a) (real) or Figure 7(b) (nominal).
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Figure 9: Unconditional distributions of state-dependent preferences with and with-

out jumps when the mean and volatility of z); are reduced

The distributions are drawn at the parameter values given (partially) in Table 6. The risk-

aversion coefficient is specified as v = p, + bﬁymt and the subjective discount factor as §; =

1 —exp{ug + bbxt}, where z; is a Gaussian state vector.
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Figure 10: Average term structures of interest rates and volatilities with and with-
out jumps when the mean and volatility of z,; are reduced

In panels (a) and (b), the term structures of 4E[Y},] (i = {R,N}) (annualized) are plotted
against maturity n (quarters), where Y;’n is the yield to maturity of a zero-coupon bond at
time ¢. In panels (c) and (d), the term structures of y/4var[¥,] (i = {R, N}) (annualized) are
plotted. They are drawn at the parameter values given (partially) in Table 6.
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(a) Risk premiums
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Figure 11: Average term structures of risk premiums, volatilities, and Sharpe ra-
tios for dividend strips (annualized) with and without jumps when the mean and
volatility of z),; are reduced
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