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Abstract

A special labor-managed oligopoly without product differentiation is
considered. The existence of the equilibrium is first proved and a simple
example is presented to show the possibility of multiple equilibrium. The
local asymptotic stability of the equilibria is next examined, the stability
conditions are derived in both discrete and continuous time scales.

1 Introduction
The theory of oligopoly is one of the most frequently discussed subjects of
mathematical economics. Since the pioneering work of Cournot (1838), many
researchers examined the classical Cournot model and its extensions includ-
ing models without and with product differentiation, multi-product oligopolies,
rent-seeking games, labor-managed models, oligopolies with intertemporal de-
mand interaction and models with product adjustment costs. A comprehensive
summary of the most significant works up to the mid 70s is given in Okuguchi
(1976). Multiproduct models with futher extensions and applications are disc-
cussed in Okuguchi and Szidarovszky (1999), and nonlinear dynamic oligopolies
are examined in detail in Bischi et al. (2009).
In this paper a special labor-managed model is examined. The seminal

work of Ward (1958) is considered to be the first to introduce labor-managed
oligopolies. Hill and Waterson (1983) have formulated profit-maximizing and
labor-managed models without product differentiation and with symmetric firms
and compared the long-term behavior of these models. Neary (1984) general-
ized this work to the nonsymmetric case. The existence and uniqueness of the
equilibrium was proved by Okuguchi (1991) under rather restrictive conditions,
furthermore in Okuguchi (1993) comparative statics are presented for profit-
maximizing and labor-managed oligopolies. The existence of equilibrium was
also shown in Okuguchi and Szidarovszky (1999) under slightly more general
conditions, and the asymptotical properties of the equilibrium were also inves-
tigated with discrete and continuous time scales. These results were further
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generalized in Li and Szidarovszky (1999). Okuguchi and Szidarovszky (2008)
have presented a general existence and uniqueness theorem for the equilibrium
of labor-managed oligopolies.
In contrary to earlier works, the payoff functions are not concave and the

strategy sets are not compact in the model to be presented in this paper, so
general existence theorems cannot be used. This paper is organized as follows.
In Section 2 the mathematical model will be presented and the existences of
the equilibrium will be proved. The uniqueness of the equilibrium cannot be
guaranteed in general as it will be demonstrated by a simple example. The
local asymptotical stability of the equilibrium will be examined with discrete
and continuous time scales in Section 3. Section 4 concludes the paper.

2 Mathematical Model and Existence Theorem
Consider a single product oligopoly without product differentiation. Let N
denote the number of firms, and let Lk be the capacity limit of firm k. If xk
denotes the output of firm k and Q =

PN
k=1 xk is the output of the industry,

then the price function is assumed to be f(Q) = A−BQ with A > 0 and B > 0.
In order to guarantee nonnegative price, we assume that A/B ≥

PN
k=1 Lk. The

amount of labor necessary for producing output xk by firm k is denoted by
hk(xk) = pkx

2
k. Let dk > 0 be the fixed cost of firm k, and w the competitive

wage rate. The surplus of firm k per unit labor is given as

ϕk(x1, ..., xN ) =
xk(A−Bxk −BQk)− wpkx2k − dk

pkx2k
, (1)

where Qk =
P
` 6=k x` is the output of the rest of the industry. With these

notations, an N -person game can be defined in which the set of strategies of
player k is the closed interval [0, Lk] and its payoff function is ϕk. Notice that
ϕk → −∞ as xk → 0, so ϕk is not defined for xk = 0.
The best response of firm k can be obtained by maximizing ϕk with fixed

value of Qk. Since

ϕk(x1, ..., xN ) =
A−BQk
pkxk

− dk
pkx2k

−
µ
B

pk
+ w

¶
,

we have
∂ϕk
∂xk

= −A−BQk
pkx2k

+
2dk
pkx3k

=
1

pkx3k
(2dk − (A−BQk)xk) .

(2)

Therefore ϕk increases as xk < 2dk/(A−BQk), decreases if xk > 2dk/(A−BQk),
so the best response of firm k is the following:

Rk(Qk) =

⎧⎨⎩ x∗k if x
∗
k ≤ Lk

Lk otherwise,
(3)
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where

x∗k =
2dk

A−BQk
.

The first case occurs when

Qk ≤
ALk − 2dk
BLk

.

The graph of Rk is shown in Figure 1.

Figure 1. Piecewise continuous best response curve

Notice that the best response mapping
³
R1

³P
` 6=1 x`

´
, ..., RN

³P
6̀=N x`

´´
maps the compact, convex set

QN
k=1[0, Lk] into itself, and since it is continuous,

the Brouwer fixed point theorem guarantees the existence of at least one fixed
point.
Similarly to classical Cournot models, we can present a constructive existence

proof which can be also used to compute the equilibria.
If Q denotes the total output of the industry, then from (3), we have

x∗k =
2dk

A−BQ+Bx∗k
in the first case, so x∗k solves the quadratic equation

Bx∗2k + (A−BQ)x∗k − 2dk = 0 (4)

and therefore

x∗k =
−(A−BQ) +

p
(A−BQ)2 + 8Bdk
2B

.
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Hence the best response of firm k can be rewritten as

R̄k(Q) =

⎧⎨⎩ x∗k if x
∗
k ≤ Lk,

Lk otherwise.
(5)

From (4) we conclude that R̄0k(Q) = 0 or

R̄0k(Q) =
1

2B

Ã
B − 2(A−BQ)B

2
p
(A−BQ)2 + 8Bdk

!

=
1

2

Ã
1− A−BQp

(A−BQ)2 + 8Bdk

!
implying that in this case

0 < R̄0k(Q) ≤
1

2
.

In the second case of (5), R̄
00

k (Q) = 0 and in the first case the sign of R̄
00

k (Q)
is the same as the sign of the following expression:

−
(
(−B)

p
(A−BQ)2 + 8Bdk − (A−BQ)

2(A−BQ)(−B)
2
p
(A−BQ)2 + 8Bdk

)
,

which is the same as the sign of

(A−BQ)2 + 8Bdk − (A−BQ)2 = 8Bdk > 0.

Therefore in the first case of (5), R̄k(Q) strictly increases and is strictly convex,
and its graph has a similar shape as Rk(Qk) shown in Figure 1. The equilibrium
industry output is the solution of equation

NP
k=1

R̄k(Q)−Q = 0. (6)

The left hand side is continuous, at Q = 0 it is nonnegative and at Q =
PN
k=1 Lk

it is nonpositive implying the existence of at least one equilibrium.
The uniqueness of the equilibium cannot be guaranteed as it is shown in the

following example.

Example 1. Let N ≥ 3 be arbitrary, Lk = 4, dk = 8.5 for all k, A = 12 and
B = 2

N−1 . Clearly all conditions are satisfied: A > 0, B > 0 and

NP
k=1

Lk = 4N ≤
A

B
= 6(N − 1).

We can show that both

x̄Sk = 3−
√
0.5 and x̄Mk = 3 +

√
0.5
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are symmetric interior equilibria. Notice first that for all k,

0 < x̄Sk < Lk and 0 < x̄
M
k < Lk,

and they satisfy the best response equations xk = Rk(Qk), since

Q̄Sk = (N − 1)(3−
√
0.5) and Q̄Mk = (N − 1)(3 +

√
0.5),

furthermore in these cases

Rk(Q̄k) =
2dk

A−BQ̄k
=

17

12− 2(3∓
√
0.5)

= 3∓
√
0.5 = x̄k.

It can be also shown that x̄Lk = Lk is a symmetric boundary equilibrium,
since in this case the second case of (3) occurs:

x∗k =
17

12− 2

N − 14(N − 1)
=
17

4
> 4 = Lk.

3 Local Stability Analysis
From equation (3) we see that R0k(Qk) = 0 or

R0k(Qk) =
2dkB

(A−BQk)2
. (7)

Consider the second case. At the best response

R0k(Qk) =
x∗2k B

2dk
=
2dk − (A−BQ)x∗k

2dk
,

where we used equation (4). This expression implies that

0 < R0k(Qk) ≤ 1.

Consider first continuous time scales and assume that the firms use adaptive
adjustment toward best responses. Then their outputs satisfy the differential
equation system

ẋk = Kk

Ã
Rk

Ã
NP̀
6=k
x`

!
− xk

!
for k = 1, 2, ..., N, (8)

where Kk > 0 is the speed of adjustment of firm k. The equilibria of the labor-
managed oligopoly game coincide with the steady states of this system. The
local asymptotic stability of this system can be examined by linearization. The
Jacobian has the special form

J =

⎛⎜⎜⎝
−K1 K1r̄1 · K1r̄1
K2r̄2 −K2 · K2r̄2
· · · ·

KN r̄N KN r̄N · −KN

⎞⎟⎟⎠ = D+ a1T ,
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where r̄k is the value of R0k at the equilibrium,

D = diag (−K1(1 + r̄1), ...,−KN (1 + r̄N )) ,

a = (K1r̄1, ...,KN r̄N )
T

and
1T = (1, ..., 1).

The characteristic polynomial of this matrix can be written in the following
form:

ϕ(λ) = det(D+ a1T − λI)

= det(D− λI) det(I+ (D− λI)−1a1T )

=
NQ
k=1

(−Kk(1 + r̄k)− λ)

µ
1−

NP
k=1

Kkr̄k
Kk(1 + r̄k) + λ

¶
.

(9)

For the sake of simplicity, we assume that the Kk(1 + r̄k) values are different,
the other case can be discussed in the same way. The eigenvalues are λ =
−Kk(1 + r̄k) < 0 and the roots of equation

g(λ) =
NP
k=1

Kkr̄k
Kk(1 + r̄k) + λ

− 1 = 0. (10)

It is easy to see that

lim
λ→±∞

g(λ) = −1, lim
λ→−Kk(1+r̄k)±0

g(λ) = ±∞

and

g0(λ) =
NP
k=1

−Kkr̄k

(Kk(1 + r̄k) + λ)
2 < 0,

so g strictly decreases locally. All poles are negative, and since equation (10) is
equivalent to a polynomial equation of degree N, there are N real or complex
roots. There is one root between each adjacent pair of poles and one additional
root after the largest pole. So we found all roots, they are real, and they are
negative if g(0) < 0 or

NP
k=1

r̄k
1 + r̄k

< 1. (11)

Consider next discrete time scales. Then system (9) is replaced by the fol-
lowing system of difference equations:

xk(t+ 1) = xk(t) +Kk

Ã
Rk

Ã
NP̀
6=k
x`(t)

!
− xk(t)

!
for k = 1, 2, ..., N, (12)

where 0 < Kk ≤ 1. The Jacobian of this system is I+J, the eigenvalues of which
are inside the unit circle if the eigenvalues of J are between −2 and 0 which is
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the case if all poles are larger than −2 and g(0) < 0. These conditions can be
rewritten as

Kk(1 + r̄k) < 2 (13)

and
NP
k=1

r̄k
1 + r̄k

< 1. (14)

Notice first that the stability condition (11) (or (14)) does not depend on the
speeds of the adjustments of the firms. They are satisfied if the r̄k derivative
values are sufficiently small. Since 0 < r̄k ≤ 1 and by resonable assumption
0 < Kk ≤ 1, condition (13) is almost always satisfied. The only exception is the
case of best response dynamics with Q = A/B where all firms receive zero price.
This is a very unrealistic equilibrium. Hence the stability conditions for discrete
time and continuous time systems are identical. In the case of duopolies and
Q 6= A/B, condition (11) (or (14)) holds, since r̄k/(1 + r̄k) < 1/2, showing the
local asymptotic stability of the equilibrium with both constinuous and discrete
time scales.
If N ≥ 3, the model may have multiple equilibria and the local stability of

these equilibria may not be guaranteed as shown in the following example.

Example 2. Take N = 3. The model specified in Example 1 has three equilib-
ria:

x̄Sk = 3−
√
0.5, x̄Mk = 3 +

√
0.5 and x̄Lk = Lk

which we call the smallest, middle and largest equilibria. It is apparent
that the largest equilibrium is locally stable as R0k(Qk) = 0. To examine
the stability of the other two equilibria, we calculate the derivative values
evaluated at the equilibria,

r̄Sk =
17

(6 +
√
2)2

' 0.31 and r̄Mk =
17

(−6 +
√
2)2

' 0.81.

According to (11) (or (14)), the smallest equilibrium is locally stable
whereas the middle equilibrium is locally unstable.

Example 2 confirms the local stability of the smallest and the largest equi-
librium but does not say anything about the global behavior of the trajectories.
The basin of attraction for the discrete dynamic system (12) with N = 3,
Kk = 0.8 for all k and x3(0) = 5.1 is illustrated in Figure 2. The shape of the
basin depends on the value of x3(0). It is the set of points in the output space
(x1, x2) such that initial points chosen in the red (darker) region converges to
the smallest equilibrium and those in the blue (lighter) region evolve to the
largest equilibrium. We choose two points, denoted as a in the red region and b
in the blue region in Figure 2A, and perform numerical simulations to confirm
the convergence, which are depicted in Figure 2B. In particular, although the
initial point a is close to b, the trajectory starting at point a eventually con-
verges to the smallest equilibrium and so does the trajectory starting at point
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b to the largest equiliubrium.

(A) Basin of Attraction (B) Globally stable time trajectories

Figure 2. Global stability

4 Conclusions
The existence of a special labor-managed oligopoly is proved by using fixed
point theorems and also by introducing a solution algorithm. The uniqueness
of the equilibrium is not guaranteed in general. Conditions are derived for the
local asymptotical stability of the equilibrium, and a simple numerical example
illustrates the theoretical results.
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