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Abstract

It is well-known that Goodwin’s 1951 business cycle model gives
rise to cyclical fluctuations when its stationary point is unstable. This
study shows coexistence of multiple cycles when it is stable: the stable
region of a stationary point is bounded by a unstable limit cycle that
is, in turn, surrounded by a stable limit cycle. In this case, the model
is globally stable in a sense that it does not diverge for any distur-
bances but its dynamics is different for different disturbances. That
is, dynamics is stable and returns to the stationary point for small dis-
turbances but unstable and exhibits persistent fluctuations for large
disturbances. This result implies two issues: Goodwin’s mode has the
robustness of cyclic fluctuations regardless of local dynamical proper-
ties and corridor stability.
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1 Introduction

In this study, we re-examine the dynamics of the business cycle model con-
structed by Goodwin (1951) and exhibit coexistence of multiple limit cycles
when a stationary point is locally stable. Goodwin develops a nonlinear ac-
celerator business cycle model and shows that it can bring about a stable
limit cycle when the stationary state is locally unstable. This study focuses
on the unstable case on which very few attempts have been made. Thus
it aims to complement Goodwin’s dynamical analysis on nonlinear business
cycle.
Goodwin proposes five different versions of his business cycle model. The

first version assumes the piecewise linear function with three levels of in-
vestment. It is a text-book model that can give a simple exhibition of the
value non-linearities have for generating endogenous cycles without relying
on structually unstable parameters, exogenous shocks, etc. The piecewise
linear investment function, which can be thought as the crudest or simplest
of the non-linear accelerator, is replaced with a smooth nonlinear investment
function in the second version. Cyclical fluctuations of output are shown to
exist and be independent of initial conditions. However the second version
includes a unfavorable phenomenon, namely, investments jump discontinu-
ously, which is not observed in the real economic world. "In order to come
close to reality" (p.11, Goodwin(1951)), the production lag is introduced in
the third version. Although no dynamical considerations are given to the
third version, an existence of a stable limit cycle is examined in the forth
version, which is a linear approximation of the third version with respect
to the production lag. The fifth version is recently reconsidered by Lorenze
(1987) as a forced oscillator system in which the emergence of chaotic motion
is demonstrated.
Thus far, a lot of efforts have been devoted to investigate the dynamic

structure of the fourth version. Recently Sasakura (1996) gives an elegant
proof of the stability and uniqueness of Goodwin’s cycle. Thus it has been
confirmed that Goodwin’s model possesses a unique stable limit cycle. Since
all these results are obtained under the condition for which a stationary point
is locally unstable, we can ask a natural question: is cyclic behavior robust
under locally stable circumstances?
The main result of this study is to provide a positive answer to this ques-

tion. For this purpose, we augment the fourth version by introducing an
nonlinear investment function of arctangent type and demonstrate coexis-
tence of a stable stationary point, a unstable limit cycle, and a stable limit
cycle. The Poincaré-Bendixson theorem is a usual procedure for detecting
a cycle in a two-dimensional continuous dynamical model whose trajectories
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are unstable in a vicinity of the stationary point. However, the theorem is
rendered inapplicable since we deal with the local stability case. We com-
bine the theorem with the Hopf bifurcation theorem and then characterize
the global dynamics to show coexistence. Coexistence of multiple cycles is
also shown in Kaldor’s business cycle model by Grasman and Wentzel (1994)
and in a Metzlerian inventory cycle model by Matsumoto (1996) whose ap-
proach we resume here.
We also turn our attentions to dynamics of the second version with a

unstable stationary point to which only limited efforts has been devoted.
Since it is a nonlinear differential equation, analytical considerations seem
fruitless. Yet, we perform numerical simulations to find what effects the
production lag produces on the characteristics (i.e., length and amplitude)
of cyclical fluctuations of output.
In what follows, Section 2 overviews three versions from the second to the

fourth of Goodwin’s business cycle model and reveals the characteristics of
Goodwin’s cycle. Section 3 points to the new results that the approximated
version exhibits corridor stability in which it could be stable for small shocks
but unstable and generates multiple limit cycles for large shocks. Section 4
makes concluding remarks.

2 Goodwin Business Cycle Model

This section is divided into three parts. Each of three versions of Goodwin’s
model are reviewed in each subsection. In particular, we recapitulate the ba-
sic element of the second version. Assuming an explicit form of the nonlinear
investment function, we numerically simulate the model to see what dynam-
ics it can generate in Section 2.1. Then we introduce the production lag into
the second version to get the third version and perform, again, numerical
simulations to find how the lag affects the characteristics(i.e., the length of
a period and the amplitude) of endogenous cycles in Section 2.2. Finally, we
derive the most popular version by expanding the third version with respect
to the lag and reveal the stability condition in Section 2.3.

2.1 Basic Model

The second model, which we call the basic model, is summarized as follows. εẏ(t) = k̇(t)− (1− α)y(t),

k̇(t) = ϕ(ẏ(t)).

(1)
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k is capital stock, y income, α the marginal propensity to consume to be
positive and less than unity, and ε the output adjustment coefficient. The
first equation defines an adjustment process of national income in a such a
way that national income rises or falls if and only if investment is greater
or less than savings. The second is an adjustment process of capital stock
based on the acceleration principle, according to which investment depends
on the rate of change in national income. On the other hand, we depart from
Goodwin’s non-essential assumption of positive autonomous expenditure and
will work with zero-autonomous expenditure for the reason of simplicity. An
direct consequence is that an equilibrium solution or a stationary point of
the basic model is y(t) = ẏ(t) = 0 for all t. Inserting the second equation
into the first and arranging terms gives dynamics of the national income,

εẏ(t)− ϕ(ẏ(t)) + (1− α)y(t) = 0. (2a)

This is a first-order nonlinear differential equation. Once we specify an ex-
plicit form of the investment function and set an initial income, dynamics of
y is accordingly determined.
About the induced investment, ϕ(ẏ(t)), we adapt a non-linear accelera-

tion principle, by which we mean that the investment can be considered to
be proportional to the change in national income in a neighborhood of the
equilibrium income but get inflexible (i.e., less elastic) for the extreme large
or small values of income. Goodwin assumes a piecewise linear investment
function in his simulations. Following his spirit, but for the sake of analytical
convenience, we assume a smooth nonlinear investment function;

Assumption 1. The investment function takes a form of an arctangent
type,

ϕ(ẏ(t)) = δ {tanh(ẏ(t)− a)− tanh(−a)} , δ > 0 and a > 0.

This function has a "ceiling" and a "floor" and is asymmetric when a para-
meter, a, is a non-zero. In what follows, we set a = 1 to shift the function
upward by π

4
and rightward so as to make the function pass through the

origin and δ = 12
π
so that the ceiling is three time higher than the floor as in

Goodwin. We assume, in this and the next subsection, the stationary point
to be locally unstable by making

Assumption 2.
dϕ(0)

dẏ
is greater than ε.
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To find out what dynamics the basic model can generate, we perform
numerical simulations. An initial point is set at y(0) = 10, and in throughout
numerical examples below, all the parameters are fixed at ε = 0.5 and α =
0.6 as in Goodwin. The numerical results are given in Figure 1 in which
an endogenous cycle is illustrated in its right and the corresponding time
path in its left. Along the mirror imaged N-shaped ẏ = 0 locus in the
right, the initial point denoted by I0 is displaced slightly upward to point
A, at which investment switches discontinuously from positive to negative.
In consequence the orbit jumps from point A to point B.With negative ẏ(t)
at point B, the national income gradually declines from point B to point C.
Once point C is reached, investment, again, switches discontinuously from
negative to positive. In other word, the orbit jumps again to point D from
point C, from which the national income glides toward point A, and then
the process repeats itself. Thus we have a closed orbit constituting a self-
sustaining cycle. The points A and C are critical points at which one of the
variables makes a discontinuous jump. The same dynamics is depicted from
a different view point in the left of Figure 1. There the corresponding time
path form t = 0 to t = 20 is illustrated. It can be seen that the time path
has a kink at the turning point, which is an alternative expression of the
discontinuous jump. If we interpret one time period to be one calendar year
as in Goodwin, five cycles are observed in 20 years in the left. The length of
one business cycle in this simulation is approximately 4 years. The numerical
simulations imply that the basic model can generate an endogenous cycle of
output due to the nonlinearity involved in the investment accelerator, and
investment suffers discontinuous jumps. We sum up the results.

Proposition 1 Due to the nonlinear investment accelerator, a slow-rapid
limit cycle is brought about in the basic model.

Insert Figure 1 Here.

2.2 Delayed Model

In order to come closer to reality and to get rid of discontinuous jumps, we
introduce the production lag, θ, between decisions to invest and the corre-
sponding outlays into the basic model. As a result, the third version is

²ẏ(t+ θ) + (1− α)y(t+ θ) = ϕ(ẏ(t)). (3)

This is a first-order delayed nonlinear differential equation, which we call the
delayed model. Since a cycle has been shown to exist, our next concern is

5



whether such a lag affects characteristics of the slow-rapid cycle observed in
the basic model. To put it more concretely, we will address the questions:
what effects the lag causes on the kink, length and amplitude of the cyclical
fluctuations?
Goodwin refers nothing to dynamics generated by the delayed model.

Furthermore, to the best of our knowledge, any analytical solutions of the
delayed model are not successfully constructed yet. However, it is possible to
investigate dynamics of the model with the aid of numerical simulations. For
this reason, we conduct simulations with various values of the production lag
and then compare the one result with the other. By doing so, we can reveal
what effects the lag can produce.
In Figure 2, we exhibit four time paths from t = 0 to t = 20 associated

with different values of θ in the left and the corresponding limit cycles in
the right.1 For all these simulations, we choose the same initial condition
(i.e., y(0) = 10) and the same parameter values as in the last simulations but
the different values of the production lags. As can be observed in the left of
each figure, the length of a one-period gets longer as the production lag gets
larger.2 To put it more concretely, we have the following numerical results.
In Figure 2A, θ = 0.125 and there are four cycles within the 20 time-period,
so that one cycle is lengthened to 5 years. In Figure 2B, the lag is doubled to
be θ = 0.25 and there are approximately three and a quarter cycles implying
the 6 years cycle. In Figure 2C, θ = 0.5 and there approximately two and
a three-quarter cycles, so that the length of the cycle is approximately 7
years. In Figure 2D, θ = 1 and there are a bit-longer-than-two cycles, so
that the length of the cycle is 9 years or so. It is found from these simulation
results with the one of the basic model that the length of the business cycles
changes, roughly speaking, from 4 years to 10 years according as the length
of production lag gets larger from zero to one. In his simulations, Goodwin
points out that the length of the whole cycle is 10.7 years, the upswing is
prolonged to 6.5 years and the downswing shorted to 4.2 years. Although it
is not clear from these time paths in Figure 2 below, the asymmetry of the
upswing and downswing is also observed in our simulations. When θ = 1,
careful observation reveals that the cycle has a 9-years period, its upswing is
lengthened to 4.8 years and its downswing to 4.2 years. The similar results

1Since one unit of time is assumed to equal to one year, "20 years" is long enough to
see the lag-effects on business cycles.

2As explained in Goodwin (1951, p.15), there are economic justification to set values
of structural parameters at ² = 0.5, α = 0.6 and θ = 1. It may be unfair to Goodwin to
change values of θ, taking other parameter values equal. We, however, believe to derive
the qualitatively similar results even if we make proper adjustments.
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are obtainable in other simulations.

Insert Figure 2 Here

In the right of each figure, a limit cycle is illustrated in the phase space in
which we plot the national income on the vertical axis and its time derivative
on the horizontal axis. Figure 3 juxtaposes these limit cycles. Comparing
these limit cycles, we find that the limit cycle changes its shape from a
parallelogram-wise cycle to a vertically longer ellipse as the production lag
increases from zero to unity (that is, the width of the cycle gets smaller and
the length gets longer). Since the peak and bottom of the output-cycle are
reached at the point where the time derivative is zero, the amplitude of the
cycle is the distance between two points at which the limit cycle crosses the
vertical axis. We also find that the amplitude of the cycles grows larger and
the rate of output change becomes less as the production lag gets longer.
These numerical results are summarized in

Proposition 2 In the delayed model, the production lag has the effects to
make the length of the business cycle longer and the amplitude larger.

Insert Figure 3 Here.

2.3 Approximated Model

To investigate the effect of the production lag on the emergence of cyclical
development of output, Goodwin expands the delayed nonlinear differential
equation with respect to θ and then gets the following second-order nonlinear
differential equation as his forth version,

²θÿ(t) + [²+ (1− α)θ]ẏ(t)− ϕ(ẏ(t)) + (1− α)y(t) = 0. (4)

We call it the approximated model. One way to learn about the movement of
output is to integrate numerically on a computer for any given set of initial
conditions on y and ẏ. Our interest in this subsection is not on the specifics
of how y wonders about in the short run but is in understanding whether the
displaced output eventually return to its stationary point or not. Namely,
we raise the question of the stability, which can be resolved without solving
the nonlinear equation.
To this purpose, we introduce a new variable, x(t) = ẏ(t), and then trans-

form the second-order nonlinear differential equation into a two-dimensional
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nonlinear system that can be put, after arranging terms, into the form,
ẋ(t) =

1

²θ
{ϕ(x(t))− [²+ (1− α)θ]x(t)− (1− α)y(t)} ,

ẏ(t) = x(t).

(5)

On the (x, y) plane, the ẏ(t) = 0 locus is identical with the vertical axis
while the ẋ(t) = 0 locus becomes the mirror imaged N-shaped curve and
passes through the origin. Thus the 2D-dynamical system possesses a unique
stationary point, (x, y) = (0, 0), at which both loci cross each other.
We now proceed to stability analysis of the approximated system to give

insight into the qualitative behavior in a neighborhood of the stationary
point. By developing a local version of the system around the stationary
point, we obtain the Jacobi matrix of the planar system,

J =


1

²θ
{ϕ0(0)− [²+ (1− α)θ]} −1− α

²θ

1 0

 .
The characteristic equation is

λ2 − k

²θ
λ +

1− α

²θ
= 0,

where we set k = ϕ0(0)− [²+(1−α)θ]. The characteristic roots are computed
to be

λ1,2 =
1

2

 k

²θ
±
sµ

k

²θ

¶2

− 4(1− α)

²θ

 .
It follows that the product of the characteristic roots is positive due to the
assumptions imposed on parameters, 0 < α < 1 and (², θ) > 0,

λ1λ2 =
1− α

²θ
> 0,

and thus excludes that the stationary point is a saddle point. It also follows
that the sum of the characteristic root can be either positive or negative
according to whether the slope of the investment function at the stationary
point is larger or smaller than the sum of other parameter values,

λ1 + λ2 =
1

²θ
{ϕ0(0)− [²+ (1− α)θ]} R 0.
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The stationary point is locally stable or unstable according to whether the
sum of terms in braces is negative or positive.
Putting this result in a different way, we can say that the parameter

region is divided into two subregions, the stable one and the unstable one,
by the critical line satisfying

v = [²+ (1− α)θ], (6)

where v = ϕ0(0). It depends on the value of the discriminant of the char-
acteristic equation whether the local dynamics is oscillatory or monotonic.
The locus along which the discriminant is zero is determined by

v = [²+ (1− α)θ]± 2
p

(1− α)εθ, (7)

that distinguishes the parameter region for real roots from the one for com-
plex roots. These two loci divide the parameter region as shown in Figure 4
in which MS and MU mean monotonic stable and unstable while OS and OU
mean oscillatory stable and unstable. There, we plot θ on the horizontal axis
and v on the vertical axis. For combinations of parameters, θ and v, in either
the light-gray region or the dark-gray region, the characteristic roots are com-
plex and thus the system produces fluctuations. Moreover, the fluctuations
are explosive for the combinations in the light-gray region and damped for
the one in the dark-gray region. On the other hand, for the combinations of θ
and v in the white regions, the characteristic roots are real and thus the sys-
tem produces monotonic dynamics that is convergent or divergent according
to whether the combination is in the lower-white region or the upper-white
region. Figure 4 also implies that the approximated model may produce
qualitatively the same dynamics as v increases irrespective of a choice of the
production lag. Namely, given θ, it generates stable monotonic dynamics,
stable oscillatory dynamics, unstable oscillatory dynamics and then stable
monotonic dynamics as v increases from zero.

Insert Figure 4 Here

Thus far, there have been a lot of studies that focus on cyclic dynamics of
the approximated model when the stationary point is locally unstable, that
is, the parameters are selected from the region above the critical line (6) of
Figure 4. On the other hand, little attention has been given to the case in
which the stationary point is stable. In consequence, little is known about
dynamics for the parameter configurations selected from the region below
the critical line (6). We move one step forward and address the following
question: what can be said about the global dynamics of the approximated
model when the stationary point is locally stable?
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3 Coexistence of Multiple Cycles

To answer the question we raise just above, we first assume that the fixed
point is locally stable and then demonstrate coexistence of a stable station-
ary point, a unstable limit cycle and a stable limit cycle. In what follows, we
select a slope of the investment function evaluated at the stationary point
as a bifurcation parameter and concern a possibility of the supercritical bi-
furcation in Section 3.1. With use of an unstable limit cycle to be shown to
exist, we construct an invariant set in the state space and apply the Poincaré-
Bendixson theorem to find a stable limit cycle that encloses the unstable limit
cycle in Section 3.2.

3.1 Hopf Cycle

We investigate, with the help of Hopf bifurcation theorem, whether there
exists an unstable limit cycle in the approximated model. According to
the theorem, the Hopf bifurcation occurs if the complex conjugate roots
cross the imaginary axis. Apparently, the characteristic roots are complex
conjugate with zero real part if k = 0. As there are no other roots in two-
dimensional system, the consideration of the existence of closed orbits is
complete if the eigenvalues cross the imaginary axis with non-zero speed
at the bifurcation point. Though there may exist several possibilities to
parametrize the approximated model, it seems interesting to choose the slope
of the investment function evaluated at the stationary point as the bifurcation
parameter.
Since we assume the local stability (i.e., ϕ0(0) < ² + (1 − α)θ where α,

² and θ are given) in this section, it can be directly seen that there exists a
value v0 = ϕ0(0) for which

v0 − [²+ (1− α)θ] = 0,

implying that the complex conjugate cross the imaginary axis. As for v > v0,
respectively v < v0, the real part becomes positive, respectively negative.
Hence, v0 is indeed a bifurcation value of the approximated model. According
to the Hopf bifurcation theorem, these establishes the existence of closed
orbits in a neighborhood of the stationary point (0, 0) at v = v0.

3

The Hopf theorem, however, is somewhat ambiguous about the nature of
the closed orbit. There are two possibilities, one is that orbits spiral outward
from the stationary point toward a stable limit cycle, namely, the subcritical

3See Lorenz (1993) for the Hopf bifurcation theorem, the stability index and the fol-
lowing coordinate transformations..
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bifurcation, and the other is that all orbits starting inside the cycle spiral in
toward the stationary point, namely, the supercritical bifurcation. To make
the distinction between the sub- and super-critical Hopf bifurcation, we check
the stability of the cycle by calculating the stability index.
The approximated model can be written asµ

ẋ
ẏ

¶
= J

µ
x
y

¶
+

µ
f(x)

0

¶
where J is the Jacobian defined above, and f(x) is a nonlinear term that can
be derived as

f(x) =
1

εθ
{ϕ(x)− ϕ0(0)x} .

In order to transform the approximated model into the normal form, we make
the coordinate transformation,

µ
x
y

¶
= D

µ
u
v

¶
with D =


0 1

−
r

εθ

1− α
0

 .
Since the matrix D transforms the coordinate system (x, y) into a new coor-
dinate system (u, v), the approximated model is put into

µ
u̇
v̇

¶
=

 0 −
r

1− α

εθr
1− α

εθ
0

µ u
v

¶
+

µ
0
f(v)

¶

It is well-known that the stability of the emerging cycle depends on up to
third-order derivatives of the nonlinear function, f(v). In the approximated
model, the stability index is calculated as

I =
1

16εθ
ϕ000(0) > 0.

The direction of the inequality indicates that the emerging cycle encloses
the stable stationary point and is repelling (i.e., unstable). It follows that
a subcritical Hopf bifurcation occurs for v < v0 in the approximated model.
We sum up the result obtained.

Proposition 3 Given the stability of the stationary point, there exists an
unstable limit cycle that encloses a stable equilibrium in the approximated
model.
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3.2 Stable and Unstable Limit Cycles

Taking v to be less than v0 for which the stationary point is stable, we
concern a number of a limit cycle in this subsection. As shown above, a
unstable limit cycle exists for v < v0 due to the Hopf theorem. We proceed
to show an existence of a stable limit cycle that encloses the unstable Hopf
cycle when the stationary point is locally stable.
We construct an invariant set in such a way that once an orbit enters the

set, it cannot later escape at some future time and then apply the Poincaré-
Bendixon theorem to examine whether a stable cycle can arise in the set. A
typical application of the theorem is to the case in which there is a single
unstable equilibrium in some invariant set. Remove a neighborhood of the
stationary point in which all orbits move away from it. Then the theorem
ensures that the remaining set must contain a limit cycle.4 Since the station-
ary point is now assumed to be stable in the approximated model, we need
another considerations for searching for such an invariant set.
In Figure 5, we may find a pointA so high on the vertical axis that an orbit

starting there comes back to meet the vertical axis at a lower point E after
crossing not only the horizontal axis at points B and D but also the vertical
axis at point C. Consider a region bounded by ABCDEA and an open
region bounded by the unstable limit cycle that is shown to exist in Section
3.1. Then the invariant set to be considered can be constructed by deleting
the latter region from the former region. The result is shown in Figure 5 in
which the shaded region represents the invariant set. The boundary of the
inner white region corresponds to the unstable limit cycle that srrounds the
stable stationary point. The shaded region thus has no stationary point, and
any orbit starting inside the region stays within its inside. Two orbits, one
starting at point a and the other at point b, are examples that are shown
to remain inside of the invariant set and converge to the same limit cycle,
illustrated as a bold curve. On the other hand, it can be seen that a dotted
orbit starting at point c located inside of the white region spirals toward the
stationary point. Formally, the Poincaré-Bendixson theorem guarantees an
existence of one stable cycle in the shaded region. Summing up the results
with Proposition 3 yields the following results.

Proposition 4 Given the stability of the stationary point, a stable limit cycle
coexists with an unstable limit cycle that encloses a stable equilibrium point
in the approximated model.

Insert Figure 5 Here
4See Chaper 2.2 of Lorenze (1993) for an example.
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In Figure 6, we present a bifurcation diagram in which the amplitude
of the cycle is on the vertical axis and v as bifurcation parameter on the
horizontal axis. vu is the critical value for which the approximated model
loses its stability, and its stationary point is replaced by a limit cycle. For
v > vu, the model is destabilized for small perturbations so that any orbit
moves away from the stationary point. Nonlinearity of the model prevents
it from diverging globally but leads to a unique stable limit cycle. This is
essentially the same cycle as the one that Goodwin demonstrates by applying
the Lienard method. On the other hand, for v < vu, it is locally stabilized
but generates an unstable cycle as well as a stable cycle for v in the interval
[vs, vu]. It can be seen that as v decreases from vu, the amplitude of the inner
unstable cycles increases and the one of the outer stable cycle decreases. vs
is the other critical value for which two cycles coincide each other. For a
lower v < vs, limit cycles no longer exit.
Coexistence of multiple cycles and a stable stationary point reminds us

"corridor stability," the notion of which was introduced by Leijonhufvud
[1973]. It implies that a dynamical system is stable for small perturbations
but unstable for large perturbations. The inside of white circle region in
Figure 5 is the corridor in which the stationary point is stable. Thus, if
perturbations around the stationary point are small enough not to take orbits
out of the corridor, the restoring effect of the model works to return to
the stationary point. To the contrary, if perturbations are large enough
to take orbits outside the corridor, the lasting effect of the model leads to
persistent cyclic fluctuations. The foregoing numerical analysis indicates that
non-linearity of investment function can be a source of corridor stability in
Goodwin’s approximated model.

Insert Figure 6 Here

4 Concluding Remarks

We investigate the characteristics and the robustness of Goodwin’s business
cycle in this study. It is confirmed numerically that the nonlinearity of the
investment function generates cyclical fluctuations of output as shown in Fig-
ure 1 and summarized in Proposition 1. It is also confirmed numerically that
the longer production lag makes the amplitude of the cycle larger and the
length of its period longer as shown in Figure 2 and summarized in Propo-
sition 2. Further, it is seen in Figure 6 that the amplitude of the cycle is
sensitive to the nonlinearity of investment function and gets larger as the
nonlinearity gets stronger. It is demonstrated analytically that cyclic fluctu-
ations of output are brought about even when the stationary state is locally
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stable as summarized in Propositions 2 and 3. Coexistence of multiple cycles
and the stable stationary point implies the corridor stability of Goodwin’s
business cycle. This study complements the existing studies on Goodwin’s
business cycles, the studies on which focus mainly on circumstances in which
the stationary state is locally unstable.
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Figure 2A. Cyclical Fluctuations with θ = 0.125
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