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Abstract

The local and global asymptotical stability of equilibria of dynamic
economic systems is examined. After a survey of the most important
conditions is presented we introduce a new stability condition for discrete
systems, when the iteration map is only piece-wise differentiable. Some
examples of duopoly illustrate the theoretical findings.

1 Introduction

The long-term behavior of dynamic economic systems is one of the most impor-
tant problem areas in mathematical economics. In the case of continuous time
scales the asymptotic properties of trajectories of ordinary differential equations
are examined, while in the case of discrete time scales the solutions of differ-
ence equations are studied. There are many different methods known from the
literature in investigating the asymptotic properties of dynamic systems. In
the case of time-invariant linear systems the locations of the eigenvalues of the
coefficient matrix determine the stability properties of the system. If the linear
system is time variant, then the system is marginally stable if the fundamental
matrix is bounded, and if in addition the fundamental matrix converges to zero
as t — 00, then the stability is asymptotical. In the case of linear systems local
and global asymptotic stability are equivalent, however in the case of nonlinear
systems we have to distinguish between local and global asymptotical stability.
The most important results on the stability of linear systems can be found in
all textbooks of linear systems theory (for example, Szidarovszky and Bahill,
1998).

The literature on nonlinear systems is less extensive. For continuous sys-
tems the stability issues are discussed in many books on ordinary differential
equations (for example, Brauer and Nohel, 1969), for discrete systems the most
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relevant results are discussed, for example, in Gandolfo (1971), and La Salle
(1976).

The asymptotical stability of nonlinear systems can be examined by several
methods. The most common methodology is based on the different applications
of the Lyapunov method. This approach is very useful in many cases however
finding an appropriate Lyapunov function is usually a difficult problem, and
the failure of finding a Lyapunov function does not prove the instability of the
system. Local asymptotic stability can be shown by locating the eigenvalues
of the Jacobian or by bounding the norm of the Jacobian at the equilibrium.
There was an intensive research on extending the local asymptotical stability
conditions into global stability and relaxing the sufficient conditions as much as
possible. Parthasarathy (1983) gives an excellent background of this problem
area in the continuous case, and Cima et al. (1999) discuss its discrete time
scales counterpart.

In the classical mathematical literature there are several alternative stabil-
ity conditions which guarantee global asymptotical stability of dynamic systems.
More recent publications introduce more simple and more general stability con-
ditions which could be very useful in economic studies.

In this paper we will give a brief overview of the current state of this research
field. We will also present an extension of stability conditions to discrete system
with piece-wise differentiable maps.

2 Stability conditions using norms

Consider first the one-dimensional discrete system

2t +1) = f(a(b))

where f: D — R is a continuously differentiable function and D is a (finite or
infinite) interval. Let Z € D be a fixed point of map f, that is, T = f(Z). The
following results are well known from numerical analysis:

Fact 1. Assume that |f'(Z)| < 1, then z(t) — % as t — oo if 2(0) is selected
sufficiently close to Z.

Fact 2. Assume that for all x € D, | f'(z)| < ¢ < 1 with some constant ¢, then
z(t) — = as t — oo with arbitrary z(0) € D.

Notice that in the case of Fact 1 only local convergence to the equilibrium
is guaranteed based on only local information on the derivative, while Fact 2
guarantees global convergence based on global information on this derivative.

In multidimensional case the derivative f’(x) is replaced by the Jacobian
matrix, and naturally the absolute value of the derivative is replaced by the
norm of the Jacobian. Consider therefore the n-dimensional system

a(t+1) = £ (2(t))



where f : D — R™ is a continuously differentiable function and I is a convex
subset of R™. Let Z € D be a fixed point of map f, and let J(z) denote the
Jacobian of f at x. The following results are well known from systems theory:

Fact 3. Assume that with some matrix norm ||J(Z)|| < 1. Then z(t) — Z as
t — oo if 2(0) is selected sufficiently close to Z.

Fact 4. Assume that ||J(x)|| < ¢ < 1 for all € D, where ¢ is a constant.
Then z(t) — & as t — oo with arbitrary «(0) € D.

These results are the most frequently used sufficient stability conditions to
prove local or global asymptotic stability of the equilibrium. If a given matrix
norm is greater than one, it does not prove instability, since there is the pos-
sibility that by selecting another norm stability still can be proved. The most
commonly used matrix norms are as follows. Let a;; denote the (7, ) element
of an n X n matrix A. Then

n
A = max a;;| (column norm 1
A2 : ; lai;| ( ) (1)
[|Allco = max Z la;j|  (row norm) (2)
[ =

[All2 = mkaX\//\Ef;A (Euclidean norm) (3)

where the eigenvalues of AT A are AE::;A (k=1,2,...,n).

Example 1. As a simple example consider matrices
0.8 0.8 0.8 0 0.51 0.51
Al_(o o)’AQ_ <0.8 o)’ andA3_<o.51 0 )
Then clearly

|A1]]1 = 0.8 |[|Ailleo =1.6 ||A1]l2=0.8-v2~1.13
Al = 1.6 [|Az|le = 0.8 ||A2|lz=0.8-v2~1.13

and

Al = 1.02 [|As]|eo = 102 [|As]]s = 0.51 - /355 ~ 0.825.

Notice that in each case only one norm is below 1, the other two norms are
greater than one. v

In many economic models function f is only piece-wise differentiable on
D because of nonnegativity conditions on production levels and prices as well
as presence of capacity limits. The above mentioned Facts 3 and 4 cannot
be applied in such cases without further consideration. If f is continuously
differentiable in a neighborhood of Z, that is, Z is in the interior of a subregion
of I in which f is continuously differentiable, then Fact 3 can be used to prove



local asymptotical stability. However if Z is on the boundary between two
subregions, then the Jacobian usually does not exist at Z, so this result cannot
be applied. Fact 4 assumes the existence of J(z) for all & € D, which is not the
case if f is only piece-wise differentiable. With some additional considerations
we can however extend these results.

Assume now that D is convex in R” and it is the union of sets D), D®) .
with mutually exclusive interiors. Assume furthermore that f is continuous on
D and its restriction f ®) on DK g continuously differentiable in the interior of
D®) (k=1,2,...). Assume in addition that one of the following two conditions
hold:

(A) For all k, there is an open set containing D*) such that f(k) can be
extended to it, and f (%) remains continuously differentiable there. Assume
also that for the linear segment connecting  and any x € I there are
finitely many values 0 = t9 < t; < -+ < tg(z) = 1 such that all points of
the linear segment connecting Z + ¢;(x — &) and Z + t;41(x — ) belongs
to the same D) (1 =0,1,..., K(z) — 1).

(B) For all linear subsegments connecting Z + ¢;(z — Z) and Z + t;+1(x — &)
defined in the previous assumption there are sequences {u;} — & +t;(z —
z) and {v;} — Z + t;31(x — Z) as i — oo such that the entire linear
segment connecting w; and v; is in the interior of D®*V) for all i.

Assume finally that there is a constant ¢, such that for all k£, and for all
z € D® (under assumption (A)) or € int D*) (under assumption (B)),
[|[T® (2)]] < ¢ < 1, where T is the Jacobian of f*.

Theorem 1 Under the above conditions x s the only equilibrium and it is
globally asymptotically stable.

Proof. For all z € D,

K(x)—1
If@) -2 = [If@)-f@l=| Y. F@+tn(z—17)-f(@+tu(z-2)
=0
K(x)—1 tiet
< ) / J(kl)(:f:—i—t(:c—:i))(m—:i)dtH
1=0 t
K(x)—1 1
< /t J<kl>(@+t(w—:ﬁ))H-||a:—5:||dt
1=0 “t
K(xz)—1
< g llz—2 Y (i —t)=q-llz—2|.
=0

Therefore for ¢t > 1,



which converges to zero as t — co. The uniqueness of the equilibrium is a simple
consequence of this convergence. ]
We will show some applications of this theorem in Section 4.
Local asymptotic stability is guaranteed, if the conditions of the Theorem
are true with ID replaced by a neighborhood of the equilibrium that contains the
equilibrium in its interior.

3 Stability conditions using eigenvalues

Consider first the discrete system (2).

It is well known that if all eigenvalues of an n X n matrix A are inside the
unit circle, then there is a matrix norm such that ||A|| < 1 (see for example,
Ortega and Rheinboldt, 1970). This observation and Fact 3 imply the following
result:

Fact 5. Assume f is continuously differentiable in a neigborhood of Z and all
eigenvalues of the Jacobian J(Z) are inside the unit circle then Z is locally
asymptotically stable.

In the case of time invariant linear systems the Jacobian is the constant
coefficient matrix, and in this case the condition of the theorem is sufficient
and necessary. In the case of nonlinear systems this result gives only sufficient
conditions, since if some eigenvalues have unit absolute values and all others are
inside the unit circle, then the system can be unstable, or marginally stable, or
even globally asymptotically stable as it is shown in the following examples:
Example 2. Consider system

z(t+1) = (é }) 2(t)

with both eigenvalues being equal to one. There are infinitely many equilibria:
T1 = arbitrary and T, = 0. It is easy to see that

2(t) = ((1) Dtm(()) _ (é f) 2(0)

which show that if x2(0) # 0, then z1(¢) converges to +0co or —oo so the system
is unstable.
Consider next the one-dimensional system

z(t+1) = —z(¢)

with eigenvalue -1. Clearly, z(t) = (—1)'z(0), so the zero equilibrium is only
marginally stable.
And finally consider again a one-dimensional system

a(t+1) = z(t)e ="



Notice that x(0) > 0 implies that for all ¢, 0 < z(t + 1) < z(¢) and if 2(0) < 0,
then z(t) < z(t+ 1) < 0. Hence x(t) is monotonic and bounded, so convergent.
Letting ¢ — oo in the systems equation implies that the limit equals zero,
which is the unique equilibrium of the system. Hence the system is globally
asymptotical stable. v
The extension of Fact 4 in terms of the eigenvalues of the Jacobian is not
true in general. If the eigenvalues of J(x) for all & € D are inside the unit
circle, then for all € D there is a matrix norm such that the norm of J(z) is
below one, however this norm is usually different for different values of . The
following example gives a general n-dimensional discrete system in which the
eigenvalues of J(x) are inside the unit circle even there is a constant ¢ € [0, 1)
such that the absolute values of the eigenvalues of J(z) for all € R™ are less
than ¢, and the system is not globally asymptotically stable (for more details
see Cima et al., 1999).
Example 3. Consider the n-dimensional system (1) with

ka3 ka3 1 1 T

where k € (1, %) This function is continuously differentiable in R", £ = 0 is

a fixed point and it has the following properties:

(a) The eigenvalues of the Jacobian are Ay = Ay =0, A3 = --- = )\, = % if
x1x2 = 0, otherwise A1 and Ao are complex with absolute values less than
Bl <land \g=-- =\, = 3;

4 1 _ 1
(b) f (ﬁ,O,-.-,O)—(ﬁ,O7...,O). v

In an important special case however such counter example cannot be found,
as the following results state (see Cima et al., 1999).

Fact 6. Assume that f : R™ — R™ is a continuously differentiable triangular
map, that is,

f(x) = (fi(x1), fo(wr,22),. .., ful@r, @2, ..., 20))

Let Z be an equilibrium of system (2) and assume that the absolute values
of the eigenvalues of J(x) are less than one for all € R™. Then Z is
globally asymptotically stable.

Fact 7. Let f : R? — R? be a polynomial map with all eigenvalues of J(x)
having absolute values less than one for all £ € R?. Then system (2) has
a unique equlibrium that is globally asymptotically stable.

The following example (see Cima et al., 1997) shows that Fact 7 does not
hold for all higher dimensional systems.



Example4. Assume now that

1 1 1 1 \7*
f(z)= <§$1 + 1133d(115)27 5332 - d(m)Qv 5333, ceey §$n)

with d(z) = x1 + x2x3. This is clearly a polynomial map with zero fixed point
and it satisfies the following properties:

(a) For all € R", the eigenvalues of J(x) are equal to 3;

(b) Tf £(0) = (42, -6 0,...,0)", then for t > 1,

320 32>
147 63 1\* !
:c(t):<3_2.2t,_3_2.2t, <§> ,0,...,0) ,

so the system is unstable. v

The following statement gives a sufficient condition for the instability of the
equilibrium

Fact 8. Assume that at least one eigenvalue of J(Z) has absolute value larger
than one. Then T is unstable.

A simple elementary proof of this result is given in Li and Szidarovszky
(1999).
We now turn our attention to the continuous system

&= f (),

where f : D — R™ with D C R". Assume that Z is an equilibrium of this
system, which is in the interior of D.
The continuous counterpart of Fact 5 can be given as follows.

Fact 9. Assume f is continuously differentiable in a neighborhood of Z and all
eigenvalues of J(Z) have negative real parts. Then Z is locally asympto-
cally stable.

Similarly to the discrete case, this condition is sufficient and necessary for
time invariant, linear systems. However in the case of nonlinear systems the
above condition is only sufficient, since if some eigenvalues have zero real parts
and all other eigenvalues have negative real parts, then the system can be un-
stable, or marginally stable, or even globally asymptotically stable, as it is
illustrated in the following examples.

Example 5. Consider first the two-dimensional system

ci:*()lm
~\0 0



where the equilibrium is Z; = arbitrary and To = 0. Both eigenvalues of the
Jacobian are equal to zero, and it is easy to see that

1t
o) = (o 1) =0
so the system is unstable.

Consider next the one-dimensional system
=0

with zero eigenvalue. Then all solutions are constant, the equilibrium is any
real number and all are marginally stable.
Consider finally the system

&= -z’
where T = 0 is the only equilibrium, and the eigenvalue is zero at T = 0. This
equation is separable, so it can be easily solved:

z(0)
V14 2tx(0)2

Clearly with x(0) # 0, (t) — 0 as t — oo showing the global asymptotical

stability of the equilibrium. v
The extension if Fact 9 to global asymptotical stability is true only in the

two-dimensional case (see Gutierrez, 1995; Fernandes et al., 2004).

a(t) =

Fact 10. Assume that f : R? — R2 is differentiable and Z is an equilibrium
of system (7). Assume furthermore that for all & € R, the eigenvalues if
J(x) have negative real parts. Then Z is globally asymptotically stable.

This result however is not true in higher dimensions as the following example
shows.
Example 6. Let

Fl@) = (a1 + 23d(2), —23 — (@), ~3, ..., —1) "

with d(x) = z1 + x2x3 as in Example 4. It is easy to see that the eigenvalues of
J(z) are equal to —1 for all z € R™, and

r1(t) = 18¢€!, 2o (t) = —12e*  23(t) = - = 2,(t) =0

is a solutions of system (7) which shows that the zero equilibrium cannot be
globally asymptotically stable. v

The continuous counterpart of Fact 6 remains valid for continuous systems
(see Markus and Yamabe, 1960).



Fact 11. Assume that f : R” — R" is a continuously differentiable triangular
map such that for all 7 and = € R", %I%(:B) < 0. Then the equilibrium of
system (7) is globally asymptotically stable.

Another useful sufficient condition is the following (see Markus and Yamabe,

1960).

Fact 12. Assume f : R” — R"” is continuously differentiable, and for all x €
R", M (z) = J(z)+J(x)7 is negative definite. Assume furthermore that
there are positive constrants «a and § such that

| Trace M ()| < o and | Det M (z)| > .

Then Z is globally asymptotically stable.
Similarly to the discrete case, a simple sufficient instability condition is
given in the following result.

Fact 13. Assume f is continuously differentiable in a neighborhood of &, and
at least one eigenvalue of J (Z) has positive real part. Then Z is unstable.

4 Stability of special duopolies

It was earlier mentioned that if the eigenvalues of a matrix are inside the unit
circle, then there is a matrix norm such that the norm of the matrix is below
unity. In the 2-dimensional case for a large group of such matrices a very special
type of norm can be selected. Assume that all eigenvalues of matrix

a b
A= (0 )
are inside the unit circle. The characteristic polynomial of A is given as p(\) =

(a—=X)(d—=X) —be= X\ — X\a+d) + (ad — bc), so the matrix elements satisfy
relations (see for example Bischi et al., 2009)

t(a+d)+(ad—bc)+1 > 0
ad—bc < 1. (4)

()

with > 0, and consider the row norm of A generated by matrix T

a br
< d

This is below unity, if |a| < 1,|d| < 1, furthermore

Select a diagonal matrix

||TAT1|OO=\

- max{|a ol 1 d} .

xT

o] + [blz < 1 and 1 1 jq < 1,

X



which occurs if and only if

<] 1 —a|
<z < . (5)
1 —1|d] 14

Suitable x exists, if
|be| < (1= la])(1 — |d])

or
—(la| + |d|) + |ad| — |bc] +1 >0

which is consequence of the first condition of (8) if ad > 0 and bc > 0. Hence
we have the following result.

Fact 14. Assume |a| < 1,|d| < 1,ad > 0 and bc > 0. Assume furthermore that
the eigenvalues of matrix A are inside the unit circle. Then there is a row
norm generated by a diagonal matrix with positive diagonal, such that
the norm of A and that of all other matrices which can be obtained from
A by decreasing the absolute value of at least one of its elements, are all
less than unity.

Consider first a duopoly with linear cost and price functions. Then the profit
of firm k has the form

op(x1,22) = x(A — Bxy — Bag) — (cpzr + di;)

where all coefficients are positive. Assume that both firms have finite capacity
limits, so 0 < zp < Ly for kK = 1,2. The best response of firm k& is

0 if gy > Az
Ri(z)) = Ly if o < Ek;;i&

A—cp—Bzx f
S===5 otherwise

with | # k. By assuming partial adjustment to best responses, the dynamic
system can be written as follows:

rp(t+1) = 2p(t) + o - (Re (2(t)) —2x(t))  (B=1,2).

Notice that the value of R}, is either —1 or 0 in the different segments, so
the four possible Jacobians are

170{1 7% 1*0[1 0 1*0&1 *% nd 1*041 0
—w o)\ —2 1-a)0\ 0 1-ay) ® 0 l-ay)

It is always assumed that 0 < «ap < 1, so the first matrix satisfies the
condition of Fact 14 on the matrix elements. The eigenvalues are inside the unit

circle if and only if
Q109

(1—041)(1—042)— <1,
£(2— a1 —as) + (1 — o)1 — as) — 0‘140‘2 +1>0.

10



The first inequality is clearly satisfied, the second is true with both positive
and negative signs if

3
—(2—0&1—0&2)4-1—0[1—OZ2+1041042+1>0

or

1051042 >0

which always holds. Hence all conditions of Fact 14 are satisfied, consequently
system (11) is globally asymptotically stable.

Assume again linear price function but quadratic costs. The payoff of firm
k is now as follows:

op(x1,22) = 2 (A — Bxy — Brg) — (cpay + dkxi)

If B4+di > 0 for k = 1,2, then ¢, is strictly concave in xy, so the best response
of firm k is given as

0 if 2, > A—cp

Rip(z)) =4 L if 2, < %W
A—cp—Bzx :
_A—L2(B+dk;) otherwise.

By assuming again partial adjustment to best responses (dynamic equations
(11)), the four possible Jacobians are

a1 B a1 B
1-— 61131 T(B1d) < 1- o 0 ) <1 — o —72(31%1)) and <1 — o
e} ’ Q2 ’
~XWBrd) L2 “XBra) LT 0 1—an 0
The first matrix satisfies the conditions of Fact 14 concerning the matrix
elements. The eigenvalues are inside the unit circle if and only if

0[10£2B2
1— 1-— — <1,
N [V E AR A
a1 B?
+(2—a; — 1-— 1-— — 1>0.
The first inequality is clearly satisfied, and the second holds if
B2
24+t at+tl-—a—ar+oaz|1l— +1>0
1 2 1 2 1 2( 4(B—|—d1)(B+d2)>

which is valid if
B? < 4(B+d1)(B + da).

Hence under this condition the equilibrium is globally asymptotically stable.

Let’s turn our attention to general concave duopolies. Let p be the price
function and C} the cost function of firm k. It is assumed that these functions
are twice continuously differentiable and

11

1—0[2

).



a) p’ <0;
b) p’ + xpp” < 0;
) p—Cl <0

for all feasible values of the relevant variables. It is known from oligopoly
theory that in the case of finite capacity limits the best response of firm k is as
follows:

0 if p(ar) — C4(0) <0

Rk(l‘l) = Ly ifp(x;+ Ly) + Lkp/(xl + L) — C;/C(Lk) >0
xy, otherwise

where 7, is the unique solution of the monotonic equation
p(z; + zg) + 2pp’ (21 + 21) — Ch(z5) =0

inside interval (0, Lg). By implicite differentiation it is easy to see that in the
case of interior best response

—-1< R;C(ivl) <0

and in the first two cases R} (z;) = 0. By assuming dynamic equations (11), the
Jacobian has again four possibilities

1-— (e73] OélR/l 1-— aq 0 1-— aq OélRll d 1-— (e73] 0
OCQRIQ 1*0&2 ’ OéQR/Q 1*052 ’ 0 1*0[2 an 0 1*0&2 ’
We will prove by using Fact 14, that there is a row-norm generated by a diagonal
matrix with positive diagonal such that the norms of these Jacobians are below a
constant ¢ < 0 on the entire region. Since the feasible region and all subregions
are compact, there are constants r1,79 such that —1 < —r; < Rj(x2) < 0
and —1 < —rg < R5(z1) < 0 everywhere in the feasible region (except on the
boundaries between the subregions). Consider a diagonal matrix T = diag(z, 1),
then in the first case

11—y oRiz
1 1
TJ(z)T = < wRy

x

The row norm of the first Jacobian generated by matrix T is

max{l — a1 +az|Ry;1 — s + %|R'2|} < Inax{l —aq +ogar;l —oag + OQTQ} =qg<1
x x

if
1
ro < xr < —.
1
Feasible x can be found if ro < % or r1ry < 1, which is obviously true. Hence
the equilibrium of a concave duopoly is always globally asymptotically stable,
since if any one or both R}, is replaced with zero, the norm can only decrease,

so it will always remain under q.

12
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