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Abstract

A growth model augmented with physical capital and human capital

is modified and used to explain the birth of cyclical dynamics. Crucial

feature of the model is the assumption that there are a gestation delay and

a maturation delay in constructing physical capital and human capital,

respectively. Dynamics is described by a continuous time system of delay

differential equations. A stability switching curve is analytically derived

on which stability of the model is lost. Its shape is numerically verified

and it is confirmed that the two-delay model can generate a wide variety

of dynamics from simple dynamics to complex dynamics.
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1 Introduction

It has been well-known by economists that wine is not made in a day. It is

also well-known that economic models usually assume instantaneous responses.

In consequence, it is not known how to produce mature wine in an economic

framework. This study is concerned with problems that arise in a circumstance

under which economic variables do not respond immediately. In particular, this

study examines dynamics of an extended Solow model augmented with human

capital in which physical and human capital incorporate time delays due to

gestation time in physical capital and maturation time in human capital. It

will be shown that the delays could destabilize an otherwise stable model and

generate persistent oscillations that might be compatible with actually observed

data.

Since the seminal works of Solow (1956) and Swan (1956), enormous amount

of works on economic growth has carried out. There is a wide variety of topics

ranging from mathematical analysis containing purely analytic works as well as

empirical studies to non-technical works such as review reports of the World

Bank, OECD, etc. Nevertheless, the Solow model that we call their model,

following a tradition, still stays at the center of economic growth literature and

many new perspectives including the current study depart from it. The Solow

model itself has a quite simple structure and thus the fundamental questions

of existence and stability of its steady state are easily taken care under the

conventional neoclassical conditions. In spite of the simple representation of a

complex economy, it can capture many real life facts. In particular, the model

predicts that the living standard can be higher in a rich country in which the

per capita output is higher due to the higher rate of saving and the lower rate

of population whereas the living standard can be lower in a poor country in

which those critical rates take reversal of those in the rich country. Mankiw,

Romer and Weil (1992, MRW henceforth) empirically examine the predictions

of the Solow model using a cross country example that comprises 98 countries.

Some of the results that MRW obtains are favorable and others are unfavorable:

the model correctly predicts the directions of the effects caused by changes in

model’s parameters such as the saving rate, the depreciation rate, the growth

rates of population and the technology; however, it does not accurately give rise

to the magnitudes of those effects, which are found to be too large. To make

up for this shortcoming, MRW adopts a human capital stock as a factor in the

macroeconomic production function, in addition to the physical capital stock

and labor.1 It is then empirically validated that the extended Solow model

could be consistent with the international variation in the standard of living, in

which about 80% of the cross-country variation in income per capita has been

explained. Based on the similar model to that of MRW, Hall and Jones (1999)

show that differences in the social infrastructure is crucial for the difference in

per capita output between different countries. However, there is diversity of

critic on MRW’s contribution and model extension, see for example, Klenow

1Studies on human capital started in the 50s of the last century and it was revealed that

investment in human capital increases the efficiency of the production fucntion.
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and Rodriguez-Clare (1998) and Dinopoulos and Thompson (1999).

In comparison with the cross-country studies, there is only a smaller amount

of time-series studies, mainly due to less availability of data, Jones (1995) and

Greiner et al. (2005), to name only a few. It is now well known that one of the

major stylized facts in advanced countries is a fluctuating positive per capita

growth rate of output over time. On the other hand the Solow model predicts

convergence to a steady state and no per capita growth is observed unless ex-

ogenous technical progress is present. This prediction might not be compatible

with time series data. This brings us to the question of the economic conditions

for which the model can be, approximately, consistent with the observable ev-

idence. Instability property of the macro model (i.e., the knife-edge problem)

addressed by Harrod (1939) and Domer (1946) which was somehow settled down

by Solow (1956). After the mid 1970s, a lot of efforts have been devoted to find

endogenous sources for non-convergence with applying the recently-developing

chaos theory, nonlinear theory and delay theory. Initial research in this direc-

tion can be traced back to the classical seminal works in economics, a gesta-

tion delay in production by Kalecki (1935), nonlinear investment function by

Kaldor (1940), delay in accelerator and nonlinear investment function by Good-

win (1951). Kalecki (1935) is the first to recognize that the capital accumulation

does not often respond immediately to changes in investment but rather do so

with a time delay and shows that inclusion of such time delays in investment

tends to have a destabilizing influence. Since Kalecki’s seminal work, it has been

conjectured that a production delay could be a source of economic oscillations.

Kydland and Prescot (1982) empirically confirm that a production delay could

be crucial for explaining aggregate fluctuation. Recently, Zak (1999), Szyd-

lowski and Krawiec (2004) and Guerrini et al. (2018) examine a delay Solow

model for the birth of cyclic dynamics. The paper is a continuation of these

studies and its main purpose is to carry out a formal stability analysis of the

extended Solow model that was used to make empirical testing, however, has

not been fully examined yet, especially from a dynamic view point.

The rest of the paper is organized as follows. Section 2 constructs two dif-

ferent versions of the extended Solow model. Section 3 examines a one-delay

model. Section 4 introduces delays in physical and human capitals and inves-

tigates the two-delay effects on dynamics. Section 5 numerically validates the

analytical results obtained in the previous sections. Finally concluding remarks

are given in Section 6.

2 Extended Growth Model

Before proceeding the analysis, we first review the continuous-time Solow model.

Only for the sake of simplicity, a Cobb-Douglas production function is adopted,

Y (t) = K(t)α [A(t)L(t)]
1−α

, 0 < α < 1 (1)

where t denotes time, Y (t) represents output, L(t) labor, K(t) the physical

capital stock and A(t) the labor-augment technology. The physical capital ac-
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cumulation is described by

K̇(t) = sY (t)− δK(t) (2)

where the dot over a variable means a time-derivative, s is the saving rate,

0 < s < 1 and δ the depreciation rate, δ > 0. Dividing the accumulation

equation by effective labor A(t)L(t) transforms it to a per capita form

k̇(t) = sk(t)α − (n+ g + δ)k(t) (3)

where

k(t) =
K(t)

A(t)L(t)
, y(t) =

Y (t)

A(t)L(t)
= k(t)α

and the constant growth rates of labor and technology are n and g, respectively.

A positive steady state is denoted by k∗S at which k̇(t) = 0 for all t ≥ 0,

k∗S =
µ

s

n+ g + δ

¶ 1
1−α

.

At the steady state, the stock of physical capital and output are growing at the

constant rate n+ g,

K̇(t)

K(t)
=
Ẏ (t)

Y (t)
= n+ g.

It is to be noticed that both growth rates are exogenously given and thus the

growth of per capita output occurs only due to exogenous technology change.

In the following, we further summarize two versions of the extended Solow

model augmented with human capital.

2.1 Jones Version

Jones (1998) replaces labor with the human capital in the production function,

Y (t) = K(t)α [A(t)H(t)]
1−α

showing H, the stock of the human capital, is related with labor L according to

H(t) = eφ(E)L(t)

showing that H is a result of labor trained with E years of schooling (education)

and φ(E) with φ0(E) > 0 and φ(0) = 0 reflects the efficiency of a unit labor

with E years of education to one with no education. The Jones version is

identical with the Solow model when E = 0. Dividing the production function

by A(t)H(t) gives

ỹ(t) = k̃(t)α

where

ỹ =
y

Aeφ(E)
and k̃ =

k

Aeφ(E)
.

4



The accumulation of the physical capital per capita is, dropping tilde from ỹ

and k̃,

k̇(t) = sy(t)− (n+ g + δ)k(t). (4)

This equation (4) is essentially the same as the accumulation equation (3) of

the Solow model, implying that replacing labor with human capital does not

affect the basic properties of the Solow model. The larger saving rate leads to

a larger per capita output while the larger rate of population decreases the per

capita output, as in the Solow model,

∂y

∂s
> 0 and

∂y

∂n
< 0.

2.2 MRW version

MRW assumes an extended Cobb-Douglas production function to have three

factors,

Y (t) = K(t)αH(t)β [A(t)L(t)]
1−α−β

where 1 − α − β > 0, α > 0 and β > 0. H is the stock of human capital and

defined differently from Jones (1998). Physical capital and human capital are

formed by saving a sk-fraction and sh-fraction of output with sk > 0, sh > 0 and

sk + sh < 1. The accumulation of these per capita capital stocks is determined

by

k̇(t) = skk(t)
αh(t)β − (n+ g + δ)k(t)

ḣ(t) = shk(t)
αh(t)β − (n+ g + δ)h(t)

(5)

where k(t) is already defined and h(t) is the stock of human capital per capita

defined by

h(t) =
H(t)

A(t)L(t)
.

A steady state is defined by

k∗ =

Ã
s
1−β
k s

β
h

n+ g + δ

! 1
1−α−β

,

h∗ =
µ
sαks

1−α
h

n+ g + δ

¶ 1
1−α−β

.

(6)

Nonnegative values of k∗ and h∗ lead the following conditions at the steady
state at which k̇(t) = ḣ(t) = 0,

sk (k
∗)α−1 (h∗)β = c,

sh (k
∗)α (h∗)β−1 = c

(7)
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with n + g + δ = c. As shown shortly after, the dynamic system (5) converges

to the steady state under the assumption of diminishing returns to scale (i.e.,

α+ β < 1):

Theorem 1 The positive stationary point (h∗, k∗) of extended Solow model (5)
is locally asymptotically stable.

To assert stability graphically, Figure 1 illustrates a phase diagram in which

the red curve describes the k̇(t) = 0 locus and the blue curve the ḣ(t) = 0

locus.2 It can be seen that as indicated by arrows, all trajectories approach the

stationary point that is the positive intersection of the red and blue curves. The

physical capital, human capital and output grow at the same rate of n+ g, as

in the Solow model,

K̇(t)

K(t)
=
Ḣ(t)

H(t)
=
Ẏ (t)

Y (t)
= n+ g

while the per capita variables are on the balanced growth path and grow at the

exogenously given rate of the technology change,

k̇(t)

k(t)
=
ḣ(t)

h(t)
=
ẏ(t)

y(t)
= g.

Figure 1. Phase diagram of no-delay model (5)

3 One Delay Model

The Jones version, which is essentially the same as the Solow model, could be a

prototype model embodying the human capital. Its dynamics has two phases. In

2The parameter values are specified only for the sake simplicity as follows,

sk = sh = 3/10, c = 1/10 and α = β = 1/3.

Any other values are possible and generate essentially the same phase diagram.
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the first phase, the economy starting at any initial state sooner or later converges

to the steady state. On a transition path to the steady state, per capita growth

is positive and becomes zero when it arrives at the steady state. In the second

phase the long-run dynamics is conducted by the population growth and the

technological development. We focus on the evolution of the economy in the

first phase. To this end, we assume the following to get rid of the exogenous

shocks.

Assumption n = g = 0.

Further, if we consider the Kaleckian gestation delay τ in the production

process, the per capita capital stock at time t in continuous time is expressed

by

k(t) =

Z t−τ

−∞
i(T )e−δ[(t−τ)−T ]dT

where i(T ) is investment at time T,

i(T ) = sk(T )a.

Differentiating this equation with respect to t yields the delay equation of capital

accumulation,

k̇(t) = sk(t− τ)a − δk(t). (8)

If the capital starts depreciation after it is installed, then equation (8) should

be

k̇(t) = sk(t− τ)a − δk(t− τ). (9)

Guerrini et al. (2019) show that a steady state of equation (8) is locally asymp-

totically stable for any value of τ and also that there is a critical value τ0 such

that the steady state of equation (9) is locally asymptotically stable for τ < τ0
and unstable for τ > τ0. Science the Jones version of the extended Solow model

has essentially the same dynamic structure as that of the Solow model, if it has

a delay only in the production process, then the delay is harmless and if there is

also a delay in depreciation, then the delay version can be unstable and might

generate cyclic oscillations of the per capita variables.

We now turn attention to delay version of MRS stock accumulation system

of physical and human capitals

k̇(t) = skk(t− τk)
αh(t− τh)

β − δk(t− τk)

ḣ(t) = shk(t− τk)
αh(t− τh)

β − δh(t− τh)

(10)

with τk ≥ 0 and τh ≥ 0. Linearizing each equation of (10) gives

k̇(t) =
h
αsk (k

∗)α−1 (h∗)β − δ
i
k(t− τk) + βsk (k

∗)α (h∗)β−1h(t− τh),

ḣ(t) = αsh (k
∗)α−1 (h∗)βk(t− τk) +

£
βsh (k

∗)α (h∗)β−1 − δ
¤
h(t− τh).
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Using the relations in (7) yields the linearized delay system,

k̇(t) = δ(α− 1)k(t− τk) + βδ
sk

sh
h(t− τk),

ḣ(t) = αδ
sh

sk
k(t− τh) + δ(β − 1)h(t− τh).

(11)

The corresponding characteristic equation is©
λ− δ(α− 1)e−λτkª©λ− δ(β − 1)e−λτhª− αβδ2e−λ(τk+τh) = 0

or

P0(λ) + P1(λ)e
−λτk + P2(λ)e−λτh + P3(λ)e−λ(τk+τh) = 0 (12)

where
P0(λ) = λ2,

P1(λ) = δ(1− α)λ,

P2(λ) = δ(1− β)λ,

P3(λ) = δ2 (1− α− β) .

As a benchmark, we start with the no-delay case in which τk = τh = 0. The

characteristic equation (12) is now written as

λ2 + δ [(1− α) + (1− β)]λ+ δ2 (1− α− β) = 0. (13)

Since the linear coefficient and the constant term are both positive, the roots are

either real negative or complex with negative real parts implying asymptotical

stability. This result without Assumption (that is, δ should be replaced with

c) proves Theorem 1 that shows local stability of the stationary state in the

no-delay model, (5).

We next consider a one-delay case of τk = τh = τ , a first approximation of

the circumstance in which a difference between gestation time and the matura-

tion time is small. The corresponding characteristic equation is obtained from

(12) with appropriate replacement,

λ2 + δ(2− α− β)λe−λτ + δ2(1− α− β)e−2λτ = 0

or multiplying both sides by eλτ transforms it to

λ2eλτ + δ(2− α− β)λ+ δ2(1− α− β)e−λτ = 0. (14)

Suppose that λ = iω with ω > 0 is a root of (14) for some τ . Separating the

real and imaginary parts presents two equations,£
δ2 (1− α− β)− ω2

¤
cosωτ = 0,

− £δ2 (1− α− β) + ω2
¤
sinωτ + δ(2− α− β)ω = 0.

(15)
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If we assume ω2 = δ2 (1− α− β) in the first equation of (15), then the second

equation leads to

sinωτ =
2− α− β

2
√
1− α− β

> 1

where the inequality is due to

[1 + (1− α− β)]
2 − 4 (1− α− β) = (α+ β)2 > 0.

Hence we have the following from the first equation,

cosωτ = 0 and sinωτ = ±1.
If sinωτ = −1, then the second equation becomes

ω2 + δ(2− α− β)ω + δ2 (1− α− β) = 0

that is identical with (13), implying that both roots are either real negative or

complex with negative real parts. No stability switch occurs. If sinωτ = +1,

then the second equation,

ω2 − δ(2− α− β)ω + δ2 (1− α− β) = 0

yields two positive roots,

ω± =
1

2

½
δ(2− α− β)±

q
δ2(2− α− β)2 − 4δ2 (1− α− β)

¾
that is further reduced to

ω− = ω(1− α− β) and ω+ = δ.

Hence the critical values of the delay are

τ+,n =
1

ω+

³π
2
+ 2nπ

´
and τ−,n =

1

ω−

³π
2
+ 2nπ

´
for n = 0, 1, 2, ... .

We need to determine the sign of the derivative of Re [λ(τ)] in order to verify

the direction of stability switching. Differentiating (14) with respect to τ at the

point where λ(τ) is purely imaginary, we have©
2λeλτ + δ(2− α− β) + τ

£
λ2eλτ − δ2(1− α− β)e−λτ

¤ª dλ
dτ

= −λ £λ2eλτ − δ2(1− α− β)e−λτ
¤
.

For convenience, we study (dλ/dτ)−1, instead of dλ/dτ ,µ
dλ

dτk

¶−1
=

2λeλτ + δ(2− α− β)

−λ £λ2eλτ − δ2(1− α− β)e−λτ
¤ − τ

λ

= − 1
λ2
− τ

λ
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where (14) is used from the first step to the second step. Therefore inserting

λ = iω+ with ω = ω+ or ω = ω− and taking the real part gives

Re

"µ
dλ

dτ

¶−1
λ=iω

#
= Re

∙
1

ω2
− τ

iω

¸
=
1

ω2
> 0.

The last inequality implies that the crossing of the imaginary axis is from left

to right at all critical values. Therefore stability is lost at the smallest critical

value τ+,0 and stability cannot be regained later.

Theorem 2 The stationary state of the delay MRS model (10) with τx = τy =

τ is locally asymptotically stable for τ < τ+,0 and unstable for τ > τ+,0. Fur-

thermore, it undergoes a Hopf bifurcation at τ > τ+,0 where τ+,0 is the smallest

critical value and defined as

τ+,0 =
π

2ω+
.

4 Two Delay Model

We now suppose that τk > 0 and τh > 0 and find all pure complex roots of the

characteristic equation of (12).3 We can also assume that λ = iω with ω > 0.

Substituting this solution into (12) presents the following form of the charac-

teristic equation,

P0(iω) + P1(iω)e
−iωτk + P2(iω)e−iωτh + P3(iω)e−iω(τk+τh) = 0 (16)

where
P0(iω) = −ω2,

P1(iω) = iδ(1− α)ω,

P2(iω) = iδ(1− β)ω,

P3(iω) = δ2 (1− α− β) .

Applying the method developed by Matsumoto and Szidarovszky (2018) based

on Lin and Wang (2012), we can derive the set of points (τk, τh) for which the

delay dynamic system (10) might lose stability. Equation (16) can be written

as

P0(iω) + P1(iω)e
−iωτk +

¡
P2(iω) + P3(iω)e

−iωτk¢ e−iωτh = 0. (17)

Since
¯̄
e−λτh

¯̄
= 1, equation (17) has solution if and only if¯̄
P0(iω) + P1(iω)e

−iωτk ¯̄ = ¯̄P2(iω) + P3(iω)e−iωτk ¯̄
3 It is possible to introduce two different delays into the Jones model. See Guerrini et al.

(2018).
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or equivalently, ¡
P0(iω) + P1(iω)e

−iωτk¢ ¡P̄0(iω) + P̄1(iω)eiωτk¢
=

¡
P2(iω) + P3(iω)e

−iωτk¢ ¡P̄2(iω) + P̄3(iω)eiωτk¢
where over-bar indicates complex conjugate. After some calculations, the last

equation can be rewritten as

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2Ak(ω) cosωτk − 2Bk(ω) sinωτk (18)

where the argument of Pi is omitted for the sake of notational simplicity and

Ak(ω) = Re
¡
P2P̄3 − P0P̄1

¢
and Bk(ω) = Im

¡
P2P̄3 − P0P̄1

¢
.

Using Pi(iω) for i = 0, 1, 2, 3, we can obtain

P2P̄3 − P0P̄1 = icω
£
δ2(1− β)(1− α− β)− ω2(1− α)

¤
.

Hence

Ak(ω) = 0

and

Bk(ω) = δω
£
δ2(1− β)(1− α− β)− ω2(1− α)

¤
.

The sign of Bk(ω) is indeterminate. Denoting the left hand side of equation (18)

by f(ω), we confirm solutions of (18), that is, f(ω) = −2Bk(ω) sinωτk. We first
examine the case of Bk(ω) = 0 and then proceed to the case of Bk(ω) 6= 0.

4.1 Case I: Bk(ω) = 0

Let ωk be the positive solution of Bk(ω) = 0,

ωk = δ

r
(1− β)(1− α− β)

1− α
> 0.

Substituting Pi(iω) for i = 0, 1, 2, 3 into f(ω) gives

f(ω) = ω4 + δ2(β − α)(2− α− β)ω2 − δ4(1− α− β)2.

Solving f(ω) = 0 for ω2 presents a positive solution,

ω2+ =
−δ2(β − α)(2− α− β) +

q
δ4(β − α)2(2− α− β)2 + 4δ4(1− α− β)2

2
> 0.

If α = β, then the critical value and the positive solution become identical,

ω2k = ω2+ = δ2(1− 2α) > 0

and if α 6= β, then ω2k 6= ω2+ since it is easy to see that f(ωk) 6= 0. Thus there
is no solution for τk since equation (18) is contradicted. On the other hand, if
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α = β, then fk(ω) = 0 for ω = ωk and the corresponding values of τh can be

obtained from equation (17) as

e−iωτh = −P0(iω) + P1(iω)e
−iωτk

P2(iω) + P3(iω)e−iωτk
(19)

where the absolute value of the right hand side is unity for all values of τk. Therefore

there are infinitely many solutions of τh because of trigonometric functions. A

locus of τk and τh satisfying (19) is called a crossing curve on which roots of

(17) cross the imaginary axis when τ i changes and τ j is fixed (i, j = k, h, i 6= j,).
Since the zero solution of (11) is locally asymptotically stable in case of no delays

and stability with positive delays could depend on their lengths, there might be

a curve on which the stability of the steady state changes.

An explicit form of τh satisfying equation (19) is derived as follows. Due to

the Euler’s formula, (19) can be rewritten as

cosωτh−i sinωτh = ω2 − δω(1− α) sinωτk − iδω(1− α) cosωτk

δ2(1− α− β) cosωτk + i
£
δω(1− β)− δ2(1− α− β) sinωτk

¤ .
(20)

The right hand side is next developed. Multiplying the denominator and the

numerator of (20) by the conjugate of the denominator, the denominator, after

arranging the terms, becomes

D = δ2
£
δ2(1− α− β)2 + ω2(1− β)2 − 2δω(1− β)(1− α− β) sinωτk

¤
.

The new numerator can be denoted by M + iN where the real part is

M = − (δω)2 αβ cosωτk
and the imaginary part is

N = −δω ©δ2(1− α)(1− α− β) + ω2(1− β)− δω [2(1− α− β) + αβ] sinωτk
ª
.

Comparing the left hand side of (20) with M/D + iN/D presents

cosωτh =
M

D
and sinωτh = −N

D
. (21)

The graphs of M/D and −N/D are illustrated for τk ∈
£
0, 20
√
3π/ω

¤
with the

benchmark parameter values of α = 1/3, β = 1/3 and δ = 1/10 in Figure 2.

The red M/D curve intersects the horizontal axis twice at which cosωτk =

0, implying that ωτk = π/2 at point B and ωτk = 3π/2 at point D,

τBk =
π

2ωk
' 24.72 and τDk =

3π

2ωk
' 81.62.

It is also seen that the blue −N/D curve intersects the horizontal axis twice at

which N = 0 or

sinωτk =
δ2(1− α)(1− α− β) + ω2k(1− β)

δωk [2(1− α− β) + αβ]

=
2(1− α)

√
1− 2α

(α− 2)2 − 2 < 1 for 0 < α <
1

2
.
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Since sinωτk takes the maximum value at ωτk = π/2, sinωτAk = 4
√
3/7 and

cosωτAk > 0 at point A and sinωτBk = 4
√
3/7 and cosωτBk < 0 at point

B, implying that

τAk =
1

ωk
sin−1

Ã
4
√
3

7

!
' 24.72 and τCk =

1

ωk

"
π − sin−1

Ã
4
√
3

7

!#
' 29.69.

Figure 2. Graphs of M/D (red) and −N/D (blue)

The interval [0, 2π/ωk] is divided into five subintervals by those points. It

is observed that cosωτh < 0 and sinωτh > 0 for τk ∈ (0, τAk ). Hence solving
cosωkτh =M/D and sinωkτh = −N/D for τh yields

τ ch(τk) =
1

ωk
cos−1

µ
M

D

¶
and τ sh(τk) =

1

ωk

∙
π − sin−1

µ
−N
D

¶¸
. (22)

where the superscripts c and s stand for cos and sin, respectively. In the same

way, cosωkτh < 0 and sinωkτh < 0 for τh ∈ (τAk , τBk ) that present

τ ch(τk) =
1

ωk

∙
2π − cos−1

µ
M

D

¶¸
and τsh(τk) =

1

ωk

∙
π − sin−1

µ
−N
D

¶¸
.

(23)

For τk ∈ (τBk , τCk ), cosωkτk > 0 and sinωkτk < 0 gives

τ ch(τk) =
1

ωk

∙
2π − cos−1

µ
M

D

¶¸
and τ sh(τk) =

1

ωk

∙
2π + sin−1

µ
−N
D

¶¸
.

(24)

For τk ∈ (τCk , τDk ), cosωhτk > 0 and sinωhτk > 0 generating

τ ch(τk) =
1

ωk
cos−1

µ
M

D

¶
and τ sh(τk) =

1

ωk
sin−1

µ
−N
D

¶
. (25)
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Finally, we have cosωhτk < 0 and sinωhτk > 0 for τk ∈ (τDk , 2π/ωk) in which
case the signs of the trigonometric functions are the same as in the first case.

Hence, from (22)

τ ch(τk) =
1

ωk
cos−1

µ
M

D

¶
and τ sh(τk) =

1

ωk

∙
π − sin−1

µ
−N
D

¶¸
. (26)

Since τsh(τk) = τ ch(τk) holds for any τk ∈ [0, 2π/ω], the solution can be denoted
by τh(τk).

The locus of (τk, τh(τk)) for τk ∈ [0, 2π/ω] constructs the crossing curve in
Case I that is illustrated by two black-red curves in Figure 3. More precisely, the

upper convex-shaped curve consists of three segments, each of which is described

by the black segment (22), the red segment, (23) and the black segment, (24)

whereas the lower concave-shaped curve is described by the red segment (25)

and the black segment, (26). The results obtained are summarized as follows:

Theorem 3 If Bk(ω) = 0 and α = β, then the crossing curve is described by

the locus of (τk, τh(τk)) where

τh(τk) =
1

ωk
cos−1

µ
M

D

¶
for τk ∈ (0, τAk ) ∪ (τCk , τDk ) ∪ (τDk , 2π/ωk)

and

τh(τk) =
1

ωk

∙
2π − cos−1

µ
M

D

¶¸
for for τk ∈ (τAk , τBk ) ∪ (τBk , τCk ).

Figure 3. Crossing curve with Bk(ω) = 0 and α = β
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4.2 Case II: |Bk(ω)|2 > 0
We have already shown that Ak(ω) = 0 for any ω ≥ 0 and Bk(ω) 6= 0 for

ω 6= ωk. Then there exists ϕk(ω) such that

ϕk(ω) = arg
£
P2P̄3 − P0P̄1

¤
=

⎧⎪⎪⎨⎪⎪⎩
π

2
if Bk(ω) > 0 or ω < ωk,

3π

2
if Bk(ω) < 0 or ω > ωk,

implying that

sin [ϕk(ω)] =
Bk(ω)p
Bk(ω)2

= 1 and cos [ϕk(ω)] =
Ak(ω)p
Bk(ω)2

= 0.

Using these relations and the addition theorem, equation (18) can be reduced

to

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2
p
Bk(ω)2 cos [ϕk(ω) + ωτk] (27)

that can be rewritten as

|P0|2 + |P1|2 − |P2|2 − |P3|2
2
p
Bk(ω)2

= cos [ϕk(ω) + ωτk] ≤ 1.

Hence a sufficient and necessary condition for the existence of τk ≥ 0 satisfying
the above equation is¯̄̄

|P0|2 + |P1|2 − |P2|2 − |P3|2
¯̄̄
≤ 2

p
Bk(ω)2

or

F (ω) =
h
|P0|2 + |P1|2 − |P2|2 − |P3|2

i2
− 4Bk(ω)2 ≤ 0.

With the notation of x = ω2, the right hand side of F (ω) is reduced to the

following form,

F (x) = x4 + a3x
3 + a2x

2 + a1x+ a0 (28)

where the coefficients are defined as

a3 = −2δ2
£
(1− α)2 + (1− β)2

¤
,

a2 = δ4
n£
(1− α)2 − (1− β)2

¤2 − 2(1− α− β) [4(1− α)(1− β) + (1− α− β)]
o
,

a1 = −2δ6 (1− α− β)
2 £
(1− α)2 + (1− β)2

¤
,

a0 = δ8 (1− α− β)
4
.

The factored form of (28) becomes

F (x) =
¡
x− δ2

¢ ³
x− δ2 (1− α− β)

2
´
η(x) (29)

15



where

η(x) = x2 − δ2
h
(α− β)

2
+ 2(1− α− β)

i
x+ δ4 (1− α− β)

2
.

Solving F (x) = 0 yields four real solutions,

x1 = δ2 > 0,

x2 = δ2 (1− α− β)
2
> 0,

x3 =
δ2

2

∙
(α− β)

2
+ 2(1− α− β)− (α− β)

q
(α− β)

2
+ 2(1− α− β)

¸
,

x4 =
δ2

2

∙
(α− β)

2
+ 2(1− α− β) + (α− β)

q
(α− β)

2
+ 2(1− α− β)

¸
.

It is to be notice that η(0) > 0 and η0(0) < 0 implying x3 < x4 with η0(x3) < 0
and η0(x4) > 0 if α > β and the inequalities are reversed if α < β. In the

following, we suppose α > β only for the sake of convenience. It is clear that

x1 > x2 > 0 as 1 > α + β, α > 0 and β > 0 are already assumed. Further

substituting x1 and x2 into η(x) gives

η(x1) = 4δ
2αβ > 0 and η(x2) = 4δ

2αβ (1− α− β)
2
> 0.

The derivative of η(x) evaluated at x = x1 is

η0(x1) = δ2
£
2(α+ β)− (α− β)2

¤
> 0

where the inequality is due to

2(α+ β)− (α− β)2 > 2(α+ β)− (α+ β)2 = (α+ β)(2− α− β) > 0.

The derivative of η(x) evaluated at x = x2 is

η0(x2) = 2δ2(1− α− β)2 − δ2
£
(α− β)2 + 2(1− α− β)

¤
= −δ2 £2(1− α− β)(α+ β) + (α− β)2

¤
< 0.

Then

η(x1) > 0 and η0(x1) > 0 implying that x4 < x1

and

η(x2) > 0 and η0(x2) < 0 implying that x2 < x3.

Therefore we have

0 < x2 < x3 < x4 < x1.

Let ωi be a positive solution of xi = ω2, then

0 < ω2 < ω3 < ω4 < ω1.
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The interval union [ω2,ω3] ∪ [ω4,ω1] is denoted by Ω in which F (ω) ≤ 0.
Let us define ψk(ω) by

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2
p
Bk(ω)2 cos [ψk(ω)] (30)

or

ψk(ω) = cos
−1
"
|P0|2 + |P1|2 − |P2|2 − |P3|2

2
p
Bk(ω)2

#
.

Comparing the right hand side of (27) with that of (30) presents

τ±k,m(ω) =
1

ω
[±ψk(ω)− ϕk(ω) + 2mπ] . (31)

Returning to (16), we can see that it can be alternatively written as¡
P0 + P2e

−iωτh¢+ ¡P1 + P3e−iωτh¢ e−iωτk = 0. (32)

The similarity of (32) to (17) is clear. Hence, in the similar way to deriving

τ±k,m(ω), we can define the critical values of τh as

τ±h,n(ω) =
1

ω
[±ψh(ω)− ϕh(ω) + 2nπ] (33)

where

Ah(ω) = Re
£
P1P̄3 − P0P̄2

¤
= 0,

Bh(ω) = Im
£
P1P̄3 − P0P̄2

¤
= δω

£
δ2(1− α)(1− α− β)− ω2(1− β)

¤
,

ψh(ω) = cos
−1
"
|P0|2 − |P1|2 + |P2|2 − |P3|2

2
p
Bh(ω)2

#
and

ϕh(ω) = arg
£
P1P̄3 − P0P̄2

¤
=

⎧⎪⎪⎨⎪⎪⎩
π

2
if Bh(ω) > 0 or ω < ωh,

3π

2
if Bh(ω) < 0 or ω > ωh

with ωh being the positive solution of Bh(ω) = 0.

In case of Bh(ω) = 0, we solve (32) to have

e−iωτk =
P0 + P2e

−iωτh

P1 + P3e−iωτh
. (34)

Two remarks should be addressed. First, as in the same way as to derive τh(τk)

from equation (19), we can obtain τk(τh) and the crossing curve (τk(τh), τh)

from equation (34). Secondly, noticing that (19) and (34) are different equa-

tions derived from the same equation (17), we can see that the crossing curve
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(τk(τh), τh) is identical with the crossing curve (τh(τk), τk). In case of Bh(ω) 6=
0, we can define critical values of τh. To define ψh(ω), we need a condition

similar to F (ω) ≤ 0, that is,

G(ω) =
h
|P0|2 − |P1|2 + |P2|2 − |P3|2

i2
− 4Bh(ω)2 ≤ 0.

Since it can be shown that F (ω) = G(ω), solutions of F (ω) = 0 and G(ω) = 0

are identical.

Under Assumption 1, we have

ωk = ωh = ω3 = ω4 = δ
√
1− 2α.

Hence, for ω < ωk = ωh, ϕk(ω) = ϕh(ω) = π/2. The blue and red curves in

Figure 4 are the stability switching curves and described, respectively, by³
τ+k,0(ω), τ

−
h,1(ω)

´
for ω ∈ [ω2,ω3]

and ³
τ−k,0(ω), τ

+
h,1(ω)

´
for ω ∈ [ω2,ω3].

In the same way, for ω > ωk = ωh, ϕk(ω) = ϕh(ω) = 3π/2. The green and

orange curves are also the stability switching curves and described, respectively,

by ³
τ+k,1(ω), τ

−
h,1(ω)

´
for ω ∈ [ω4,ω1]

and ³
τ−k,1(ω), τ

+
h,1(ω)

´
for ω ∈ [ω4,ω1].

As can be seen in Figure 4, these curves construct an egg-shaped closed curve.

Since equations (31) and (33) indicate that m is a horizontal shift parameter

and n is a vertical shift parameter, increasing the value of m shifts the closed

curve rightward and increasing the value of n shifts the closed curve upward.

The result obtained so far is summarized as follows:

Theorem 4 From (31) and (33), the following pairs of delays,n³
τ±k,m(ω), τ

∓
h,n(ω)

´
| ω ∈ Ω

o
construct the set of all crossing curves on the (τk, τh) plane for equations (10).
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Figure 4. Crossing curve with Bk(ω) 6= 0 and α = β

The stability switching curve under Assumption 1 is obtained by placing

Figure 3 over Figure 4 which is illustrated in Figure 5(A). It has been confirmed

that the stationary point without delays is locally asymptotically stable. Hence

the stability region is the region including the origin (i.e., τk = τh = 0) and

surrounded by the two black, orange and green curves. The real parts of the

characteristic roots are negative for τk and τh in the stability region. If a pair of

the delay is selected from this region, then the steady state of the delay system

(10) is locally asymptotically stable. If the pair crosses one of the boundary

segments, then the real parts of one pair of characteristic roots become positive

and thus the stationary state loses stability. The boundary of the stability region

is called the stability switching locus. The stability region and the switching

curve without Assumption 1 is also numerically illustrated in Figure 5(B) in

which α = 3/10 and β = 1/3. The stability region is surrounded by the blue,

orange and green curves. It can be seen that the symmetric stability region in

Figure 5(A) is distorted by the asymmetry of α and β. The dotted horizontal
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lines are referred in Section 5.

(A) α = β (B) α < β

Figure 5. The stability switching curves

5 Numerical Simulations

We numerically justify the validity of the analytical results obtained in the

previous sections. We mainly perform numerical simulations with the symmetric

parameter values,

α = β = 1/3, δ = 1/10 and sh = sk = 1/3

and the asymmetric parameters,

α = 3/10 < β = 1/3, δ = 1/10 and sh = sk = 1/3.

Given initial values of physical and human capital and constant initial functions,

k(t) = k∗ + 0.1 and h(t) = h∗ + 0.1 for t ≤ 0,

we run the delay system (10) for 0 ≤ t ≤ T (T = 5, 000). k∗ and h∗ are
the steady state given in (6). The first numerical results are given in Figure

6 in which two bifurcation diagrams are represented, one with the symmetric

parameters α = β in Figure 6(A) and the other with the asymmetric parameters

α < β in Figure 6(B). The value of τk increases along the horizontal dotted line

at τh = 5π in both figures. In case of α = β, the dotted line crosses the stability

switching curve three times at points a0, a1 and a2 where the corresponding

values4 of τk are

τa0k = 5π ' 15.71, τa1k ' 30.32, τa2k ' 34.25.
4Returning to equation (21), we solve cos5πω =M/D for τk to obtain this critical value.
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It is seen that the steady state loses stability at point a0 and replaced with oscil-

latory behavior. However, oscillation rapidly increases and sooner or later loses

its economic meaning. When the value of τk gets closer to point a1, oscillation

rapidly disappears and the steady state regains stability. Further increasing the

value of τk leads to stability loss again at τk = τa2k and no stability regain occurs

for τk > τa2k . Qualitatively different bifurcation scenario is seen in Figure 6(B)

in which the stability loss takes place at point a0 with τ
a0
k = 5π and oscillations

emerge for larger values of τk. If we increase the value of the delay along the

diagonal in Figure 6(A), then we obtain a numerical example generated by one-

delay model (10) with τk = τh. In the same way as described in Figure 6(A),

the steady state of the one-delay model loses stability at point a0 and becomes

unstable for larger values of the common delay because the critical value of the

delay in Theorem 3 is, under the symmetric parameters,

τ+,0 =
π

2ω+
= 5π with ω+ = δ =

1

10
.

.

(A) α = β (B) α < β

Figure 6. Bifurcation diagrams

In the second example, we examine what dynamics emerges for τk ∈ (τa0k , τa1k )
with τh = 5π. For τ

19
k = 19 in Figure 6(A), a trajectory starting in the neigh-

borhood of the steady state is oscillatory and moves away. In consequence,

either k(t) or h(t) might take a negative value, implying the loss of economic

meaning. This is because the model has only weak nonlinearities that are not

enough for preventing trajectories from being negative. One divergent example

is given in Figure 7 in which the trajectory takes h(t) ' 0.0097 at t = 1883.22
and h(t) ' −0.015 at t = 1883.23. It is numerically confirmed that the delay

model (10) generates infeasible global dynamics for any τk in the first unstable
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interval.

(A) Phase diagram (B) Time trajectory

Figure 7. Divergent dynamics with τk = 19 and τh = 5π

The third example concerns with the birth of a bounded limit cycle for

τk > τa2k . Figure 8(A) illustrates a bifurcation diagram with respect to τk for

τk ∈ (34, 42.7), the second unstable interval, in which the delay model gives
rise to a limit cycle when the stability is lost. It is also numerically confirmed

that the model generates negative dynamics for τk > 42.7 so there is no need

for further simulations. In Figure 8(B), the birth of a limit cycle is seen in the

(h, k) plane when τk = 38.

(A) Bifurcation diagram (B) Birth of a limit cycle

Figure 8. Emergence of limit cycles with τh = 5π and τk ≥ τa2k

In the fourth example, the value of τh is increased to 32 from 5π and the value

of τk is increased along the horizontal dotted line. The bifurcation diagrams is

given in Figure 9 in which the steady state is unstable for smaller values of τk,

gains stability at point b0 and loses stability at point b1. The corresponding

values of τk are

τ b0k ' 10.72 and τ b1k ' 16.29.
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It is seen that the limit cycles for τk < τ b0k are bounded which are economically

meaningful. However the limit cycles for τk > τ b1k are rapidly divergent and

therefore lose economic meaning.

(A) α = β (B) α < β

Figure 9. Bifurcation diagram along τh = 32

The last example is illustrated in Figure 10(A) which is a part of a bifurcation

diagram with respect to τk ∈ (38, 40.9) in the neighborhood of point c0 in
Figure 5, taking τh = 10. It is seen that complicated dynamics involving chaotic

oscillations emerges for larger values of τk.

(A) Bifurcation diagram (B) Phase diagram

Figure 10. Birth of complicated dynamics; τk = 40.8 and τh = 10

6 Concluding Remarks

A delay extended Solow model was developed in which a Cobb-Douglas pro-

duction function had three factors, physical capital, human capital and labor.

Output was used for investment in physical capital as well as for human capi-

tal and consumption. A crucial element of the model was the assumption that
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construction of the new capitals was delayed due to a gestation time in phys-

ical capital and a maturation time in human capital. A stability switching

curve on which stability is lost was analytically derived. The theoretical results

were numerically confirmed and the study suggests that the delays could be

source of endogenous fluctuations. One drawback of the model is that it could

not prevent unstable trajectories from being negative maybe due to insufficient

nonlinearities of the model.
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