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Abstract

In considering economic dynamics, it has been known that time delays are inherent in
economic phenomena and could be crucial sources for oscillatory behavior. The main aim
of this study is to shed light on what e¤ects the delays can generate. To this end, three
di¤erent models of Cournot duopoly with di¤erent delays are build in a continuous time
framework and their local and global dynamics are analytically and numerically examined.
Three major �ndings are obtained. First, the stability switching conditions are analytically
constructed. Second, it is numerically demonstrated that di¤erent length of the delays are
sources for the birth of simple and complicated dynamics. Third, the delay for collecting
information on the competitors�output alone does not a¤ect stability.
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In competitive markets the �rms make their optimal decisions based on those
of the competitors. However this information is not instantaneous because of
delays in data collection, in determining optimal decisions and also in their
implementation. These delays have signi�cant e¤ects in the long-term behavior
of the associated dynamic systems. This paper investigates this e¤ect in cases of
duopolies when only two competing �rms are present. Three particular models
are examined, in which the equilibrium is locally asymptotically stable without
delays. In the �rst model both information and implementation delays are
assumed and it is shown that the delays have the dual rules of destabilizing
and stabilizing the equilibrium involving chaotic behavior with larger values of
the delays. In the second model only information delays are assumed on the
competitors� outputs and it is veri�ed that the delays have no e¤ect on the
stability of the equilibrium. In the third model only implementation delays are
assumed which can destabilize the otherwise stable equilibrium without the dual
rule. In addition to the theoretical developments computer studies illustrate and
verify the theoretical �ndings.

1 Introduction

This paper reconsiders the stability conditions of the delay Cournot oligopoly models studied by
Howroyd and Russel (1984) ("HR" henceforth). Constructing n-�rm Cournot oligopoly models
in a continuous-time framework, HR provides a su¢ cient condition for stability under circum-
stances in which each �rm experiences delays in implementing information on its own output
(i.e., implementation delay) and in collecting information on its competitors�outputs (i.e., infor-
mation delay). Further, HR shows that the information delays do not a¤ect stability when each
�rm has the information delay on its competitors�outputs but instantaneous knowledge on its
own output. Based on these results, we move one step forward and investigate a su¢ cient and
necessary condition for stability. To simplify the complicated problem, we draw attention only
to a Cournot duopoly in this study.
Oligopoly theory has a long history since the pioneering work of Cournot (1883). Its stability

properties are �rst investigated by Theocharis (1960). It is shown that only the number of the
�rms involved in a market determines stability of a linear Cournot oligopoly in a discrete-time
framework: the steady state is stable in the duopoly, marginal stable in the triopoly and un-
stable if the number is more than three. McManus and Quandt (1961) and Hahn (1962) prove
asymptotically stability in the continuous-time adjustment process with demand and cost func-
tions having the appropriate slopes. Okuguchi (1976) summarizes the early results on static and
dynamic oligopolies. Okuguchi and Szidarovszky (1999) discuss their multiproduct generaliza-
tion. During the last two decades, an increasing attention has been given mainly to discrete-time
nonlinear dynamics. Bischi et al. (2010) give a comprehensive summary of the newer devel-
opments. As the same as an ordinary di¤erential equation, the stability of a delay di¤erential
equation depends on the location of the roots of the associated characteristic equation. In con-
sequence, the roots are functions of delays and thus the stability may change as the length of
delay changes. Such phenomena are referred to as stability switches. For di¤erential equations
with one delay, Cooke and Grossman (1982) improve the key techniques to utilize. However,
concerning multi-delay dynamics, it has not been discussed until quite recently. This is because
the inclusion of multiple delays in equations makes the detail descriptions of the dynamic process
too complicated and in addition, no mathematical methods are available for dealing with such
delay dynamic models, although importance of multiple delays inherent in the process of obtain-
ing information has been realized. Only recently, Gu et al. (2005) and Lin and Wang (2012)
independently develop the useful procedures to construct the stability switching curves for dif-
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ferential equations with multiple delays. With these curves, it can be detected under which the
delay systems lose or gain stability. See Matsumoto and Szidarovszky (2015) and Gori et al.
(2015) that adopt the methods for analyzing delay dynamics of Cournot duopoly.
In this paper, we present three di¤erent Cournot duopoly models with multiple delays, the �rst

model includes both of the implementation and information delays, the second model possesses
only the information delays and the third model is endowed with only the implementation delays.
Applying the Lin-Wang method, we analytically and numerically investigate stability of these
models and �nd that the delay models may explain various dynamics ranging from simple to
complex behavior under Cournot competition.
This paper is organized as follows. Section 2 is divided into two subsections. In the �rst,

we build a delay duopoly model based on HR�s n-�rm Cournot model and present a stability
condition. In the second, we specify the parameter values and illustrate the stability switching
curve under identical parameter condition. In Section 3, we focus on the special case where the
�rms have only information delays and con�rm the corresponding HR result. In Section 4, we
turn attention to a case where the �rms have only implementation delays, the case which HR
does not consider. In Section 5, we numerically examine how the stability properties change when
certain nonlinearities are introduced into the adjustment process and the identical conditions are
taken away. In the �nal section, concluding remarks and further research directions are given.

2 Delay Duopoly Model I

2.1 Duopoly Version of the Howroyd and Russel Model

Constructing a Cournot pro�t maximizing model in which n �rms have linear price and quadratic
cost functions, HR derives a linear best reply function of �rm i as

x�i = �i � �i
X
j 6=i

xj for i; j = 1; 2; :::n (1)

where �i and �i are positive constants and xj is output of �rm j. Concerning the continuous-
time adjustment of output, it is assumed that �rm i adjusts its output at a rate proportional to
the di¤erence between its best reply output and its actual output at some proceeding time t�� i;

dxi
dt

= ki [x
�
i (t� � i)� xi(t� � i)] for i = 1; 2; :::; n (2)

where � i � 0 denotes a delay and ki > 0 is the adjustment coe¢ cient. After determining Cournot
equilibrium output xei as the solution of equations

xei + �i
X
j 6=i

xej = �i for i; j = 1; 2; :::; n

HR provides a su¢ cient condition for stability of the equilibrium point,

� i �
1

2ki
for i = 1; 2; :::n (3)

under the parametric assumption
(n� 1)�i < 1:

In this study, we con�rm a su¢ cient and necessary condition for stability of the various versions
of the delay HR model in the duopoly framework (i.e., n = 2) in which the equilibrium outputs
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are explicitly obtained,

xe1 =
�1 � �2�1
1� �1�2

and xe2 =
�2 � �1�2
1� �1�2

:

To avoid negative output, we impose the following conditions on the parameters.

Assumption 1. �i < 1 for i = 1; 2 and �2 �
�2
�1
� 1

�1
:

For stability analysis, we substitute the best replies into the delay di¤erential equation (2)
and then consider its homogenous system with multiple delays �1 � 0 and �2 � 0,

dx1
dt

= k1 [�x1(t� �1)� �1x2(t� �1)] ;

dx2
dt

= k2 [��2x1(t� �2)� x2(t� �2)] :
(4)

With an exponential solution for the form

xi = e�t�i;

the characteristic equation of (4) is derived as

det

0@ �+ k1e
���1 k1�1e

���1

k2�2e
���2 �+ k2e

���2

1A = 0

or
P0(�) + P1(�)e

���1 + P2(�)e
���2 + P3(�)e

��(�1+�2) = 0 (5)

where
P0(�) = �2; P1(�) = k1�; P2(�) = k2�; P3(�) = k1k2(1� �1�2):

If the characteristic equation (5) has roots only with the negative real parts, then the zero
solution of delay system (4) is locally asymptotically stable. Thus our problem is to determine
parametric conditions under which all roots of the characteristic equation lie in the left half of
the complex plane.
If �1 = �2 = 0, then (5) becomes

�2 + (k1 + k2)�+ k1k2(1� �1�2) = 0

where the two roots of this equation are real and negative if �1 < 1 and �2 < 1: Hence Assumption
1 guarantees stability of the stationary point of the duopoly model with no-delay. We now suppose
that �1 � 0 and �2 � 0 but not �1 = �2 = 0. It is assumed that (�1; �2) varies continuously in
R2+ = f(�1; �2) j �1 � 0 and �2 � 0)g. Since � = 0 is not a root of (5), the number of eigenvalues
having a positive real part can change only if an eigenvalue appears on or crosses the imaginary
axis. Therefore in order to study stability, we need to �nd all pure complex roots of equation
(5). We thus look for a pair of delays for which (5) has purely imaginary roots. Since roots of
real function always come in conjugate pairs, it can be assumed, without loss of generality, that
� = i! with ! > 0: Substituting it into (5) presents the form

P0(i!) + P1(i!)e
�i!�1 + P2(i!)e

�i!�2 + P3(i!)e
�i!(�1+�2) = 0 (6)
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with
P0(i!) = �!2; P1(i!) = ik1!; P2(i!) = ik2!; P3(i!) = k1k2(1� �1�2): (7)

Applying the method developed by Lin and Wang (2012), we derive the set of (�1; �2) for
which the delay dynamic system (4) loses stability. Equation (6) can be rewritten as�

P0 + P1e
�i!�1

�
+
�
P2 + P3e

�i!�1
�
e�i!�2 = 0 (8)

where the arguments of P0; P1; P2 and P3 are omitted for the sake of simplicity. Since
��e�i!�2�� =

1; equation (8) has solution for �1 if and only if��P0 + P1e�i!�1�� = ��P2 + P3e�i!�1��
or equivalently;�

P0 + P1e
�i!�1

� �
�P0 + �P1e

i!�1
�
=
�
P2 + P3e

�i!�1
� �
�P2 + �P3e

i!�1
�
;

where over-bar indicates complex conjugate. After some algebra, the last equation has the form

jP0j2 + jP1j2 � jP2j2 � jP3j2 = 2A1 (!) cos!�1 � 2B1(!) sin!�1 (9)

with
A1 (!) = Re

�
P2 �P3 � P0 �P1

�
and B1(!) = Im

�
P2 �P3 � P0 �P1

�
:

The left hand side of equation (9) depends only on ! and the right hand side is a simple trigono-
metric equation for �1 with any �xed value of !: Denoting the left hand side by f(!), we �rst
check the existence of solutions for equation (9).
Using (7), we can con�rm that

P2 �P3 � P0 �P1 = ik1!
�
k22 (1� �1�2)� !2

�
implying that

A1 (!) = 0 and B1(!) = k1!
�
k22 (1� �1�2)� !2

�
:

We examine the case of B1(!) = 0 and then the case of B1(!) 6= 0 in the following.
Case I. A1 (!) = B1(!) = 0
Let !0 be the positive solution of B1(!) = 0;

!0 = k2
p
1� �1�2 > 0:

Substituting Pj(i!) for j = 0; 1; 2; 3 de�ned in (7) into f(!) gives

f(!) = !4 +
�
k21 � k22

�
!2 � (k1k2)2 (1� �1�2)

2
:

Then solving f(!) = 0 for !2 yields a positive solution

!2+ =
�
�
k21 � k22

�
+

q
(k21 � k22)

2
+ 4 (k1k2)

2
(1� �1�2)

2

2
> 0

that is reduced to !20 if k1 = k2 and not equal to it if k1 6= k2. We then have two possibilities.
First, if k1 6= k2; then f(!) 6= 0 for ! = !0. Thus there is no solution for �1 since equation
(9) is contradiction. On the other hand, if k1 = k2, then f(!) = 0 for ! = !0: Thus �1 > 0 is
arbitrary, and the corresponding values of �2 can be obtained from equation (8) as
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e�i!�2 = �P0(i!) + P1(i!)e
�i!�1

P2(i!) + P3(i!)e�i!�1
(10)

where the absolute value of the right hand side is unity for all values of �1. Therefore there are
in�nitely many solutions of �2 because of periodicity of trigonometric functions. A locus of �1
and �2 satisfying (10) is called a crossing curve on which roots of (6) cross the imaginary axis
when �2 changes and �1 is �xed (or alternatively �1 changes and �2 is �xed). Since the zero
solution of (4) is locally asymptotically stable with no delays and its stability depends on the
lengths of the positive delays, there may be the curve on which the stability of the zero solution
changes. We call such a curve a stability switching curve. The result obtained is summarized as
follows:

Theorem 1 If the adjustment coe¢ cients of the two �rms are identical (i.e., k1 = k2), then the
crossing curve in Case I is described by (�1; � `2(�1)) where

� `2(�1) =
1

!0

�
arg

�
�P2(i!0) + P3(i!0)e

�i!0�1

P0(i!0) + P1(i!0)e�i!0�1

�
+ 2`�

�
for ` = 0; �1; �2; ::: (11)

Case II. [A1 (!)]
2
+ [B1(!)]

2
> 0

We have already known that A1 (!) = 0 for any ! � 0 and B1(!) 6= 0 for ! 6= !0: There
exists '1(!) such that

'1(!) = arg
�
P2 �P3 � P0 �P1

�
=

8>><>>:
�

2
if B1(!) > 0 or ! < !0;

3�

2
if B1(!) < 0 or ! > !0;

implying that

sin ['1(!)] =
B1(!)q
[B1(!)]

2
and cos ['1(!)] =

A1(!)q
[B1(!)]

2
= 0:

Using these relations, Equation (9) is reduced to

jP0j2 + jP1j2 � jP2j2 � jP3j2 = 2
q
[B1(!)]

2
cos ('1(!) + !�1) (12)

that can be rewritten as

jP0j2 + jP1j2 � jP2j2 � jP3j2

2

q
[B1(!)]

2
= cos ['1(!) + !�1] :

A su¢ cient and necessary conditions for the existence of �1 � 0 satisfying the above equation is���jP0j2 + jP1j2 � jP2j2 � jP3j2��� � 2q[B1(!)]2
or

F (!) =
h
jP0j2 + jP1j2 � jP2j2 � jP3j2

i2
� 4 [B1(!)]2 � 0:
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With the notation of x = !2; the right hand side of F (!) is reduced to the following form and
denoted as

g(x) = x4 + a3x
3 + a2x

2 + a1x+ a0

where the coe¢ cients are de�ned as

a3 = �2(k21 + k22);
a2 = (k21 � k22)2 + 2 (k1k2)

2
(3 + �1�2) (1� �1�2) ;

a1 = �2(k21 + k22) [k1k2 (1� �1�2)]
2
;

a0 = [k1k2 (1� �1�2)]
4
:

Solving g(x) = 0 yields four real solutions,

x1 =
1

2

�
k21 + k

2
2 � 2k1k2�1�2 � (k1 � k2)

p
d1
�
;

x2 =
1

2

�
k21 + k

2
2 � 2k1k2�1�2 + (k1 � k2)

p
d1
�
;

x3 =
1

2

�
k21 + k

2
2 + 2k1k2�1�2 � (k1 + k2)

p
d2
�
;

x4 =
1

2

�
k21 + k

2
2 + 2k1k2�1�2 + (k1 + k2)

p
d2
�
;

where both discriminants are positive,

d1 = (k1 + k2)
2 � 4k1k2�1�2 > 0

and
d2 = (k1 � k2)2 + 4k1k2�1�2 > 0:

Positive solutions of xi = !2 are denoted by !i where

!3 < !4 and !1 S !2 according to k1 T k2:

The interval [!3; !i] [ [!j ; !4] is denoted by 
 in which F (!) � 0 and !i = !1 and !j = !2 if
k1 > k2 and !i is interchanged with !j if the inequality is reversed.
Let us de�ne  1(!) by

jP0j2 + jP1j2 � jP2j2 � jP3j2 = 2
p
B(!)12 cos [ 1(!)] : (13)

So

 1(!) = cos
�1

"
jP0j2 + jP1j2 � jP2j2 � jP3j2

2
p
B1(!)2

#
:

Comparing the right hand side of (12) with that of (13) yields

��1;n(!) =
1

!
[� 1(!)� '1(!) + 2n�] : (14)

Returning to (6), we can see that it can be alternatively put as�
P0 + P2e

�i!�2
�
+
�
P1 + P3e

�i!�2
�
e�i!�1 = 0:
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In the similar way to analysis of �1; we can �nd critical values of �2 as

��2;m(!) =
1

!
[� 2(!)� '2(!) + 2m�] (15)

where

A2(!) = Re
�
P1 �P3 � P0 �P2

�
= 0;

B2(!) = Im
�
P1 �P3 � P0 �P2

�
= k2!

�
k21(1� �1�2)� !2

�
;

 2(!) = cos
�1

"
jP0j2 � jP1j2 + jP2j2 � jP3j2

2
p
B2(!)2

#
and

'2(!) = arg
�
P1 �P3 � P0 �P2

�
=

8>><>>:
�

2
if B2(!) > 0;

3�

2
if B2(!) < 0:

To de�ne  2(!); we need a condition similar to F (!) � 0; that is,

G(!) =
�
jP0j2 � jP1j2 + jP2j2 � jP3j2

�2
� 4 [B2 (!)]2 � 0:

Since it can be shown that F (!) = G(!); solutions of F (!) = 0 solve G(!) = 0: The results
obtained so far are summarized as follows:

Theorem 2 From (14) and (15), the following pair of delays�
(��1;m(!); �

�
2;n(!)) j ! 2 


	
is the set of all crossing curves on the (�1; �2) plane for equations (4).

2.2 Identical Coe¢ cients

We will consider the above-mentioned two cases further by performing numerical simulations to
visualize the theoretical results obtained in Theorems 1 and 2. For this purpose, we make the
following assumption of identical adjustment coe¢ cients under which we examine Case I and
then Case II.

Assumption 2. k1 = k2 = k

In Case I, an explicit form of � `2 with ` = 0 described by (11) is derived as follows. Applying
Euler�s formula to the left hand side of (10) and substituting Pi de�ned in (7) into the right hand
side lead to

cos!�2 � i sin!�2 =

�
!2 � k! sin!�1

�
� ik! cos!�1

k2(1� �1�2) cos!�1 + i (k! � k2(1� �1�2) sin!�1)
: (16)

Multiplying by conjugate of denominator, the new denominator becomes

D1 = k2
�
k2(1� �1�2)2 � 2k!(1� �1�2) sin!�1 + !2

�
:
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The new numerator is denoted as N1 + iM1 with

N1 = �(k!)2�1�2 cos!�1

and
M1 = �k!

�
k2(1� �1�2) + !2

�
+ (k!)

2
(2� �1�2) sin!�1:

Comparing the left hand side of (16) with N1=D + iN2=D yields

cos!�2 =
N1
D1

and sin!�2 = �
M1

D1
(17)

where the graphs of N1=D1 and �M1=D1 as functions of �1 are illustrated in Figure 1 for
�1 2 [0; 2�] under the following benchmark parameter values given below in Assumption 3.
These values are repeatedly used in the following numerical calculations. Each of the red N1=D1

curve and the blue �M1=D1 curve intersects the horizontal axis twice at the following points,

�B1 ' 1:81, �D1 ' 5:44 and �A1 ' 1:65, �C1 ' 1:98:

We will refer to the dotted red curve later.

Assumption 3. k = 1; �1 = �2 = 9 and �1 = �2 = 1=2:

Figure 1. Graphs of N1=D1 (red) and �M1=D1

(blue)

It is observed that cos!�2 < 0 and sin!�2 > 0 for �1 2 (0; �A1 ): Hence solving cos!�2 = N1=D1

and sin!�2 = �M1=D1 for �2 yields

� c2(�1) =
1

!
cos�1

�
N1
D1

�
and � s2(�1) =

1

!

�
� � sin�1

�
�M1

D1

��
(18)

where the superscripts c and s stand for cos and sin, respectively. In the same way, cos!�2 < 0
and sin!�2 < 0 for �1 2 (�A1 ; �B1 ) that present

� c2(�1) =
1

!

�
2� � cos�1

�
N1
D1

��
and � s2(�1) =

1

!

�
� � sin�1

�
�M1

D1

��
: (19)
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For �1 2 (�B1 ; �C1 ); cos!�2 > 0 and sin!�2 < 0 gives

� c2(�1) =
1

!

�
2� � cos�1

�
N1
D1

��
and � s2(�1) =

1

!

�
2� + sin�1

�
�M1

D1

��
: (20)

Finally for �1 2 (�C1 ; �D1 ) [ [�D1 ; 2�]; cos!�2 > 0 and sin!�2 > 0 generate

� c2(�1) =
1

!
cos�1

�
N1
D1

�
and � s2(�1) =

1

!
sin�1

�
�M1

D1

�
: (21)

Since � s2(�1) = � c2(�1) holds for any �1 2 [0; 2�], the solution can be denoted by �2(�1):
The locus of (�1; �2(�1)) for �1 2 [0; 2�] constructs the stability switching curve in Case I

that is illustrated by two black curves in Figure 2. More precisely, the upper convex-shaped
curve consists of three segments, each of which is described by (18), (19) and (20) whereas the
lower concave-shaped curve is described only by (21).1 It is numerically con�rmed that the upper
curve passes through point

�
2�=3

p
3; 4�=3

p
3
�
at which the blue curve ends and the orange curve

starts and that the lower curve passes through point
�
4�=3

p
3; 2�=3

p
3
�
at which the green curve

starts and the red curve ends.
In Case II with Assumption 2, solving F (!) = 0 yields simpli�ed solutions,

!1 = !2 = k
p
1� �1�2; !3 = k(1�

p
�1�2) and !4 = k(1 +

p
�1�2);

implying that

 = [!3; !1] [ [!2; !4]:

Since !0 = !i for i = 1; 2;

Bi(!) > 0 for ! 2 [!3; !1) implying 'i(!) = �=2;

Bi(!) < 0 for ! 2 (!2; !4] implying 'i(!) = 3�=2:

In Figure 2, the blue and red curves are described by the pairs of�
�+1;0(!); �

�
2;1(!)

�
and

�
��1;1(!); �

+
1;0(!)

�
for ! 2 [!3; !1]

starting at point (�; �) for ! = !3: On the other hand, the green and orange curves are described
by the pairs of �

�+1;1(!); �
�
2;1(!)

�
and

�
��1;1(!); �

+
2;1(!)

�
for ! 2 [!2; !4]

ending at point (�=3; �=3) for ! = !4. Hence the stationary point is stable in the lower-left
region surrounded by the two black, orange and green curves. The hatched square is the region
satisfying the HR conditions, (3). Notice that the square is inside the stable region we have just
obtained. This is because HR derives one su¢ cient condition whereas we derive the su¢ cient
and necessary condition. We will refer to the vertical dotted lines at �1 = �=3 and �1 = 4�=3

p
3

and points a; b; c later when we will perform numerical simulations.

Theorem 3 The equilibrium point of dynamic system (4) is locally asymptotically stable for
(�1; �2) in the region bounded by the stability switching curve that consists of the black, orange
and green curves in the non-negative quadrant of (�1; �2).

1 It is, however, only some parts of the curves are illustrated for graphical simplicity.
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Figure 2. Division of the (�1; �2) plane

3 Delay Duopoly Model II

HR also examines the case where each �rm has delayed information on its competitor�s outputs
but instantaneous knowledge of its own output. The homogenous system of the corresponding
delay di¤erential equations with n = 2 is

dx1
dt

= k1 [�x1(t)� �1x2(t� �1)] ;

dx2
dt

= k2 [��2x1(t� �2)� x2(t)] ;
(22)

where the non-diagonal variables are delayed. Its characteristic equation is

det

0@ �+ k1 k1�1e
���1

k2�2e
���2 �+ k2

1A = 0

or
�2 + k1k2 + (k1 + k2)�� k1k2�1�2e��� = 0 (23)

where � = �1 + �2 > 0: Although the dynamic system (22) has two distinct delays, �1 and �2; it
is essentially the same as a single delay system since only the value of the sum of these delays
can a¤ect dynamics. Suppose � = i! with ! > 0 is a root of (23) for some � and substitute it
into (23) that can be separated to the real and imaginary parts,

�!2 + k1k2 � k1k2�1�2 cos!� = 0;

(k1 + k2)! + k1k2�1�2 sin!� = 0:

11



Moving the non-trigonometric terms to the right hand side and adding the squares of the two
equations yield a quartic equation of !

!4 +
�
k21 + k

2
2

�
!2 + (k1k2)

2 �
1� (�1�2)2

�
= 0

where the last term is positive due to Assumption 2. Positive coe¢ cients of this equation imply
no pure imaginary roots for equation (23). In other words, there are no roots of (23) that cross
the imaginary axis when � increases. Therefore no stability switch can occur, no matter how the
delays are chosen. Such delays are called harmless. This is the same as the result shown by HR
in a di¤erent way and can be summarized as follow.

Theorem 4 The equilibrium point of dynamic system of (22) is locally asymptotically stable
regardless of the values of �1 and �2.

4 Delay Duopoly Model III

HR did not consider the case in which each �rm has delayed knowledge of its own output but
instantaneous knowledge of its competitors�outputs. In this section, we examine it where the
dynamic system is constructed in the following way,

dx1
dt

= k1 [�x1(t� �1)� �1x2(t)] ;

dx2
dt

= k2 [��2x1(t)� x2(t� �2)]
(24)

where the diagonal variables are delayed. With the same procedure above, we obtain the char-
acteristic equation,

det

0@ �+ k1e
���1 k1�1

k2�2 �+ k2e
���2

1A = 0

that is equivalent to the equation

P0(�) + P1(�)e
���1 + P2(�)e

���2 + P3(�)e
��(�1+�2) = 0 (25)

where
P0(�) = �2 � k1k2�1�2; P1(�) = k1�; P2(�) = k2�; P3(�) = k1k2:

Although each �rm has a delay only in its own output, the characteristic equation (25) has the
similar form to (6) in which each �rm has not only the implementation delay on its own output
but also the information delay on its competitor�s output. Supposing � = i! with ! > 0 and
then following the same procedure as in Section 2, we have

jP0(i!)j2 + jP1(i!)j2 � jP2(i!)j2 � jP3(i!)j2 = 2A1 (!) cos!�1 � 2B1(!) sin!�1

with

A1 (!) = Re
�
P2(i!) �P3(i!)� P0(i!) �P1(i!)

�
= 0;

B1(!) = Im
�
P2(i!) �P3(i!)� P0(i!) �P1(i!)

�
= k1!

�
k22 � k1k2�1�2 � !2

�
:

12



As before, we �rst consider the case of A1(!) = B1(!) = 0: It can be con�rmed that A1(!) = 0
always and B1(!) = 0 holds for ! = !0 where

!20 = k22 � k1k2�1�2:

On the other hand, jP0(i!)j2 + jP1(i!)j2 � jP2(i!)j2 � jP3(i!)j2 = 0 for ! = !+ where

!2+ =

�
k22 � 2k1k2�1�2 � k21

�
+

q
(k22 � 2k1k2�1�2 � k21)

2
+ 4 (k1k2)

2
[1� (�1�2)2]

2
:

If k1 = k2 = k; then !0 and !+ are the same

!0 = !+ = k
p
1� �1�2

and this equality does not hold if k1 6= k2. Hence, under the identical coe¢ cient assumption, the
stability switching curve is obtained as

e�i!0�2 = �P0(i!0) + P1(i!0)e
�i!0�1

P2(i!0) + P3(i!0)e�i!0�1
: (26)

As in the same analysis of Section 2.1, equation (26) can be rewritten as

cos!0�2 � i sin!0�2 =
�
!20 + k

2�1�2 � k!0 sin!0�1
�
� ik!0 cos!0�1

k2 cos!0�1 + i (k!0 � k2 sin!0�1)
: (27)

Multiplying conjugate of denominator to the denominator and numerator of the right hand side
of (27) leads to the new denominator

D3 = k2
�
k2 � 2k!0 sin!0�1 + !20

�
(28)

and the new numerator
N3 + iM3

where
N3 = k4�1�2 cos!0�1

and
M3 = �k!0

�
k2 + !20 + k

2�1�2
�
+ k2

�
2!20 + k

2�1�2
�
sin!0�1:

Hence from the left hand side of (27) we have

cos!0�2 =
N3
D3

and sin!0�2 = �
M3

D3
(29)

where
N3
D3

=
k2�1�2 cos!0�1

k2 � 2k!0 sin!0�1 + !20
= �N1

D1

and
M3

D3
=
�2k!0 + (k2 + !20) sin!0�1
k2 � 2k!0 sin!0�1 + !20

= �M1

D1
:

Comparing (29) with (17) reveals that in Figure 1, theM3=D3 curve is identical with theM1=D1

blue curve whereas the N3=D3 curve corresponds to the dotted red curve, that is, a horizontal-line
mirror image of the N1=D1 red curve.
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We now turn attention to the case of [B1(!)]
2
> 0. As is shown above, we should have

F (!) =
h
jP0j2 + jP1j2 � jP2j2 � jP3j2

i2
� 4 [B1(!)]2 � 0

where F (!) can be factored as

F (!) = Fa(!) � Fb(!) � Fc(!) � Fd(!)

with
Fa(!) = !2 + (k1 + k2)! + k1k2 (1 + �1�2) ;

Fb(!) = !2 � (k1 + k2)! + k1k2 (1 + �1�2) ;

Fc(!) = !2 + (k1 � k2)! � k1k2 (1� �1�2) ;

Fd(!) = !2 � (k1 � k2)! � k1k2 (1� �1�2) :
Solving each Fi(!) = 0 for i = a; b; c; d yields two solutions and totally eight solutions are
obtained,

!a� =
k1 + k2 �

p
(k1 + k2)2 � 4k1k2 (1 + �1�2)

2
= k

�
1� i

p
�1�2

�
;

!b� =
�(k1 + k2)�

p
(k1 + k2)2 � 4k1k2 (1 + �1�2)

2
= k

�
�1� i

p
�1�2

�
;

!c� =
k1 � k2 �

p
(k1 � k2)2 + 4k1k2 (1� �1�2)

2
= �k

p
1� �1�2;

!d� =
�(k1 � k2)�

p
(k2 � k1)2 + 4k1k2 (1� �1�2)

2
= �k

p
1� �1�2:

Notice that the right most forms are obtained under the identical coe¢ cient assumption. We see
F (!) > 0 for ! 6= !0; implying no occurrence of the stability switch in the case of [B1(!)]

2
> 0.

Returning to Figure 1 and (29); the stability switching curve with B1(!) = 0 illustrated in
Figure 3(A) is constructed as follows. Since cos!�1 > 0 and sin!�1 > 0 for �1 2 (0; �A1 ); we
have

�A2 (�1) =
1

!0
cos�1

�
N3
D3

�
(30)

that describes the concave-shaped negative slope red curve in the lower-left corner. Since the
stationary state is stable below the curve and unstable above, this is the stability switching curve
on which the real part of an eigenvalue is zero, that is, stability is just lost. At �1 = �A1 ; the
corresponding value of �1 jumps up to the y-value of point A. Notice that HR�s stability condition
is satis�ed in the small solid rectangular and is strictly below the curve. Since cos!�2 > 0 and
sin!�2 < 0 for �1 2 (�A1 ; �B1 ) and cos!�1 < 0 and sin!�1 < 0 for �1 2 (�B1 ; �C1 );

�B2 (�1) = �C2 (�1) =
1

!0

�
2� � cos�1

�
N3
D3

��
where �B2 (�1) for �1 2 (�A1 ; �B1 ) describes the blue segment between A and B whereas �C2 (�1) for
�1 2 (�B1 ; �

C
1 ) describes the magenta segment between B and C: Further cos!�1 < 0 and

sin!�1 > 0 for �1 2 (�C1 ; �D1 ) and cos!�1 > 0 and sin!�1 > 0 for �1 2 (�D1 ; 2�) presents the
form of

�D2 (�1) = �E2 (�1) =
1

!0
cos�1

�
N3
D3

�

14



where �D2 (�1) for �1 2 (�C1 ; �
D
1 ) describes the orange segment between C and D whereas

�E2 (�1) for �1 2 (�D1 ; 2�) describes the green segment between D and E: Finally,

�A
0

2 (�1) =
1

!0

�
cos�1

�
N3
D3

�
+ 2�

�
describes the red segment that shifts the �A2 (�1) curve upward with 2� and the right most red
curve is described by �A2 (�1) for �1 2 (2�; 9:80): It is to be notice that the y-value of point E is
�E2 = �A2 (2�). On the winding downward-sloping curve located above-rightward of the stability
switching curve, one of the eigenvalues is purely imaginary but the stability is already unstable
there and no stability switch occurs.

Theorem 5 The stability switching curve of dynamic system (24) is described by

�A2 (�1) =
1

!0
cos�1

�
N3
D3

�
for �1 2 (0; �A1 ):

To compare the stability switching curve of Model I with that of Model III, we enlarge the
lower-left corner of Figure 3(A) and put the red stability switching curve (30) on the black
stability switching curve of Model I in Figure 3(B). Due to the di¤erent shapes of these two
curves, the region of (�1; �2) is divided into �ve subregions. Both models are stable in region
labelled by [S] and unstable in region [U ] indicating that roughly speaking, the delays become
destabilizers when their lengths are relatively large and do not a¤ect stability when they are
smaller. Although Theorem 4 implies that the information delays are harmless to stability if the
dynamic process involves only these, the division in Figure 3(B) reveals a di¤erent role of the
information delay. In region [A]; Model I with information delays is unstable and Model III with
no information delays is stable, implying that the information delays destabilize Model I when
�1 and �2 are symmetry in the sense that they have the similar values. On the other hand, in
regions [B1] and [B2]; Model I is stable and Model III is unstable, implying that the information
delays stabilize Model I when �1 and �2 are asymmetry in the sense that one of them takes a
larger value and the other a smaller value. We summarize these results as follows:

Proposition 1 When a dynamic system has both of the implementation and information delays,
the information delays can change its role to stabilizer from destabilizer when the delays become
asymmetry from symmetry.

(A) Model III (B) Models I and III

Figure 3. Stability switching curves
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5 Numerical Simulations

So far we have imposed the identical coe¢ cient assumption of k1 = k2 on the output adjustment
process and con�ne attention to a small neighborhood of the equilibrium point. In this section
we modify the dynamic equations and numerically con�rm the theoretical results obtained. To
this end, we �rst introduce some nonlinearities into Models I and III to examine global behavior.
Second, we take away the identical assumption (i.e., Assumption 2) and then consider how the
non-identical coe¢ cients a¤ect the shape of the stability switching curves and the resultant
dynamics.

5.1 Global Dynamics

Since the corresponding nonhomogenous systems of (4) and (24) are still linear, trajectories
generated by these systems are divergent when the systems are locally unstable. To avoid such
uninteresting and unrealistic dynamics, we introduce some nonlinearities and see the e¤ects
caused by the delays on global dynamics. The nonlinearity that we consider comes from an idea
of a �exible adjustment, that is, the output adjustment responds positively to the gap between
the optimal and actual outputs and the degree of responsiveness depends on the level of output
in the following way,

Ki(xi) = ki

�
a2

�
a1 + a2

a1e�(xi�x
�
i ) + a2

� 1
�
+ 1

�
:

It can be checked that

Ki(x
�
i ) = ki; lim

xi!1
Ki(xi) = ki (1 + a1) and Ki(0) = ki

�
a2 (a1 + a2)

a1ex
�
i + a2

+ 1� a2
�
> 0

where a1 = 1 and a2 = 1 are assumed in the following numerical simulations.
Model I is now nonlinearized as

dx1
dt

= K1 [x1(t)] [�x1(t� �1)� �1x2(t� �1) + �1] ;

dx2
dt

= K2 [x2(t)] [��2x1(t� �2)� x2(t� �2) + �2] ;
(31)

both of which can be reduced to (4) by linear approximation in the neighborhood of the equilib-
rium point. We perform two simulations. In the �rst simulation, we choose �2 as a bifurcation
parameter and increase the value of �2 from 0 to 5 with an increment of 0:01 along the verti-
cal dotted line at �1 = �=3 ' 1:05 in Figure 2. For each value of �2; the fully delayed system
(31) is simulated for 0 � t � 1000. We generate 1000 data of x2(t) from the solutions for
t 2 [900; 1000] by changing t with an increment of 0:1 and then plot the local maximum and
minimum out of the data vertically just above the point �2, to illustrate the corresponding bifur-
cation diagram with respect to �2 in Figure 4(A). The vertical line at �1 = �=3 passes through
the point at which the orange and green curve are connected (i.e., �a2 = �=3), crosses the orange
curve at � b2 ' 2:02 and then crosses the black curve at � c2 ' 2:28: Figure 4(A) indicates that
the equilibrium point is stable for �2 < �a2 and loses stability at the �rst intersection at point
a = (�=3; �a2). The equilibrium point bifurcates to a limit cycle for �2 2 (�a2 ; � b2) and then regains
stability when it arrives at the second intersection (�=3; � b2):

2 For further increases of �2 the sys-
tem loses stability again at (�=3; � c2) and the corresponding bifurcation gets a bit complicated.

2 It is possible to determine directions of the stability switch analytically. See Lin and Wang (2012) for
theoretical base and Matsumoto and Szidarovszky (2015) for its application.
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In particular, a limit cycle with two extremum (one maximal and one minimal) emerges �rst and
then it turns to be a cycle with four extremum that then becomes the one with six extremum
and so on. The system does not regain stability for values of �2 larger than � c2.
In the second simulation, we change the value of �1 to 4�=3

p
3 ' 2:42 and repeat the

same procedure to obtain the bifurcation diagram illustrated in Figure 4(B). The starting point
(4�=3

p
3; 0) is located in the region to the right of the lower black curve in Figure 2, the equilib-

rium point is locally unstable and Figure 4(B) indicates the birth of a limit cycle at this point.
As the value of �2 increases along the vertical dotted line at �1 = 4�=3

p
3; the correspond-

ing limit cycle gradually shrinks and discontinuously jumps to a di¤erent limit cycle at point
(4�=3

p
3; �a2) where �

a
2 = 2�=3

p
3 ' 1:21: Further increasing �2 leads to complicated dynamics

through ála period-doubling cascade. Notice that � i has exactly the same e¤ect as � j as the
stability switching curve is symmetric with respect to the diagonal. These numerical results are
summarized as follow.

Proposition 2 In the dynamic process of nonlinearized Model I, (1) the delay has the dual roles
of destabilizer and stabilizer according to its length when the stationary state is locally stable at
the starting point and (2) increasing a value of delay can generate complex dynamics involving
chaotic behavior when the stationary state is locally unstable at the starting point.

(A) �1 = �=3 (B) �1 = 4�=3
p
3

Figure 4. Bifurcation diagrams of the nonlinear Model I

We now turn attention to the nonlinearized Model III,

dx1
dt

= K1 [x1(t)] [�x1(t� �1)� �1x2(t) + �1] ;

dx2
dt

= K2 [x2(t)] [��2x1(t)� x2(t� �2) + �2] :

Two simulations are performed for the new Model III.3 The �rst simulation is presented in Figure
5(A) in which the value of �2 increases from 0 to 3 along the vertical dotted line at �1 = 1 in

3Matsumoto and Szidarovszky (2015) also consider dynamics of a delay nonlinear model of Cournot duopoly
having the similar structure. However the growth rate of outputs is determined by a product of the marginal
pro�t and an adjustment function depending on the level of output. As a natural consequence of the di¤erent
adjustment process, it has di¤erent dynamic behavior.
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Figure 3(A). The system is asymptotically stable for the starting point of �1 = 1 and �2 = 0
and remains stable until point (1; �A2 ) where point a is on the stability switching curve in Figure
3(A). As is seen, at a critical value �A2 ; the stationary state loses stability and bifurcates to a
limit cycle. Notice that the stability regain does not occur and thus the delay does not have the
dual roles. As seen in Figure 4(A), making �2 larger than the critical value of �A2 increases the
number of extremum of the limit cycle. In the second simulation, we change the �xed value of
�1 to 2 and repeat the same procedure. However, to avoid graphical congestion of Figure 3(A),
the line at �1 = 2 is not illustrated. The resultant dynamics illustrated in Figure 5(B) in which
the system is unstable and its dynamic behavior gets complicated as �2 increases, that is, we
alternatively have windows for complex dynamics and the one for a periodic limit cycle.

Proposition 3 In the dynamic process of nonlinearized Model III, (1) stability is lost at �2 = �A2
and never regained since the delay crosses the stability switching curves only once when the
stationary state is stable at the starting point; (2) as �2 increases, dynamics alternates between
complicated behavior and periodic cyclic behavior with increasing the periodic number.

(A) �1 = 1 (B) Bifurcation diagram

Figure 5. Bifurcation diagrams of the nonlinear Model III

5.2 Non-Identical Coe¢ cients

We now use the non-identical adjustment coe¢ cients to see how such asymmetry a¤ects the
results obtained. We have already shown that the stability switching curves in Case I (that
is, the black curves in Figure 2) can be constructed only under Assumption 2. It is expected
that the stability switching curves obtained in Case II may be distorted. In order to illustrate
the non-identical e¤ects, we present numerical simulations concerning the shape of the stability
switching curves and the dynamics of the nonlinearized Model I. The values of the coe¢ cients
are k1 = 3=2 and k2 = 1 in the �rst simulation and are changed to k1 = 1=2 and k2 = 1 in the
second.
In the �rst simulation, solving F (!) = 0 determines the interval 
 = [!3; !1][ [!2; !4] where

!3 ' 0:589; !1 ' 0:840; !2 ' 1:340; !4 ' 1:911:

Notice that !1 6= !2 when k1 6= k2. In Figure 6(A) stability switching curves are illus-
trated as solid curves in the same color as in Figure 2, that is, the blue curve is described

18



by
�
�+1;0(!); �

�
2;1(!)

�
for ! 2 [!3; !1] and the red curve exists outside the designated region

whereas the green and orange curves are given by
�
�+1;1(!); �

�
2;1(!)

�
and

�
��1;1(!); �

+
2;1(!)

�
for

! 2 [!2; !4] and they end at the same point (��1(!4); ��2(!4)).4 The nonlinear system (31) is
asymptotically stable in the lower-left region surrounded by these curves. It is seen that the
shaded rectangular, HR�s stability region, is still inside it. The stability switching curves with
k1 = k2 = 1 are also illustrated as the dotted curves in the same color. Comparing the new sta-
bility region with the old one reveals that the asymmetric coe¢ cients shift the solid orange curve
leftward and the solid green curve downward, resulting in a shrink of the stability region. On
the other hand, a part of the solid blue curve is located above the dotted black curve, indicating
an enlargement of the stability region. As far as the current example is concerned, the increase
seems to be larger than the decrease. Thus the stability region becomes smaller. It is not sure
if this result is speci�c or general. The bifurcation diagram with respect to �2 in Figure 6(B)
is constructed along the vertical dotted line at �1 = ��1(!4): The vertical line intersects these
stability switching curves three times at the following values of �2,

�a2 ' 0:822; � b2 ' 1:325 and � c2 ' 2:36

which are at the connecting point of the green and orange curves, on the orange curve and on the
blue curve, respectively. Stability is lost at �2 = �a2 and regained at �2 = � b2 while a limit cycle
is born for �2 2 (�a2 ; � b2). Stability is lost again at �2 = � c2 and not regained for any �2 > � c2: The
diagram indicates that a limit cycle becomes more distorted as the value of �2 is getting larger.

(A) Stability switching (B) Bifurcation diagram

Figure 6. k1 = 1:5 and k2 = 1

In the second simulation, the di¤erent value of k1 presents di¤erent solutions for F (!) = 0;

!3 ' 0:317; !1 ' 0:411; !2 ' 0:911; !4 ' 1:183:

In Figure 7(A) the red curve is described by
�
��1;1(!); �

+
1;0(!)

�
for ! 2 [!3; !1] and the region

surrounded by the orange, green and red curves is the stability region that includes the shaded
rectangular region. As in Figure 6(A), the stability switching curves with k1 = k2 = 1 are
illustrated as the dotted curves in the same color. It is seen that decreasing the value of k1
shifts the solid green curve upward and makes the slope of the solid orange curve �atter. As

4Needless to say, ��1(!4) = �
+
1;1(!4) = �

�
1;1(!4) and �

�
2(!4) = �

�
2;1(!4) = �

+
2;1(!4):
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a result, the stability region is increased in one part and decreased in the other part. In the
current example, the stability region becomes larger. The bifurcation diagram with respect to �1
in Figure 7(B) illustrates the change of dynamical behavior of the nonlinearized Model I as the
length of the delay �1 is varied along the horizontal dotted line at �2 = ��2(!4). It is observed that
the bifurcation diagram in Figure 7(B) is similar to the diagrams in 6(B). In particular, stability
is lost at �1 = �a1 and regained at �1 = � b1 whereas a limit cycle emerges for �1 2 (�a1 ; � b1): It is
lost again at �1 = � c1: and never regained for any �1 > � c1: A limit cycle emerges for �1 > � c1 and
becomes larger with increasing the number of the extrema as �1 gets larger than � c1:
We summarize the e¤ect caused by asymmetry coe¢ cients.

Proposition 4 Non-identical coe¢ cients of k1 and k2 distort the shape of the stability switching
curve and it depends on the relative magnitude of the coe¢ cients whether the stability region
becomes larger or smaller.

(A) Stability switching curve (B) Bifurcation diagram

Figure 7. k1 = 0:5 and k2 = 1

6 Concluding Remarks

In this paper we have analyzed the dynamics of three di¤erent types of the Cournot duopoly
model with multiple discrete delays, Model I with the implementation and information delays,
Model II with only the information delays and Model III only with the implementation delays.
For stability analysis, we adopted the linear models that were used by HR and constructed
the stability switching curve on which stability was lost or gained. For global dynamics, we
nonlinearized the models and performed numerical simulations. In doing so, we demonstrated
three main results:

(i) In Model I, the delays has the dual roles of destabilizer and stabilizer and complicated
dynamics involving chaotic behavior can emerge for larger values of the delays.

(ii) In Model II, the information delays alone do not a¤ect stability.

(iii) In Model III, the implementation delays can destabilize the otherwise stable stationary
state, however, they do not have the dual roles.
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