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We call the intercept of the price function with the vertical axis the
mazimum price and the slope of the price function the marginal price. In
this paper it is assumed that a monopoly has full information about the
marginal price and its own cost function but is uncertain on the maximum
price. However, by repeated interaction with the market, the obtained
price observations give a basis for an adaptive learning process. It is also
assumed that the price observations have fixed delays, so the learning
process can be described by a delayed differential equation. In the cases
of one or two delays, the asymptotic behavior of the resulting dynamic
process is examined, stability conditions are derived and the occurrence
of Hopf bifurcation is shown at the critical values. It is also shown that
the nonlinear learning process can generate complex dynamics when the
steady state is locally unstable and the delay is long enough.
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1 Introduction

This paper uses the familiar monopoly model in which there is only one firm hav-
ing linear price and cost functions. Its main purpose is to show how cyclic and
erratic dynamics can emerge from quite simple economic structures when uncer-
tainty, information delays and behavioral nonlinearites are present. Implicit in
the text-book approach is an assumption of complete and instantaneous infor-
mation availability on price and cost functions. In consequence, the monopoly
can choose its optimal choices of price and quantity to maximize profit. More-
over the monopoly model becomes static in nature. The assumption of such a
rational monopoly is, however, questionable and unrealistic in real economies,
since there are always uncertainty and a time delay in collecting information and
determining optimal responses, and in addition, function relations such as the
market price function cannot be determined exactly based on theoretical con-
sideration and observed data. Getting closer to the real world and improving
the monopoly theory, we replace this extreme but convenient assumption with
the more plausible one. Indeed, the firm is assumed, first, to have only limited
knowledge on the price function and, second, to obtain it with time delay. As a
natural consequence of these alternations, the firm gropes for its optimal choice
by using data obtained through market experiences. The modified monopoly
model becomes dynamic in nature.

In the literature, there are two different ways to model time delays in
continuous-time scale: fixed time delay and continuously distributed time delay
(fixed delay and continuous delay henceforth). The former is applicable when
an institutionally or socially determined fixed period of time delay is presented
for the agents involved. The latter is appropriate for economic situations in
which different lengths of delays are distributed over heterogeneous agents or
the length of the delay is random depending on unforeseeable circumstance. The
choice of the type of delay has situation-dependency and results in the use of
different analytical tools.. In the cases of fixed delay, dynamics is described by a
delay differential equation whose characteristic equation is a mixed polynomial-
exponential equation with infinitely many eigenvalues. Burger (1956), Bellman
and Cooke (1956) and Cooke and Grossman (1992) offer methodology of com-
plete stability analysis in such models. Fixed delay dynamics has been investi-
gated in various economic frameworks including microeconomics (i.e., oligopoly
dynamics) and macroeconomics (i.e., business cycle). On the other hand, in
the cases of continuous delay, Volterra-type integro-differential equations are
used to model the dynamics. The theory of continuous delays with applica-
tions in population dynamics is offered by Cushing (1977). Since Invernizzi and
Medio (1991) have introduced continuous delays into mathematical economics,
its methodology is used in analyzing many economic dynamic models.

This paper continues monopoly dynamics considered by Matsumoto and Szi-
darovszky (2012d) where the monopoly does not know the price function and
fixed time delays are introduced into the output adjustment process based on



the gradient of the expected profit.! It also aims to complement Matsumoto
and Szidarovszky (2012a,b) where uncertain delays are modeled by continuous
delays when the firm wants to react to average past information instead of sud-
den market changes. Gradient dynamics is replaced with an adaptive learning
scheme based on profit maximizing behavior. Although there is price uncer-
tainty and the price information is delayed, the monopoly is still able to update
its estimate on the price function via the usage of price observations and its op-
timal price beliefs. We will consider the cases of a single delay and two delays,
respectively, and then demonstrate a variety of dynamics ranging from simple
cyclic oscillations to complex behavior involving chaos.

This paper develops as follows. After the mathematical model is formulated,
the case of a single delay is examined, when the firm uses the most current de-
layed price information to form its expectation about the maximum price. Then
it is assumed that the firm formulates its price expectation based on two delayed
observations by using a linear prediction scheme. We will consider three cases
here with slightly different asymptotic behavior. In all cases complete stabil-
ity analysis is given, the stability regions are determined and illustrated. The
occurrence of Hopf bifurcation is shown at the critical values of the bifurcation
parameter, which is the length of the single delay or one of the two delays. The
last section offers conclusions and further research directions.

2 The Mathematical Models

Consider a single product monopoly that sells its product to a homogeneous
market. Let g denote the output of the firm, p(q) = a — bq the price function
and C(q) = cq the cost function.? Since p(0) = a and |0p(q)/dq| = b, we call a
the mazimum price and b the marginal price. There are many ways to introduce
uncertainty into this framework. In this study, it is assumed that the firm knows
the marginal price but does not know the maximum price. In consequence it
has only an estimate of it at each time period, which is denoted by a®(¢). So
the firm believes that its profit is

m° = (a® — bg)g — cq

and its best response is
. a®—c

qu

!In the framework with discrete-time scale, Puu (1995) shows that the boundedly rational
monopoly behaves in an erratic way under cubic demand function and production delay.
Naimzada and Ricchiuti (2008) also show that complex dynamics can arise in a nonlinear
and delay monopoly with a rule of thumb. Naimzada (2012) exhibits that delay monopolistic
dynamics can be described by the well-known logistic equation when the firm takes a sspecial
learning scheme. More recently Matsumoto and Szidarovszky (2013) consider dynamics of a
boundedly rational monopoly and show that the monopoly equilibrium undergoes to complex
dynamics through either a period-doubling or a Neimark-Sacker bifurcation.

2Linear functions are assumed only for the sake of simplicity. We can obtain a similar
learning process to be defined even if both functions are nonlinear. It is also assumed for
the sake of simplicity that the firm has perfect knowledge of production technology (i.e., cost
function).




Further, the firm expects the market price to be

e
P =at—bgt = L 1)

However, the actual market price is determined by the real price function

e
pa=a_bqe=w, (2)

2
Using these price data, the firm updates its estimate. The simplest way for
adjusting the estimate is the following. If the actual price is higher than the
expected price, then the firm shifts its believed price function by increasing the
value of a®, and if the actual price is the smaller, then the firm decreases the
value of a®. If the two prices are the same, then the firm wants to keep its
estimate of the maximum price. This adjustment or learning process can be

modeled by the differential equation

a®(t) = k [p*(2) — p°(¢)],

where k > 0 is the speed of adjustment. Substituting relations (1) and (2)
reduces the adjustment equation to a linear differential equation with respect
to a® as

af(t) = ko — a®(2)]. 3)
In another possible learning process, the firm revises the estimate in such a way
that the growth rate of the estimate is proportional to the difference between
the expected and actual prices. Replacing a¢(t) in equation (3) with a¢(t)/a®(t)
yields a different form of the adjustment process

a°(t)
as(t)

= kla—a*(1)

or multiplying both sides by a®(t) generates the logistic model
a°(t) = ka®(t) [a — a®(t)] 4)

which is a nonlinear differential equation.

If there is a time delay 7 in the estimated price, then we can rewrite the
estimated price and market price at time ¢ based on information at time ¢t — 7
as

Pt —T)=a®(t— 1) —bg®(t;t —7)

and

Pt —7) = a—bg°(t;t —7)
where ¢®(t;t — 7) is the delay best reply,
af(t—71)—c

C(tt—1)= %



Then equations (3) and (4) have to be modified, respectively, as
a’(t) =kla—a®t—1)] (5)

and
a®(t) = ka®(t) [a — a®(t — 7)] . (6)

If the firm uses two past price information, then the delay dynamic equations

turn to be
a%(t) = ko —wa®(t — 1) — (1 —w)a®(t — 72)] )

and
a°(t) = ka®(t) [a — wa®(t — 71) — (1 — w)a®(t — 72)] (8)

where 77 and T2 denote the delays in the price information. If the firm uses
interpolation between the observations, then 0 < w < 1, and if it uses extrapo-
lation to predict the current price, then the value of w can be negative or even
greater than unity. Notice that for w = 0 and w = 1, equations (7) and (8)
reduce to equations (5) and (6). If 0 < w < 1, then the cases of w < 1/2 are
the same as w > 1/2 because of the symmetry of the model between 7, and 75.
Similarly, if w < 0, then 1 — w > 1, so the cases of w < 0 and w > 1 are also
equivalent. Therefore in models (7) and (8), we will assume that w > 1/2 and
w# 1.

By introducing the new variable z(t) = a®(t) — a, equation (5) and the
linearized version of equation (6) are written as

2(t)+az(t—7)=0 9)

where o = k or o« = ak. By the same way, equation (7) and the linearized
version of equation (8) are modified as

2(t) + awz(t — 1) + a(1 — w)z(t — 72) = 0. (10)

In the following sections, we will examine the asymptotic behavior of the tra-
jectories of equations (9) and (10).

3 Single Fixed Delay

If there is no delay, then 7 = 0 and equation (9) becomes an ordinary differential
equation with characteristic polynomial A+ . So the only eigenvalue is negative
implying the global asymptotic stability of the steady state z = 0 if the original
equation is linear and the local asymptotic stability if nonlinear. The steady
state corresponds to the true value of the maximum price. If 7 > 0, then the
exponential form z(t) = e*u of the solution gives the characteristic equation,

A4 ae™? = 0. (11)

Since the only eigenvalue is negative at 7 = 0, we expect asymptotical stability
for sufficiently small values of 7 and loss of stability for sufficiently large values



of 7. If the steady state becomes unstable, then stability switch must occur when
A = v, If X is an eigenvalue, then its complex conjugate is also an eigenvalue.
In consequence we can assume, without any loss of generality, that » > 0. So
equation (11) can be written as

i+ ae”™ = .
By separating the real and imaginary parts, we have
acosvr =0

and
v —asinvt = 0.

Therefore y
cosyT =0 and sinvT = —
o

with ¥ = a leading to infinitely many solutions,

1 /@
T=— (5 + 2n'rr) forn=0,1,2,.. (12)

The solution 7 with 7 = 0 forms a downward-sloping curve with respect to «,

™ = . with = k or a = ak.
2

Applying the main theorem in Hayes (1950) or the same result obtained dif-
ferently in Szidarovszky and Matsumoto (2012c), we can find that this curve
divides the non-negative (@, 7) plane into two subregions; the real parts of the
roots of the characteristic equation are all negative in the region below the curve
and some roots are positive in the region above. This curve is often called a
partition curve separating the stability region from the instability region. No-
tice that the critical value of 7 decreases with «, so a larger value of o caused
by the high speed of adjustment and/or the larger maximum price makes the
steady state less stable.

We can easily prove that all pure complex roots of equation (11) are single.
If A is a multiple eigenvalue, then

A+ae™™ =0

and
14+ae " (-7) =0

implying that
1+A7=0

or

which is a real and negative value.



In order to detect stability switches and the emergence of a Hopf bifurcation,
we select T as the bifurcation parameter and consider A as function of 7, A =
A(7). By implicitly differentiating equation (11) with respect to 7, we have

a + ae™ (—QT = /\> =0

dr dr
implying that )
dX A
dr — 1+7A

and as A = i, its real part becomes

dA v?
Re (d_'r) =Re (1 +z"ru>

v2

1+ (Tv)2

> 0.

At the critical value of T, the sign of the real part of an eigenvalue changes from
negative to positive and it is a Hopf bifurcation point of the nonlinear learning
process (6) with one delay that has a family of periodic solutions. Thus we have
the following results.

Theorem 1 (1) For the linear adjustment process (5), stability of the steady
state i3 lost at the critical value of T,
=
T 2%
and cannot be regained for larger values of T > 7*. (2) For the logistic adjust-
ment process (6), stability of the steady state is lost at

_ ™
" 2ak

%%k

and limit cycles appear through Hopf bifurcation for T > 7**.

An intuitive reason why stability switch occurs only at the critical value of
7 with n = 0 is the following. Notice first that the delay differential equation
has infinitely many eigenvalues and second that their real parts are all negative
for 7 < 7*. When increasing 7 arrives at the partition curve, then the real
part of one eigenvalue becomes zero and its derivative with respect to 7 is
positive implying that the real part changes its sign to positive from negative.
Hence the steady state loses stability at this critical value. Further increasing
T crosses the (a,7) curve defined by equation (12) with » = 1. There the real
part of another eigenvalue changes its sign to positive from negative. Repeating
the same arguments, we see that stability cannot be regained and therefore no
stability switch occurs for any n > 1. Hence stability is changed only when 7
crosses the partition curve.



Theorem 1 is numerically confirmed. In Figure 1(A), three cyclic trajectories
generated by the linear delay equation (5) are depicted under ¢ = 1 and k =
1. The initial functions are the same, ¢(t) = 0.5 for ¢ < 0 but lengths of delay
are different. The blue trajectory with 7 = 7* — 0.1 shows damped oscillation
approaching the steady state, the black trajectory with 7 = 7* converges to
a limit cycle (i.e., a degenerated Hopf cycle) and the red trajectory with 7 =
7* 4+ 0.1 cyclically diverges away from the steady state. On the other hand,
in Figure 1(B), one limit cycle generated by the logistic delay equation (6) is
illustrated under the same parametric conditions, the same initial function and
7 = 7** 4+ 0.05. By comparing these numerical results, it is quite evident that
nonlinearity of the logistic equation can be a source of persistent fluctuations
when the steady state loses its stability.

0, O B
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a(t-7)
(A) Linear learning (B) Nonlinear learning

Figure 1. Cyeclic fluctuations

4 Two Fixed Delays

In this section, we draw attention to asymptotic behavior of differential equation
(8) with two delays. Its characteristic equation is obtained by substituting the
exponential form ¢(t) = e*u into equation (10) and arranging the terms:

A awe™™ 4 a(l —w)e 2 =0

or

At we™M 4+ (1-w)e ™2 =0 (13)
where A = A/a, 7, = @ty and 7, = ara. If 7, =7, = 0 (or 71 = 75 = 0), then
the steady state is asymptotically stable, since the only eigenvalue is negative.
In order to find stability switches, we assume again that A = iv with v > 0.

Then equation (13) becomes

i+ we N 4 (1 —w)e™ ™12 =0.



Separating the real and imaginary parts yields
wceosvy; + (1 —w)cosvy, =0 (14)

and
v —wsinvy; — (1 —w)sinvy, =0 (15)

when w > 1/2 and w # 1 are assumed. We first examine two boundary cases,
one with v; = 0 and the other with v, = 0, to obtain the following two results.

Theorem 2 If y; = 0, then the steady state is locally asymptotically stable for
all v > 0.

Proof. In the case of v, = 0, equation (14) is reduced as

_ w
COBVYg = —T
If w = 1/2, then cosvy, = —1 so sinvy, = 0 implying that v = 0, which is a
contradiction. If 1/2 < w < 1, then —w/(1 — w) < —1, so no solution exists. If
w > 1, then —w/(1 —w) > 1, so there is no solution either. Therefore equation
(13) has no pure imaginary roots that cross the imaginary axis when v, increases
from zero. m

Putting this result differently, we can say that for y; = 0, delay 7y, is harmless
implying that the steady state is locally asymptotically stable regardless of the
values of 5. We now proceed to the other case.

Theorem 3 If v, =0 and w > 1/2, then the steady state is locally asymptot-
ically stable for 0 < v, < «] and locally unstable if v, > v} where the critical
value of v, is defined as

Y

-

S Vaw—1
Proof. In the case of 7, = 0, (14) and (15) are reduced to
(1-w)+weosvy, =0
and
v —wsinvy, =0.

Moving 1 —w and v to the right hand sides, squaring both sides and adding the
resulted equations yield
v =2w—1.

The positive solution of v is

v=v2w-—1

where w > 1/2. Substituting this value into the first equation above and solving
the resultant equation, we have +}, the critical value of ;. In the same way



as in proving Theorem 1, we arrive at the stability result by applying Hays’
theorem or our result in Szidarovszky and Matsumoto (2012c). m

We now examine the general case of 4; > 0 and v, > 0. By introducing the
new variables
z =sinvy; and y = sinvy,,

equation (14) implies that
w(1-2%) = (1-w)?(1-y?)

or

-2+ (1-w)?y?=1-2w (16)
and from (15),
vV —wz
— - ].
y=T—_ (17)

By combining (16) and (17), we get an equation for z,

—w

2
—w’s® + (1 —w)? (Vl_-w:c) =1-2w

implying that

V2w —1
N 2vw
and from (17),
_ v?—2w+1
v= w(l—w)
These two equations provide a parametric representation in the (y;,v,) plane:
. 2 4+2w—1 . V2 —2w+1
sinvy = ——p —— and sinvy, = m (18)
The feasibility of solutions requires that
2 4+2w—1
-1<—— <1 19
<L < (19)
and 3 )
Ve — 2w+
— <1 20
T w(l-w) ~ (20)
Consider first condition (19), which is a pair of quadratic inequalities in v,
V42w +2w—120 (21)
and
v — 2w +2w—-1<0 (22)

10



The roots of (21) are —1 and 1 — 2w, and the roots of (22) are 2w — 1 and 1.
Condition (20) is also a pair of quadratic inequalities,

>0 ifw<l
4201 —w) + (1 —2w) (23)
<0 ifw>1
and
<0 fw<l1
2 — (1 —w)+ (1 - 2w) (24)
>0 ifw>1

with —1 and 2w — 1 being the roots of (23) and 1 — 2w and 1 being the roots of
(24). Soif w < 1, then the value of v has to satisfy the following relation:

2w—1<v<l1.
Similarly, if w > 1, then the value of v has to satisfy relation
1<v<2w-—1.

Since the feasibility domains for w < 1 and w > 1 are different, we discuss
these cases separately. As it was explained earlier, we have assumed that w >
1/2. The remaining part of this section is divided into three subsections. First,
the non-symmetric case (i.e., 1 > w > 1/2) is examined in Section 4.1, then
the extrapolation case (i.e., w > 1) in Section 4.2 and finally we will turn our
attention to the symmetric case (i.e., w = 1/2) in Section 4.3.

4.1 TheCaseof%<w<1

In this subsection, we assume that 1/2 < w < 1. Since from (14), we see that
the signs of cos»y; and cosvy, are different, equations (18) imply that

r 2 _
v = 1 (sin_1 (M) + 2k7r) (k>0)
v 2vw
Ll(k,n) N 4 5 (25)
| = 1 (W-Sin_l (%) +2n7r) (n>0)
or
( 1 v+ 2w—1
n=y (11'—Sin_1 (T) +2k7l'> (k> 0)
Lo(k,n) : ¢ - (26)
1/, (vi-2w+1
-1 v Tl >
\ Y2 z/(sm ( 5 —w) )+2n7r> (n=>0)

which gives two sets of parametric curves in the (y;,%,) plane. The domain of
w is the interval [2w — 1,1]. At the initial point ¥ = 2w — 1, we have

2 _ 2 _
ve 4+ 2w 1=1andV 2(,«.7+1=_1
2uw 2v(1 — w)

11



and at the end point v = 1, we have

V242w —1 V2 —2w+1
— =land ———— =
2vw 2v(1 —w)

Therefore the initial and end points of L (k,n) are
1 T 1 3w
L(k,n) = (2w —1 (5 + 2’”) " w1 (? + 2””))

Ey(k,n) = (% + 2km, g + 2n7r) .

and

and similarly, the initial and end points of Ls(k,n) are

Ta(k,m) = (2w1_ 1 (g +2’”)’ 2w1— 1 (_g +2m)')

and x -

Es(k,n) = (5 + 2k, 3 + 2n,7r) .
Notice that E; (k,n) = Ea(k,n) and I;(k,n) = I2(k,n+1), that is, L, (k,n) and
Lq(k,n) have the same end points and L; (k,n) and Lo(k,n + 1) have the same
initial points. Hence the segments

(L2(k5 0)7 Ll("’: 0)’L2(k7 1)3 Ll(k: 1)7L2(k’2)1 Ll(ka 2)7"')
starting at I5(k,0) and passing through points
Ey(k,0) = Ey(k,0), I(k,0) = Iz(k,1), Ea(k,1) = Eq(k,1),...

form a continuous curve.

Figure 2 illustrates the loci L; (k,n) and Ls(k,n) with the value of v varying
from 2w — 1 to unity for » = 0,1,2 and k = 0. The parameter value w = 0.8 is
selected. The red curves are L;(k,n) and the blue curves are La(k,n). The red
and blue curves shift upward when n increases and rightward when k increases.
There the initial point I2(0,0) is infeasible, and L2(0,0) is feasible only for
v > /2w — 1. Notice that I;(0,n) = I2(0,n + 1) at point I, for n = 0,1 and
E1(0,n) = E2(0,n) at point E, for n = 0,1,2. 4{* ~ 1.493 is the minimum
v,-value of the segment L1(0,7n) while v} ~ 2.733 is the maximum +,-value of
the segment L3(0,n). It can be checked that ) ~ 2.354 is the 7,-value of the
intersection of the segment Lo(0,0) with the horizontal axis and is identical with
4% given in Theorem 3. The partition curve stays within the interval [y7*,yM]
when k& = 0 but its shape could be different for a different value of w. It will be
shown that the steady state is locally asymptotically stable in the yellow region

12



of Figure 2.
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Figure 2. Partition curves with ¥ = 0 and
n=20,1,2

Apparently 47 < v implying that the steady state is locally asymptotically
stable for 0 < v; < 4{* and v, = 0 due to Theorem 3. Since the segment
L;(0,n) is in the interval [y, ¥}], there are no eigenvalues changing the sign of
the real part when «, increases. In other words, the real parts of the eigenvalues
are negative for v; < 47" and any v, > 0. Hence the steady state is locally
asymptotically stable. Such delays of (y;,7,) do not affect asymptotic behavior
of the steady state and thus are harmless. We summarize this result in the
following theorem:

Theorem 4 Ifk =0 and 0 < y; < 7, then delay 7y, s harmless, so the steady
state is locally asymptotically stable.

We now move to the case of 4; > 4" and examine the directions of the
stability switches by selecting <y; as the bifurcation parameter with fixed value
of v,. So we consider the eigenvalue as a function of the bifurcation parameter,
X = \(v;). By implicitly differentiating equation (13) with respect to v, we
have

dX _x ( dX -) _x ( dXx
— FweT N [ ——y; = A |+ (1 —w)e ™2 ( ——7, | =0
dv, dy, " (= dy,
implying that _

dA wie™ N

- = _ = 27
dy 1-wye? — (1 - w)ye?n 7

Since from (13)

(1- L:.J)e—)_""2 =-X—we™ MM,

13



the right-hand side of equation (27) can be rewritten as

dx _ wle= N

dy, 1+ Xy +w(ve — 1)

If X = iv, then
dX _ ivw (cos vy, — isinvy,) (28)
dyy  1+ivyy +w(ve — 71) (cosvy, —isinvy;)
Its real part is
dx vw [sin vy, + vy, cos vy, |
Re|—| = 5 - 5> (29)
dv1] (L +w(yg —71)cosvyy)? + (7 —w(vg —71) sinvyy)

As is already shown in Theorem 3, the steady state is asymptotically stable
for 4, = 0 and any 7y, > 0. Gradually increasing the value of y; with fixed value
of 74, the horizontal line crosses either L;(0,7) or Lg(0,7). Consider first the
intercept. with the segment L;(0,7). Since both sin vy, and cos vy, are positive
for vy, € (0,7/2),

Re [ﬂ] > 0.
dy;

This inequality implies that as 7, increases, stability is lost when -y, crosses the
segment L1 (0,n). In the case of the linear learning process, local instability leads
to global instability. However this is not necessary true if the learning process is
nonlinear. To confirm global behavior, two bifurcation diagrams generated by
the delay logistic equation (8) are illustrated.® In particular, we vary v, from y*
to ¥ in 0.01 increments, calculate 1000 values for each value of v, and use the
last 300 values to get rid of the transients. The local maximum and minimum
values of the trajectory are plotted against v, to construct a bifurcation diagram
of a® with respect to ;. In Figure 3(A), 7y, is fixed at 4 and 7y, increases
along the lowest horizontal dotted line of Figure 2. The stable steady state
loses stability at 47 ~ 1.691, the intersection with the segment L,(0,0).* The
bifurcation diagram in Figure 3(A) takes a distorted C-shape and its upper part
is thick, indicating that trajectories are quasi-periodic with minor fluctuations
in their local maximum values for y; > 7. It is further seen that the periodic
cycle expands as -y; becomes larger. In Figure 3(B), v, is changed to 12 and
v, increases along the third highest horizontal dotted line of Figure 2. The
stability is lost at y¥ ~ 1.80 where the dotted line crosses the segment L;(0,1)

3The linear equation (7) with two delays generates the same simple dynamics as the linear
equation (3) with one delay. So no further considerations are given to it.
1Using the second equation of (25), we solve equation

1 P —2w+1
4=~ |7 —sin —_—
v 2v(1 —w)
for v and then substitute the solution into the first equation of (25) to obtain the value of

7.

14



from the left.5 As 7, gets larger than 47, erratic (chaotic) behavior emerges via
a period-doubling bifurcation. Further increasing v, suddenly reduces complex
dynamics to simple periodic oscillations for 7; being close to y}4. Only the
values of v, are different between these two diagrams. So a larger 4, can be a
source of erratic oscillations of a®(t). These results are numerically confirmed
and thus summarized as follows:

Proposition 1 The steady state loses local stability when increasing vy, crosses
the segment L1(0,n) from left for the first time and global behavior of the unsta-
ble steady state exhibits simple oscillations if v, is relatively small and complex
oscillations if 4 is relatively large.

a(t)

2
T

(

yl'.l'

=

7
(A) v2 =4 (B) v =12

Figure 3. Bifurcation diagram I

Assume next that «y; crosses a segment Lo(0,7) where cosvy; <0 as vy, €
(m/2, m). It is clear from (29) that

Re [ dX ] _ v3wcosvy, v,y
dv, (1 +w(yz = 71) cosvy1)? + (v — w(vg — 711) sinvy,)? 3123 |
0
where, by implicitly differentiating the second equation in (18) and using (14),
we have .
Oy, 1 sinvy; +vyycosvy;
ov 12 cos vy, '

Since the first factor with the minus sign of (30) is positive, stability is switched
to instability when 8v,/8v > 0 and instabiliy might be switched to stability
when 8v,/0v < 0. Although it is possible to confirm analytically the sign of the

5See footnote 4 for detailed arguments to determine % .
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derivative 8v,/0v on the segment Ly(0,7), we numerically check it.> We also
examine responses of the nonlinear learning as a function of «; for two different

fixed values of v,,
e BT i O
22w —-1) 2

We start with v, = 37/(2(2w—1)) ~ 7.85. Although it is not clear in Figure
2, the segment Lo(0,1) takes a convex-concave shape. So the dotted horizontal
line at 37/(2(2w — 1)) could have multiple intersects with L2(0,1). The second
equation of (26) determines a value of «y,. So solving the following equation

3m 1/, (VP -2w+1
= _Z I T ) 49
22w —1) v (sm ( 2v(l —w) )+ ﬂ-)

with w = 0.8 for v yields three solutions,
veo=1, vy ~0.84, and v, = 0.6,

each of which is then substituted into the first equation of (26) to obtain three
corresponding values of -y,

4% = g ~ 1.57, 4° = 2.15, and 7¢ = 2(2w—7r_1) ~ 2.62.
Notice that v§ and 4§ are the ,-values of the points Ey and I in Figure 2.
Fixing the parameters 7y, at 37/(2(2w — 1)), we perform simulations of equation
(8) for different «y; values to confirm two dynamic results; one is the appearance
and disappearance of a limit cycle for /¢ < 74, < 7% and the other is initial
point dependency of dynamics for 7% < v, < 7. We will discuss these results
in detail.

Characterization of bifurcation occurring along the dotted line is given. Start
with Figure 4(A). The steady state is locally stable for v7* < y; < 7§ and loses
stability for y; = ¥4 at which 8v,/0v > 0 implying that the real part of an
eigenvalue is positive for v; > v$. With further increasing 7,, it bifurcates to
a limit cycle which first expands, then shrinks and finally merges to the steady
state to regain stability for v, = 7%. There 8v,/0v < 0 implies that the real part
of the same eigenvalue becomes negative again for v; > 78. For 43 < v, < %,
the steady state is locally asymptotically stable as the dotted line is in the
yellow region of Figure 2. In order to examine global behavior, we simulate
the nonlinear learning process with a constant initial function defined for ¢ <0
having slightly different constant values, ¢(t) = 0.2, ¢(¢) = 0.4, p(t) = 0.6
and @(¢) = 0.8. Two results are numerically confirmed: the first is that the
learning process generates the same dynamics regardless of the different initial
functions if v; < 4% or 4; > 7§; the second is that for 4% < v, < 7%, a trajectory
converges to the steady state when o(t) = 0.8 while it bifurcates to a periodic

6See Matsumoto and Szidarovszky (2012d) for analytical examinations of the sign of the

derivative.
1t is numerically verfied that trajectories converge to the steady state for any initial values
close to a (i.e., unity)
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cycle by discontinuous jump when any other initial function is selected and
further, the jumping value of v, depends on the selection of the initial function.
In particular, the green trajectory with ¢(t) = 0.2 jumps to the periodic cycle
at the first dotted point in Figure 4(A), the orange trajectory with ¢(t) = 0.4 at
the second dotted point, the blue trajectory with ©(t) = 0.6 at the third dotted
point and finally the red trajectory with () = 0.8 at the fourth dotted point.
Depending on a choice of the initial function, the same delay equation generates
different global dynamics.

In Figure 4(B), 7, is increased to 97/2 ~ 14.14 and the horizontal dotted
line at 97/2 crosses the segment Ly(0,2) twice at the points

4% = g ~ 1.57 and 4% ~ 1.78.

Stability is lost at v; = 4§ for which the dotted line crosses Ls(0,2) with
8v,/0v > 0 and regained at v, = 7% for which the dotted line crosses Ls(0,2)
with 8v,/0v < 0. The dotted line also crosses the segment L (0, 1) with 8v,/0v >
0 at

vi ~1.93

for which stability is lost again. Taking ¢(t) = 0.9, we simulate the model and
obtain the following results. The appearance and disappearance of a limit cycle
for 4% <, < 7% is observed again. Although the initial point dependency is
observed in the interval (fy'{,'yf) in this case as well, we omit it from Figure
4(B) to avoid the messy bifurcation diagram. Instead, it should be noticed
that complex behavior emerges via a period doubling bifurcation for v§ < v; <
¥M. Comparing these bifurcation diagrams where only the values of y, are
different leads to the same conclusion that a larger -y, can be a source of erratic
oscillations of a®(t).

Proposition 2 When the horizontal line of v, crosses the segment of L(0,n)
for the first time from left, then three different dynamics emerge; (1) the steady
state bifurcates to a limit cycle that expands, shrinks and then merges to the
steady state for 73 < v, < 73; (2) depending on a choice of the initial functions,
1t becomes locally asymptotically stable or bifurcates to a periodic oscillation for
8 < v, < v%; (8) it proceeds to a periodic oscillation or chaos via a period-
doubling cascade for v$ < v, < ¥ according to whether vy, is small or large.
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a'tt a'ty

N
(A) 72 = 2(2::"-_1)

Figure 4. Bifurcation diagram II

In the next simulation, vy, is increased to 17 and then kept fixed. 7, is in-
creased along the highest horizontal dotted line of Figure 2. As can be seen, the
horizontal line has three intercepts. At the first one with L;(0,2) the steady
state becomes unstable. At the second one with L1(0,1) the real part of one
more eigenvalue becomes positive. At the third intercept with Lg(0,2) the real
part of only one of the two eigenvalues changes back to negative. Therefore sta-
bility cannot be regained at this point, so no stability switch occurs. According
to Figure 5, the steady state is replaced with a periodic oscillation just after it
becomes unstable and there is a very short period-doubling cascade to chaos.
As we can see further, interesting dynamics begins; complex dynamics suddenly
disappears and a periodic oscillation appears and undergoes a period-doubling
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bifurcation cascade to chaos again.

a‘ft)

¥
Figure 5. Bifurcation diagram III

Let us summarize the main point that has been made so far.

Proposition 3 (1) Given k = 0, the boundary of the stable region consists of
the envelop of the segments L1(0,n) and La(0,n) for n > 0; (2) depending val-
ues of (7v1.73), the nonlinear learning process can generate a wide spectrum of
dynamics ranging from simple periodic oscillations to complex aperiodic oscilla-
tions when the steady state loses local stability.

We can also show that at stability switches only one eigenvalue changes the
sign of its real part, that is, the pure complex eigenvalues are single. Assume
not, then A = iv solves both equations

X +we™ M 4 (1-— w)e_;‘”'2 =0 (31)
and _ _
1= wye™N — (1 —w)y,e "2 =0 (32)
from which we have
Y 1+ Xy _3 —1-Xy
A1 — 2 Ay — 1
e =—= ande M= — 21— (33)
(11— Y2)w (11— 7)1 -w)

If X = iv, then by comparing the real and imaginary parts, we conclude that
sinvy; + v7y5 cos vy, = sinvy, + vy, cosvy, =0
or

tan vy, + vy, = tanvyy + vy, = 0. (34)
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Let L;(k,n) denote the segment containing (7;, ), then this point is a common
extremum of L;(k,n) with respect to y; and 7, which is impossible, since
L;(k,n) is a differentiable curve.

Until this point, we examined the curves Ly(k,n) and Lo(k,n) for k =0. If
k > 1, then these curves are shifted to the right and slightly modified resulting
in similar patterns. If we fix the value of v, and gradually increase the value
of v; from zero, then it is unknown theoretically how the stability region, if
any, looks like behind the L;(0,7) and Ly(0,n) curves. By performing repeated
simulations no stability region was found here.

Consider now a point (y},73) with positive coordinates, and consider the
horizontal line 7, = ~% and its segment for 0 < 4, < 4%. There are finitely
many intercepts of this horizontal segment with the set

L =05y UpZy {L1(k,n) U La(k,m)}.

Let s(},v3) denote the number of intercepts where stability is lost and g(v},v%)
the number of intercepts where stability can be regained. With (v7,~3) the
system is asymptotically stable if g(v3,~v3) > s(v},73) and unstable otherwise.
The stability region is illustrated as the yellow domain in Figure 2.

4.2 The Case of w>1

From (14) we see that cos(v7y,) and cos(v7y,) must have the same sign, so in
this case we have also two types of segments,

2 _
7= % (sin_1 (%) + 2k7r) (k>0)

Ly(k,n): (35)

1 2 —2w+1
7,2 = ; (sin_l (ﬁ) + 2n71'> (n Z 0)

and
1 v 42w -1
= —gin~ ! — - >
m= (7r sin ( o0 ) + 2k7r) (k>0)
Lo(kym) : (36)
, 1 L (VP —2w+1
= — — _— >
72 =_ |7 —sin (1 —w) +2n7 | (n>0)

where 1 < v < 2w — 1. As in the previous case, at v =1,

1/2+2w—1_1 duz—2w+1_1
2uw -hen w(l —w)
and at v = 2w — 1,
v?4+2w—1 v —2w+1
=1 and =-1
2vw A 2v(1 —w)



Therefore the initial and end points of Ly (k, n) are
Li(k,n) = (g + 2%, g n 2n7r)

and

Ey(k,n) = (2w1— 1 (g + 2k7r> ,ﬁ (—g + 2n7r)>

and those of Ly(k,n) are

Ly(k,n) = (g + 2k, % + 2n1r)

1 ks 1 3m
Ey(k,n) = <2w—1 (§+2}””)’2w—1 (?”"”))'

Figure 6 shows the loci L;(k,n) and La(k,n) with the value of v varying from
unity to 2w — 1. The parameter value w = 1.2 is selected. The red curves are
the L;(0,n) segments and the blue curves are the Lo(0,n) loci. If n = 0, then
E;(k,n) is infeasible and L;(k,0) is feasible only for v < /2w — 1. In this case
I(k,n) = I(k,n) and Ey(k,n) = Ey(k,n + 1), so Li(k,n) and Ls(k,n) have
the same initial point and E;(k,n 4+ 1) and E2(k,n) have the same end point.
Hence segments

and

(Ll(k’ 0)’ L2(k’ 0)’ Ll(k'a 1)5 L2(ka 1)a Ll(ka 2), L2(ka 2)5 )
starting at Ej(k,0) and passing through points
I, (k,0) = I5(k,0), Ey(k,0) = Ey(k,1), I1(k,1) = I2(k,1), Ea(k,1) = Ey(k,2),...

form a continuous curve.

If v; = 0, then the steady state is asymptotically stable for any v, >
0 according to Theorem 2. If 5 = 0, then the steady state is locally asymp-
totically stable if 0 < y; < %] and locally unstable if v; > 7} according to
Theorem 3. We now proceed to the general case of y; > 0 and v, > 0. The
stability switches with fixed y, > 0 and increasing values of v, can be discussed
similarly to the case of w < 1, so the details are not given here. Instead of re-
peating that discussion, we fix the value of y; € (y{*,4M), then the vertical line
with gradually increasing values of 7, crosses L;(0,n) and L2(0,n) infinitely
many times. We numerically confirm that stability switch could occur at some
of those intersections. Consider stability switches first along the vertical dotted
line at 7§ = 1.2 and then along the vertical dotted line at 4% = 1.5 as shown in
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Figure 6.

Figure 6. The partition curves with w > 1

The first numerical result is illustrated in Figure 7(A) where the steady
state repeats stability-loss and stability-gain four times and finally becomes un-
stable. More precisely, stability is lost at the intercepts with Lg(0,7) for n =
0,1,2,3 while it is regained at the intercepts with L;(0,n) for n = 0,1,2,3. The
system generates only periodic oscillations. The second numerical result is il-
lustrated in Figure 7(B). It can be seen that the system gives rise to periodic
oscillations as well for a length of delay approximately less than 10 and to more
complex oscillations for a larger value of the delay.

The special case of w = 1 is identical to the case of a single delay, which was
already discussed.
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Figure 7. Bifurcation diagrams with different values of ~;

4.3 The Symmetric Case of w =

If w = 1/2, then equations (14) and (15) become

cos(v7y,) + cos(vy,) =0

and

v = 5 (sin(uy) + sin(vy,)) = 0

and the segments L;(%k,n) and Lg(k,n) are simplified as follows:

7= % (sin™!(v) + 2km) (k>0)
Ly(k,n) :
Yo = ;l; (r—sin™'(v) + 2n7) (n>0)

and

v, = é (71' — sin_l(u) + 2k1r) (k>0)
Ly(k,n): .
T2 == (sin~'(v) + 2n7) (n>0).
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(38)

Clearly » has to be in the unit interval in order to have feasible solutions. The
segments L; (k,n) and Ly(k,n) for small values of k and n are illustrated as the
red and the blue curves in Figure 8. When k& = n = 0, these segments construct
a hyperbolic curve passing through the point (7/2,7/2) which is the common
point of L;(0,0) and L2(0,0). It divides the first quadrant of the (v,,v,) plane



into two subregions: in the yellow region under the curve, the steady state is
locally asymptotically stable and in the white region above, it is locally unstable.
Note that the curve is symmetric with respect to the diagonal and asymptotic
to the line 7, = 1 for 4 = 1,2. This implies that any delay «; > 0 is harmless if
v; S 1lford,j=1,2andi#j.
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Figure 8. Stability switch curves with
w=0.5

Two numerical simulations are done with two different values of «;. In the
first simulation depicted in Figure 9(A), we increase the value of v, from zero to
20 along the vertical dotted line at y; = 7/2. The steady state loses stability at
79 = /2 and bifurcates to cyclic oscillations with finite number of periodicity as
v, becomes larger. As far as the simulations are concerned, only periodic cycles
can be born. In the second simulation shown in Figure 9(B), we change the value
of v, to (m/2) + 1. A limit cycle emerges after stability is lost at v, = ¥% when
the increasing value of 7, crosses the hyperbolic curve, then exhibits aperiodic
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oscillations for 7, being about 14 and returns to periodic oscillations afterwards.

2(t) (1)

Figure 9. Bifurcation diagrams with w = %

5 Conclusion

An adaptive learning process is introduced when the monoepoly knows its cost
function, the marginal price and uncertain about the maximum price. It is able
to update repeatedly its belief of the maximum price by comparing the actual
and predicted market prices. It is assumed that the firm’s prediction is either
the most current delayed price information or it is obtained by interpolation or
by extrapolation based on two delayed data. The asymptotical stability of the
resulted dynamic learning process is examined. If it is asymptotically stable,
then the beliefs of the firm about the maximum price converge to the true value,
so successful learning is possible. Stability conditions are derived, the stability
regions are determined and illustrated. The global behavior of the trajectory is
examined by using simulation.

The dynamic models (5) and (7) are linear, when local asymptotical stability
implies global asymptotical stability. However (6) and (8) are nonlinear, where
only local asymptotic stability can be guaranteed under the derived conditions.
The learning processes (3) and (4) can be generalized as

a°(t) = g(a — a(t))
where function g is sign preserving, that is, for all § # 0,
dg(8) > 0.

In our future research, different types of such nonlinear learning schemes will
be introduced in our model and we will investigate the asymptotical behavior
of the resulted dynamics. Uncertainty and learning of other model parameters
will be additional subjects of our study.
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