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1 Introduction
In recent year an increasing attention has been given to the periodic and aperi-
odic behavior of systems that can be described by delay differential equation (see
for example, Bélair and Mackey,1989 and Invernizzi and Medio, 1991). With
the infinite dimensionality created by delays, even a single first-order equation
is transformed into an equation with a sufficient number of degrees of freedom
to permit the occurrence of chaotic phenomena (e.g., see an der Heiden and
Mackey (1982)). This finding indicates that delay models of a dynamic econ-
omy may explain various complex dynamic behavior of the economic variables.
It also indicates that in modelling firm’s dynamic behavior, it is necessary and
essential to consider time delays inherent in phenomena like information and
implementation delays. In spite of this, it is usually assumed that the economic
agents have instantaneous information about their own behavior and also on
the competition’s behavior mainly due to mathematical convenience.
In constructing dynamic economic models, the most common processes are

based on either the gradients of the profit functions or the best replies of the
agents. Time delays can be modeled in two different ways: fixed time delay
and continuously distributed time delays. Chiarella and Khomin (1996) and
Chiarella and Szidarovszky (2001) examine delay differential oligopolies with
best replies by using continuously distributed time delays. Howroyd and Russel
(1984) detect the stability conditions of delay output adjustment processes in
a general N -firm oligopoly with fixed time delay. In the case of the gradient
method, we mention the works of Bischi and Naimuzada (1999) and Bischi and
Lamantia (2002) for discrete oligopoly dynamics without time delays and the
works of Puu (2003) and Ahmad et al. (2000) for discrete monopoly dynamics
with time delays. Recently, Matsumoto et al. (2009) introduce the gradient
method into delay differential Cournot models and investigate their dynamics
under both fixed and continuously distributed time delays. Although it has
been shown by Ahmad et al, (2000) that delay increases stability and by Puu
(2000) that chaos can emerge in delay discrete monopoly, dynamics of a delay
differential monopoly with the gradient method has not yet been revealed in
the existing literature. The main purpose of this study is to demonstrate the
possibility of the birth of limit cycles in such a delay differential monopoly with
the gradient method.
The paper is organized as follows. Section 2 constructs a basic monopoly

model with linear price and cost functions and then introduces time delay into
the basic model provided that the speed of adjustment is constant. Section 3
discusses a nonlinear extension of the basic model by adopting the growth rate
adjustment process. Section 4 concludes the paper.

2 Delay Linear Monopoly
Dynamics in a monopoly model with delays is considered. The model is simple
and standard but suffices to bring out cyclic fluctuations in output production.
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Let q be the output produced by a monopoly firm with a unit production cost,
c. The price function is assumed to be linear

f(q) = a− bq, a > 0 and b > 0.

Then the profit of the monopoly firm is given by

π = (a− bq)q − cq.

The optimal output that maximizes the profit is obtained from the first-order
condition for an interior solution,

qM =
a− c
2b

where a > c is assumed for the positive equilibrium output. In the text book
model, it is usually implicitly assumed that the monopoly firm has full informa-
tion on the entire demand curve. As a result, such a monopoly firm can jump to
the profit maximizing output. The more recent literature of dynamic processes
raises doubts on the assumption of full rationality and adopts bounded ratio-
nality in a sense that a monopoly firm has only limited or partial information
on the demand curve. Under such a circumstance, a more racialistic approach
is to formulate the dynamic process with the gradient method:

q̇ = α(q)
dπ

dq
(1)

where α(q) is a positive function that gives the adjustment of the firm. Ac-
cording to (1), the firm changes its quantities at a rate proportional to the
marginal profit. In constructing best response dynamics global information is
required about the profit functions, however in applying gradient dynamics only
local information is needed. We start with a simple case and assume a constant
adjustment coefficient in (1):

Assumption 1. α(q) = α > 0.

The gradient dynamics with a fixed time lag τ > 0 under Assumption 1 is
presented by

q̇(t) = α [a− c− 2bq(t− τ)] . (2)

Introducing the new variable x(t) = q(t)− qM reduces (2) to

ẋ(t) = −γx(t− τ) with γ = 2bα > 0, (3)

which is a first-order delay linear equation with a trivial solution x(t) = 0 (or
q(t) = qM ) for all t ≥ 0. If there is no time lag, equation (3) generates a solution,
x0e
−γt, that converges to the trivial solution as t approaches infinity. Even in

the case of the delay equation, substituting the exponential solution x(t) =
x0e

λt into (3) and then arranging terms yields its corresponding characteristic
equation

λ+ γe−λτ = 0. (4)
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By continuity, it can be supposed that (3) is stable for a small value of τ . As the
length of the delay changes, the stability of the trivial solution may also change.
Such phenomena is referred to as a stability switch. In order to understand the
stability switches of system (3), it is crucial to determine a threshold value of τ
at which (4) has a pair of conjugate pure imaginary roots. It is clear that λ = 0
is not a solution of (4). We then assume without loss of generality thatλ = iυ,
υ > 0, is a root of the transcendental equation and write the real and imaginary
parts as follow:

γ cos υτ = 0

and
υ − γ sinυτ = 0.

Adding up the squares of both equations yields υ2 = γ2 from which we obtain

υ = γ.

The characteristic equation is a function of the delay τ , and hence the roots of
the characteristic equation are also functions of the delay. Differentiating the
characteristic equation with respect to τ yields

(1− γτe−λτ )
dλ

dτ
= γλe−λτ .

which is reduced toµ
dλ

dτ

¶−1
=
1− γτe−λτ

γλe−λτ
and from (4), e−λτ = −λ

γ
.

Thus

Re

"µ
dλ

dτ

¶−1#
=
1

υ2
> 0.

This inequality implies that all roots that cross the imaginary axis at iυ cross
from left to right as τ increases. From the characteristic equation for λ = iυ,

cos υτ = 0

and
sin υτ =

υ

γ
= 1.

There is a unique υτ ∈ (0, 2π] such that υτ satisfies both equations, υτ = π/2.
We denote the threshold value of τ as

τ∗ =
π

2γ
' 1.57

γ
. (5)

This result is summarized as follow:
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Theorem 1 System (3) has a threshold value τ∗ of delay: the stationary point
is asymptotically stable when 0 < τ < τ∗ and it is unstable when τ > τ∗ where

τ∗ =
π

2γ
.

Theorem 1 deals with the case in which the monopoly firm uses a small
neighborhood of one point on the demand curve to determine its dynamic be-
havior. It implies that a small delay does not violate stability of the system
but a larger delay might destabilize it. We will next examine stability if the
monopoly firm determines its rate of the output change by taking into account
realized outputs at time periods, t − τ1 > 0 and t − τ2 > 0. The dynamic
equation having two time delays depends on the linear combination of the past
outputs,

q̇(t) = α [a− c− 2b (wq(t− τ1) + (1− w)q(t− τ2))] (6)

where w (∈ (0, 1)) and 1 − w are the weights of the past outputs. We assume
that w ≥ 1− w, that is, more weight is given to the more recent output1. The
introduction of variable x(t) = q(t)− qM again reduces equation (6) to

ẋ(t) = −γ[wx(t− τ1) + (1− w)x(t− τ2)]. (7)

Looking for a solution x(t) = x0eλt yields the characteristic equation

λ+ γwe−λτ1 + γ(1− w)e−λτ2 = 0.

For notational simplicity, let

λ̄ =
λ

γ
, γ1 = γτ1 and γ2 = γτ2

which then leads to

λ̄+ we−λ̄γ1 + (1− w)e−λ̄γ2 = 0.

Dropping the bar from λ̄, we obtain the normalized characteristic equation

λ+ we−λγ1 + (1− w)e−λγ2 = 0. (8)

When γ1 = γ2, equation (8) is essentially the same as equation (4). Thus
γ1 6= γ2 is assumed henceforth.

Symmetric weights: w =
1

2

1Mathematically, the case of ω > 1 − ω is dual to the case of ω < 1 − ω. The results
obtained in one case reduces to the results in the other if ω and 1−ω are replaced with 1−ω
and ω, respectively.
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Hale (1979) determines the geometry of the stability region for a linear dif-
ferential equation with two delays when the weights of the delays are the same.
If λ = iυ in equation (8) with w = 1/2, then the real and imaginary parts satisfy

0 =
1

2
cos[υγ1] +

1

2
cos[υγ2]

and
υ =

1

2
sin[υγ1] +

1

2
sin[υγ2]

or, equivalently,

0 = cos

∙
υ(γ1 + γ2)

2

¸
cos

∙
υ(γ1 − γ2)

2

¸

υ = sin

∙
υ(γ1 + γ2)

2

¸
cos

∙
υ(γ1 − γ2)

2

¸
.

(9)

Notice that

cos

∙
υ(γ1 − γ2)

2

¸
6= 0,

otherwise the two equations of (9) do not hold simultaneously. Setting the first
equation of (9) equal to zero and solving it for υ produce the main value solution2

υ =
π

γ1 + γ2

and from the second equation of (9),

π

γ1 + γ2
= cos

∙
π(γ1 − γ2)

2(γ1 + γ2)

¸
.

This is a hyperbolic curve passing through the point (π/2,π/2) and divides the
(γ1, γ2) space into two parts as illustrated in Figure 1. All roots of equation
(8) have strictly negative real parts for (γ1, γ2) in the gray region under the
curve, and instability of system (7) occurs for (γ1, γ2) in the white region above
the curve. We call it a partition curve. It is also observed that the curve is
symmetric with respect to the diagonal and asymptotic to the line γi = 1,
which then implies that the stationary state is asymptotically stable for any
γj > 0 if γi ≤ 1 for i, j = 1, 2 and i 6= j. Comparing this last result with
Theorem 1 reveals that the two time delays increase the stability region when
the weights are the same.

2System (9) has a general solutions

υ =
(2k + 1)π

γ1 + γ2

and

(−1)k (2k + 1)π
γ1 + γ2

= cos

�
(2k + 1)

π

2

γ2 − γ1
γ1 + γ2

�
k = 0, 1, 2, ...

The main value solution means the solution for k = 0.
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Theorem 2 System (7) with w = 1
2 has a partition curve and its stationary

state is asymptotically stable for (γ1, γ2) below the curve and unstable above it
where the partition curve is defined by the locus (γ1, γ2) satisfying

π

γ1 + γ2
= cos

∙
π(γ1 − γ2)

2(γ1 + γ2)

¸
.

Figure 1. Division of the (γ1, γ2) space when ω =
1

2

Asymmetric weights: ω >
1

2

Differential equations with two time delays are very different from differential
equations with a single time delay when γ1 6= γ2. Following the analysis of Hale
and Huang (1993), we give a geometric description of the steady state for system
(7) in the (γ1, γ2) parameter space. We assume that λ = iυ with υ > 0 is a root
of equation (8) satisfying

iυ + ωe−iυγ1 + (1− ω)e−iυγ2 = 0.

Let C denote the complex plane and

Γ|1−ω| = {z ∈ C : |z| = |1− ω|}.
Denote γ1 by r, γ2 by σ and υr = s for notational simplicity. For r > 0, define
function fr : [0, 2π]→ C by

fr(s) = i
s

r
+ ωe−is.

Let

g(r, s) = r2(|fr(s)|2 − |1− ω|2)
= s2 − 2ωrs sin[s] + r2(ω2 − (1− ω)2)
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We can find the two combinations of r and s such that

g(r, s) = 0 and
dr

ds
= −∂g/∂s

∂g/∂r
= 0.

Solving the second condition for r yields

r =
s

ω(sin[s] + s cos[s])

which is substituted into the first condition to obtain

s2
£
ω2(s2 cos2[s]− sin2[s]) + (ω2 − (1− ω)2)

¤
= 0.

The graphical representation of this equation shows the existence of two solu-
tions, s∗0 and s

∗
2, and corresponding r0 and r2,

r0 =
s∗0

ω(sin[s∗0] + s
∗
0 cos[s

∗
0])

and

r2 =
s∗2

ω(sin[s∗2] + s
∗
2 cos[s

∗
2])
.

As can be seen in Figure 2,

fr([0, 2π]) ∩ Γ|1−ω| 6= Ø

for r ∈ [r0, r2]. The two dotted points in Figure 2 indicate that fri([0, 2π]) ∩
Γ|1−ω| = {fri(si)} for i = 0, 2. Since the fr([0, 2π]) curve shifts downward as r
increases, there is a value r1 ∈ (r0, r2) such that fr1(s) passes through the point
(−(1− ω), 0), that is,

r1 =
cos−1

£
−1−ωω

¤
ω sin[cos−1

£
−1−ωω

¤
]

and
s2(r1) = r1

p
ω2 − (1− ω)2.

Now for each r ∈ (r0, r2), let pi = fr(s(r)) for r = 1, 2 and θi(r) ∈ [0, 2π]
denote the angles from the negative real axis to the rays starting at the origin
and passing through pi in the clockwise direction respectively as illustrated in

8



Figure 2.

Figure 2. Illustration of fr(s) and Γ1−w in C
Let α = Re[fr(si(r))] and β = Im[fr(si(r))]. Then we have explicit forms of

θ1(r) and θ2(r):

θ1(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π − tan−1

∙
β

α

¸
for α > 0 and β ≶ 0,

2π − tan−1
∙
β

α

¸
for α < 0 and β < 0,

and

θ2(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

π − tan−1
∙
β

α

¸
for α > 0 and β > 0,

− tan−1
∙
β

α

¸
for α < 0 and β > 0,

2π − tan−1
∙
β

α

¸
for α < 0 and β < 0.

Function θ1(r) is continuous on [r0, r2], and θ2(r) is continuous on [r0, r2]\{r1}
with a jump at r1, since

lim
r→r1−

θ2(r) = 0 and lim
r→r1+

θ2(r) = 2π.

Now let

σi(r) =
rθi(r)

si(r)
.

We then select the value w = 3/5 to have the red curve of σ = σ1(r) and the
blue curve of σ = σ2(r) shown in Figure 3A in which the dotted point corre-
sponds to (π/2,π/2) and the blue curve is discontinuous at r = r1.3 Comparing

3The shape of σi(r) depends on the value of w. Inequality σ1(r) > σ2(r) on (r1, r2) can
be reversed for a larger value of w.
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Figure 2 with Figure 3A reveals the effects on the stability region caused by
the asymmetric weights: the stability region is on the left side of the boundary
curves, σ = σ1(r) and σ = σ2(r). In Figure 3B, we periodically extend σi(r) by

σni (r) = σi(r) +
2nπr

si(r)
for r ∈ [r0, r2] (i = 1, 2).

Dynamic system (7) is locally stable for (r,σ) in the gray region and it is locally
asymptotically stable for any σ > 0 if r < r0. Furthermore, the stability changes
as (r,σ) crosses the σ = σi(r) locus (i.e., stability switch occurs).

Theorem 3 System (7) with ω > 1
2 is globally asymptotically stable for (r,σ)

in the shaded region of Figure 3 and unstable otherwise.

A. Graphs of σ1(r) and σ2(r) B. Graph of σni (r) for i = 1.2.

Figure 3. Stability region of (7) with w =
3

5

Continuously distributed time delay is an alternative approach to deal with
delays. If the expected deviation of the output from its equilibrium value is
denoted by xε(t) at time t and is based on the entire history of the actual changes
of the deviations from zero to t, then the gradient dynamics with continuously
distributed time lag can be written as the system of integro-differential equations⎧⎪⎪⎨⎪⎪⎩

ẋ(t) = −γxε(t),

xε(t) =

Z t

0

w(t− s, τ ,m)x(s)ds,
(10)

where the weighting function is defined by

w(t− s, τ ,m) =

⎧⎪⎪⎨⎪⎪⎩
1

τ
e−

t−s
τ if m = 0,

1

m!

³m
τ

´m+1
(t− s)me−m(t−s)

τ if m ≥ 1.
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Here m is a nonnegative integer and τ is a positive real parameter, which is as-
sociated with the length of the delay. To examine local dynamics of system (10)
in the neighborhood of the stationary point, we substitute the second equation
of (10) into the first to get

ẋ(t) + γ

Z t

0

w(t− s, τ ,m)x(s)ds = 0.

Looking for the solution in the usual exponential form x(t) = x0e
λt and substi-

tuting it into the above equation, we obtain

λ+ γ

Z t

0

w(t− s, τ ,m)e−λ(t−s)ds = 0.

Introducing the new variable z = t− s simplifies the integral asZ t

0

w(t− s, τ ,m)e−λ(t−s)ds =
Z t

0

w(z, τ ,m)e−λzdz.

By letting t→∞ and assuming that Re(λ) + m
τ > 0, we haveZ ∞

0

1

τ
e−

z
τ e−λzdz = (1 + λτ)−1 if m = 0

and Z ∞
0

1

m!

³m
τ

´m+1
zme−

mz
τ e−λzdz =

µ
1 +

λτ

m

¶−(m+1)
if m ≥ 1.

That is, Z ∞
0

w(z, τ ,m)e−λzdz =

µ
1 +

λτ

`

¶−(m+1)
with

` =

⎧⎨⎩ 1 if ` = 0,

` if ` ≥ 1.
Then the characteristic equations becomes

λ
³
1 +

τ

`
λ
´m+1

+ γ = 0. (11)

Expanding the characteristic equation presents the (m+ 2)-th order equation

a0λ
m+2 + a1λ

m+1 + ...+ am+1λ+ am+2 = 0

where the coefficients ai are defined by

ak =
³τ
`

´m+1−k µ m+ 1
k

¶
for 0 ≤ k ≤ m,
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am+1 = 1 and am+2 = γ.

According to the Routh-Hurwitz stability condition, the necessary and sufficient
conditions that all roots of the characteristic equation have negative real parts
are the following:
(1) the coefficients are positive, ak > 0 for k = 0, 1, 2, ...,m+ 2,
(2) the principle minors of the Routh-Hurwitz determinant are positive,

Dm
2 =

¯̄̄̄
a1 a0
a3 a2

¯̄̄̄
> 0, Dm

3 =

¯̄̄̄
¯̄ a1 a0 0
a3 a2 a1
a5 a4 a3

¯̄̄̄
¯̄ > 0, Dm

4 =

¯̄̄̄
¯̄̄̄ a1 a0 0 0
a3 a2 a1 a0
a5 a4 a3 a2
a7 a6 a5 a4

¯̄̄̄
¯̄̄̄ > 0, ...

Case 1. m = 0.

The characteristic equation (11) is quadratic, τλ2 + λ + γ = 0. Since all
coefficients are positive, the stationary state is locally asymptotically stable for
all τ > 0, in which the delay is called harmless.

Case 2. m = 1.

The characteristic equation (11) is cubic and its coefficients are a0 = τ2 > 0,
a1 = 2τ > 0, a2 = 1 > 0, a3 = γ > 0 and D1

2 = τ(2 − τγ). To obtain D1
2 > 0,

the delay τ should be less than the threshold value

τ∗1 =
2

γ
. (12)

Case 3. m = 2.

The characteristic equation (11) is 4th-order and its coefficients are a0 =
τ3 > 0, a1 = 6τ

2 > 0, a2 = 12τ > 0, a3 = 8 > 0, a4 = 8γ > 0, D
2
2 = 64τ

3 > 0
and D2

3 = 32τ
3(16 − 9γτ). To obtain D3

3 > 0, the delay τ should be less than
the threshold value

τ∗2 =
16

9γ
' 1.78

γ
. (13)

Case 4. m = 3.

The characteristic equation (11) is 5th-order and its coefficients are a0 =
τ4 > 0, a1 = 12τ

3 > 0, a2 = 54τ
2 > 0, a3 = 108τ > 0, a4 = 81 > 0, a5 = 81γ >

0, D3
2 = 540τ

5 > 0, D3
3 = 972(48+ γτ) > 0 and D3

4 = −6561τ6(γ2τ2+336γτ −
576). To obtain D3

4 > 0, the delay τ should be less than the threshold value

τ∗3 =
24(5
√
2− 7)
γ

' 1.71

γ
. (14)

The relations (5), (12), (13) and (14) define the partition curves of (γ, τ)
that divide the (γ, τ) space into stable and unstable parts. The three partition
curves for m = 1, 2, 3 and one partition curve for the fixed time lag are depicted
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in Figure 4. It can be seen that all curves are hyperbolic and the partition curves
with the continuously distributed time lag are approaching the partition curve
obtained under the fixed time lag from above. In addition to the result in Case
I of m = 0, Figure 4 implies that the stable region becomes smaller as the value
of m increases and converges to the region defined by the fixed time delay when
m tends to infinity. The results obtained are natural if we notice the properties
of the weighting function. For m ≥ 1, zero weight is assigned to the most recent
output, rising to maximum at t − s, and declining thereafter. As m increases,
the function becomes more peaked around t − s and tends to the Dirac delta
function. In consequence for sufficiently large m, the weighting function may
be regarded as very close to the Dirac delta function and the dynamic behavior
under the continuously distributed time delay is very similar to the one under the
fixed time delay. We can explain this phenomenon mathematically by noticing
that the characteristic equation (11) of the continuously distributed case can be
written as

λ+ γ
1µ

1 +
τλ

m

¶m+1 1µ
1 +

τλ

m

¶ = 0,

and as m→∞, it converges to

λ+ γe−λτ = 0

which is (3), the characteristic equation of the fixed time delay case. In short,
under continuously distributed time delay, although we comprehensively use the
delayed or past data of outputs, the stability domain is sensitive to the shapes
of the weighting function. This result shows the sharp difference from the result
obtained in the discrete delay model of Ahmad et al (2004) in which delay
increases the stability region.

Figure 4. Stability regions
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3 Delay Nonlinear Monopoly
In this section, we are concerned with cyclical behavior of delay monopoly, which
is not observed in the linear framework. To this end, we consider the case in
which the adjustment speed is a positive function of the output. In particular,
we adopt the linear dependency:

Assumption 2. α(q) = αq with α > 0.

The gradient dynamics with discrete time lag τ > 0 under Assumption 2 is
given by

q̇(t)

q(t)
= α [a− c− 2bq(t− τ)] .

This implies that the monopoly firm adjusts its growth rate of the output pro-
portional to a change in profit. It is rewritten as

q̇(t) = γ̄q(t)

µ
1− q(t− τ)

qM

¶
(15)

where γ̄ = 2bαqM with qM = (a − c)/2b as before. This is the delayed logis-
tic equation with one discrete delay, which is called the Hatchinson equation.
Introducing the new variable

y(t) = −1 + q(t)
qM

,

rescaling the time t = τ t̄ and letting y(t) = ȳ(t̄) reduce the dynamic equation
(15) into the form

·
ȳ(t̄) = −τ γ̄ȳ(t̄− 1)(1 + ȳ(t̄)).

Dropping the bars from t̄ and ȳ and denoting β = τ γ̄ yield

ẏ(t) = −βy(t− 1)(1 + y(t)). (16)

We first turn attention to the stability of the zero solution y(t) = 0 of equation
(16), which is equivalent to the stability of q(t) = qM in equation (15). Lineariz-
ing (16) at y(t) = 0 and letting yδ denote the deviation of y from its stationary
level give

ẏδ = −βyδ(t− 1).
which is essentially the same as (3). Its corresponding characteristic equation is

λ+ βe−λ = 0.

Following the same procedure taken above, we can show that the trivial solution
is asymptotically stable for β < π/2 (i.e., τ < π/2γ̄) and unstable for β > π/2
(i.e., τ > π/2γ̄). Furthermore, if we assume that φ is a continuous function in
the interval [−1, 0], its value is at least −1 everywhere, but at zero it has to be
strictly greater than −1, then we have the following global stability result due
to Wright (1955)4.

4The following is Theorem 2.1 of Kuang (1993). Wright’s conjecture that the global sta-
bility holds for β < π/2 still remains open.
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Theorem 4 Let τ ≤ 3

2γ̄
, and y(t) be the solution of (16) with initial function

φ. Then limt→∞y(t) = 0.

If the monopolist takes into account of the several delayed outputs, the
dynamic equation is

q̇(t) = αq(t) [a− c− 2b
Pn
i=1 ωiq(t− τ i)]

= 2γ̄q(t)

∙
1−

Pn
i=0 ωi

q(t− τ i)

qM

¸ (17)

where for the sake of simplicity the sum of the weight coefficients, ωi, is assumed
to be equal to unity

nX
i=0

ωi = 1.

Denoting

y(t) = −1 + q(t)
qM

and letting ai = 2γ̄ωi, we see that the last expression of (17) can be rewritten
as

ẏ(t) = −(1 + y(t))
nX
i=0

aiy(t− τ i) (18)

which is exactly the same as the delay logistic equation studied by Kuang (1991)
with initial condition

x(θ) = φ(θ), θ ∈ [−τ , 0], φ ∈ C and φ(0) > −1,

where τ = max{τ i, i = 1, 2, ..., n}. Applying Kuang’s result (Corollay 4.1 of
Kuang (1991)), we have the following:

Theorem 5 Consider (18) with the above initial conditions. If τ
Pn
i=1 ai ≤ 1

then limt→∞y(t) = 0.

Theorems 4 and 5 are concerned with the global asymptotical stability of
the trivial solutions in the delay equations (16) and (18). Further, we can nu-
merically examine global behavior when the local stability condition is violated.
In Figure 5, we take the parameters values making the system locally unstable
and perform simulations in the (y(t), ẏ(t)) space to show the birth of a limit
cycle. In Figure 5A, a single delay is τ = 1 and β = 1.8. In Figure 5B, we limit
the number of delays to two. Two delays are τ1 = 2 and τ2 = 2.5 and other
parameter values are w1 = 3/5, w2 = 2/5 and γ̄ = 1, which make a1 = w1 and
a2 = w2. In both simulations the trajectories starting at the same initial point
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y(0) = 0.05 converge to limit cycles.

A. Single delay τ B. Multiple delays τ1 and τ2

Figure 5. Birth of a limit cycle

The gradient dynamics with continuously distributed time lag is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q̇(t) = αq(t) [a− c− 2bqε(t)]

qε(t) =

tZ
0

w(t− s, τ ,m)q(s)ds
(19)

where the weighting function is assumed to be the same as it was specified in the
previous section. To examine local dynamics of this system in a neighborhood
of the equilibrium point q(t) = qM , we need to consider the linearized version
where x(t) = q(t)− qM ,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = −γ̄xε(t),

xε(t) =

tZ
0

w(t− s, τ ,m)x(s)ds.

which has exactly the same form as the linear system if γ is replaced by γ̄(=
γqM ). It then follows that the characteristic equations becomes

λ

µ
1 +

λτ

`

¶m+1
+ γ̄ = 0.

When m = 0, the delay is harmless and the equilibrium point is locally
asymptotically stable for any τ > 0. When m = 1, it can be shown by applying
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(12) that the parameters ai of the corresponding characteristic equation satisfies
the local stability condition a1a2 − a0a3 > 0 or

τ <
2

γ̄
.

We will show the possibility of the birth of limit cycles when loss of stability
occurs. According to the Hopf bifurcation theorem, we have to show that the
following two conditions are satisfied: (1) the characteristic equation of the
dynamic system has a pair of pure imaginary roots and no other roots with zero
real parts; (2) the real parts of these roots vary with a bifurcation parameter.
The D1

2 = a1a2 − a0a3 = 0 line divides the parameter space into stable and
unstable parts. Substituting a3 = a1a2/a0 into the characteristic equation and
factoring it yield

(a1 + a0λ)(a2 + a0λ
2) = 0.

We have therefore three characteristic roots: two are purely imaginary and one
is real and negative,

λ1,2 = ±
r
−a2
a0
= ±i1

τ
and λ3 = −

a1
a0
= −2

τ
< 0.

The first condition of the Hopf theorem is satisfied. Next we select the delay τ as
the bifurcation parameter and consider the roots of the characteristic equation
as continuous function:

τ2λ(τ)3 + 2τλ(τ)2 + λ(τ) + γ̄ = 0

Differentiating it with respect to τ gives

dλ

dτ
= − 2τλ3 + 2λ2

3τ2λ2 + 4τλ+ 1
.

Substituting λ = i/τ , rationalizing the right hand side and noticing that the
terms with λ and λ3 are imaginary and the constant and λ2 are real yield the
following form of the real part of the derivative of λ with respect to τ

Re

∙
dλ

dτ |λ= i
τ

¸
=

1

5τ2
> 0

which indicates that the second condition is also satisfied. Figure 6 illustrates
the birth of a limit cycle.5 We then summarize this result as follows:

5The parameters are specified as a = 5, b = 1, c = 1 and τ = 0.8. The initian values of all
variables are the same, qM − 0.1. The dynamic system is⎧⎪⎪⎪⎨⎪⎪⎪⎩

q̇(t) = −γ̄qe(t),
q̇e(t) =

1

τ
(x(t)− qe(t)),

ẋ(t) =
1

τ
(q(t)− qe(t)),

17



Theorem 6 The monopolistic equilibrium point of the continuously distributed
delay system (19) with m = 1 is destabilized through a Hopf bifurcation when
the delay τ crosses the critical value

τ̄∗1 =
2

γ̄
.

Figure 6. Birth of a limit cycle when m = 1

In the same way, we can show the existence of a limit cycle when m = 2.
In particular, (13) implies that τ̄∗2 = 16/(9γ̄) is the threshold value of the delay
and from (Case 3), the curve of a1a2a3 − (a0a23 + a21a4) = 0 is the partition
curve between the stable and unstable regions. Solving the partition curve for
a4, substituting it into the characteristic equation and factoring the resultant
equation yield

(a3 + a1λ
2)(a1a2 − a0a3 + a21λ+ a0a1λ2) = 0.

Two of the characteristic roots are purely imaginary,

λ1,2 = ±
r
−a3
a1
= ±i 2

τ
√
3

and the other two roots are the solutions of the quadratic equation (a1a2 −
a0a3) + a

2
1λ+ a0a1λ

2 = 0 and have negative real parts, since all coefficients are

where

qe(t) =

] t

0

�
1

τ

�2
(t− s)e−

t−s
τ q(s)ds

and

x(t) =

] t

0

1

τ
e−

t−s
τ q(s)ds.

18



positive. Differentiating the characteristic equation with respect to τ gives

dλ

dτ
= − 3τ2λ4 + 12τλ3 + 12λ2

4τ3λ3 + 18τ2λ2 + 24τλ+ 8
.

Substituting λ = i 2
τ
√
3
and taking the real part, we have

Re

"
dλ

dτ |λ=i 2
τ
√
3

#
=

60

439τ2
> 0.

Theorem 7 The monopolistic equilibrium point of the continuously distributed
delay system (19) with m = 2 is destabilized through a Hopf bifurcation when
the delay τ crosses the critical value

τ̄∗2 =
16

9γ̄
.

4 Concluding Remarks
This paper presents a delay monopoly model with linear price and cost function
and examines its stability when dynamics is driven by the gradient process. The
paper is divided into two parts and systems dynamics are compared with fixed
and continuously distributed time delays in both parts. In the first part, we
assume constant speed of adjustment and detect the threshold value of delay
at which stability switch occurs. The monopoly with the single fixed delay has
the minimum stable region while the continuously distributed delay becomes
harmless when its weights are declining with the most weight given to the most
current output. The stability region under the continuously distributed time
delay converges to the stability region under the single fixed time delay as the
weight function is approaching the Dirac delta function. It is confirmed that
the stability region becomes complex when there are two fixed time delays. In
the second part, we assume output-dependent speed of adjustment. This re-
placement of the adjustment speed makes the dynamic system nonlinear(i.e., a
logistic equation). Local and global stability conditions are derived. Further-
more, the possibility of the birth of limit cycles is demonstrated when local
stability is violated.
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