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Abstract

An elementary analysis is developed to determine the stability region
of a certain class of ordinary di¤erential equations with two delays. Our
analysis is based on determining stability switches �rst where an eigen-
value is pure complex, and then checking the conditions for stability loss
or stability gain. In the case of both stability losses and stability gains
Hopf bifurcation occurs giving the possibility of the birth of limit cycles.

1 Introduction

Dynamic models with time delays have many applications in many �elds of
quantitative sciences (see for example, Cushing (1977) and Invernizzi and Medio
(1991)). The case of a single delay is well established in the literature (Hayes
(1950) and Burger (1956)), however the presence of multiple delays makes analy-
sis much more complicated. Su¢ cient and necessary conditions were derived
for several classes of models giving a complete description of the stability region
(Hale (1979), Hale and Huang (1993) and Piotrowska (2007)).
In this paper a special class of dynamic systems is considered which are

governed by delay di¤erential equations with two delays. It is well known (Hayes
(1950) and Cooke and Grossman (1982)) that stability can be lost or gained on
a curve of stability switches, where an eigenvalue is pure complex. We will
therefore determine these curves and then by bifurcation analysis characterize
those segments where stability is gained or lost. In this way the stability region
can be completely described.
This paper is the continuous of our previous work (Matsumoto and Szi-

darovszky (2011)) where an elementary analysis was presented with a single
delay.
The paper is organized in the following way. Section 2 determines the curves

where stability switches are possible and characterizes those segments where
stability is lost or gained in the nonsymmetric cases. Section 3 discusses the
symmetric case and Section 4 concludes the paper.
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2 Stability Switches and Stability Region.

We will examine the asymptotical stability of the delay di¤erential equation

_x(t) +Ax(t� �1) +Bx(t� �2) = 0 (1)

where A and B are positive constants. The characteristic equation can be ob-
tained by looking for the solution in the exponential form �e�t. By substitution,

��e�t +A�e�(t��1) +B�e�(t��2) = 0

or
�+Ae���1 +Be���2 = 0: (2)

Introduce the new variables

! =
A

A+B
; 1� ! = B

A+B
; �� =

�

A+B


1 = �1(A+B) and 
2 = �2(A+B)

to reduce equation (2) to the following:

��+ !e�
��
1 + (1� !)e���
2 = 0: (3)

In order to �nd the stability region in the (
1; 
2) plane we will �rst characterize
the cases when the eigenvalue is pure complex, that is, when �� = i�. We can
assume that � > 0; since if �� is an eigenvalue, its complex conjugate is also an
eigenvalue. Substituting �� = i� into equation (3) we have

�� + !e�i�
1 + (1� !)e�i�
2 = 0:

In the special case of 
1 = 0; the equation becomes

�� + ! + (1� !)e�i�
2 = 0:

The real and imaginary parts imply that

! + (1� !) cos(�
2) = 0

� � (1� !) sin(�
2) = 0:

Because of symmetry we can assume �rst ! > 1=2; so from the �rst equation

cos(�
2) = �
!

1� ! < �1

so no stability switch is possible. If 
2 = 0; then equation (3) further simpli�es
as

��+ 1 = 0
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with a single negative eigenvalue. Hence for 
1 = 0 the system is asymptotically
stable with all 
2 � 0: If ! = 1=2; the we have cos(�
2) = �1 so

�
2 = � + 2n�:

Then sin(�
2) = 0 implying that � = 0: So no pure complex eigenvalue exists.
With 
1 = 0 the system is asymptotically stable with all 
2 > 0 as in the
nonsymmetric case.
Assume now that 
1 > 0; 
2 > 0. The real and imaginary parts give two

equations:
! cos(�
1) + (1� !) cos(�
2) = 0 (4)

and
� � ! sin(�
1)� (1� !) sin(�
2) = 0: (5)

Because of symmetry we might assume again that ! � 1=2: We consider the
case of ! > 1=2 �rst. Introduce the variables

x = sin(�
1) and y = sin(�
2);

then (4) implies that

!2(1� x2) = (1� !)2(1� y2)

or
�!2x2 + (1� !)2y2 = 1� 2!: (6)

From (5),
� � !x� (1� !)y = 0

implying that

y =
� � !x
1� ! (7)

Combining (6) and (7) yields

�!2x2 + (1� !)2
�
� � !x
1� !

�2
= 1� 2!

from which we can conclude that

x =
�2 + 2! � 1

2�!
(8)

and then from (7),

y =
�2 � 2! + 1
2�(1� !) : (9)

Equations (8) and (9) provide a parameterized curve in the (
1; 
2) plane:

sin(�
1) =
�2 + 2! � 1

2�!
and sin(�
2) =

�2 � 2! + 1
2�(1� !) : (10)
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In order to guarantee feasibility we have to satisfy

�1 � �2 + 2! � 1
2�!

� 1 (11)

and

�1 � �2 � 2! + 1
2�(1� !) � 1: (12)

Simple calculation shows that with ! > 1=2 these relations hold if and only if

2! � 1 � � � 1:

From (10) we have four cases for 
1 and 
2; since


1 =
1

�

�
sin�1

�
�2 + 2! � 1

2�!

�
+ 2k�

�
or


1 =
1

�

�
� � sin�1

�
�2 + 2! � 1

2�!

�
+ 2k�

�
(k = 0; 1; 2; :::)

and similarly


2 =
1

�

�
sin�1

�
�2 � 2! + 1
2�(1� !)

�
+ 2n�

�
or


2 =
1

�

�
� � sin�1

�
�2 � 2! + 1
2�(1� !)

�
+ 2n�

�
(n = 0; 1; 2; :::):

However from (4) we can see that cos(�
1) and cos(�
2) must have di¤erent
signs, so we have only two possibilities:

L1(k; n) :

8>>>><>>>>:

1 =

1

�

�
sin�1

�
�2 + 2! � 1

2�!

�
+ 2k�

�


2 =
1

�

�
� � sin�1

�
�2 � 2! + 1
2�(1� !)

�
+ 2n�

� (13)

and

L2(k; n) :

8>>>><>>>>:

1 =

1

�

�
� � sin�1

�
�2 + 2! � 1

2�!

�
+ 2k�

�


2 =
1

�

�
sin�1

�
�2 � 2! + 1
2�(1� !)

�
+ 2n�

� (14)

For each � 2 [2! � 1; 1] these equations determine the values of 
1 and 
2: At
the initial point � = 2! � 1; we have

�2 + 2! � 1
2�!

= 1 and
�2 � 2! + 1
2�(1� !) = �1
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and if � = 1; then

�2 + 2! � 1
2�!

= 1 and
�2 � 2! + 1
2�(1� !) = 1:

Therefore the starting point and end point of L1(k; n) are given as


s1 =
1

2! � 1

��
2
+ 2k�

�
; 
s2 =

1

2! � 1

�
3�

2
+ 2n�

�
and


e1 =
�

2
+ 2k� and 
e2 =

�

2
+ 2n�:

Similarly, the starting and end points of L2(k; n) are as follows:


S1 =
1

2! � 1

��
2
+ 2k�

�
; 
S2 =

1

2! � 1

�
��
2
+ 2n�

�
and


E1 =
�

2
+ 2k� and 
E2 =

�

2
+ 2n�:

Figure 1 illustrate the loci L1(k; n) and L2(k; n) of the corresponding points
(
1; 
2), when � increases from 2! � 1 to unity. The parameter value ! = 0:8
is selected. The red curves show L1(0; n) and the blue curves show L2(0; n)
with n = 0; 1; 2; :::. Notice that 
S2 is infeasible at n = 0 and only the segment
of L2(0; 0) between � =

p
2! � 1 and � = 1 is feasible. With �xed value of k;

L1(k; n) and L2(k; n) have the same end point, however the starting point of
L1(k; n) is the same as that of L2(k; n+1): Therefore the segments L1(k; n) and
L2(k; n) with �xed k form a continuous curve with n = 0; 1; 2; :::.

Figure 1. Partition curve in the (
1; 
2) plane with
�xing k = 0:
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Consider �rst the segment L1(k; n): Since
�
�2 � 2! + 1

�
=(2�(1 � !)) is

strictly increasing in �; 
2 is strictly decreasing in �: By di¤erentiation and
substitution of equation (4), we have

@
1
@�

����
L1

= � 1
�2

�
sin�1

�
�2+2!�1
2�!

�
+ 2k�

�
+ 1

�

s
1�
�
�2+2!�1
2�!

�2 2�(2�!)�(�2+2!�1)2!22�2!2

= � 1

�2
�
1 +

1

� cos(�
1)

�2 � 2! + 1
2�2!

= � 1
�2 + (�
1 + tan(�
2)) :

(15)
Consider next segment L2(k; n); similarly to (15) we can shown that

@
1
@�

����
L2

= � 1

�2
(�
1 + tan(�
2))

which is the same as in L1(k; n), since from (14), cos(�
1) < 0: Similarly

@
2
@�

����
L2

= � 1

�2
(�
2 + tan(�
1)) (16)

where we used again equation (4).
In order to visualize the curves L1(k; n) and L2(k; n); we change the coordi-

nates (
1; 
2) to (�
1; �
2) to get the transformed segments:

`1(k; n) :

8>>>><>>>>:
�
1 = sin

�1
�
�2 + 2! � 1

2�!

�
+ 2k�

�
2 = � � sin�1
�
�2 � 2! + 1
2�(1� !)

�
+ 2n�

(17)

and

`2(k; n) :

8>>>><>>>>:
�
1 = � � sin�1

�
�2 + 2! � 1

2�!

�
+ 2k�

�
2 = sin
�1
�
�2 � 2! + 1
2�(1� !)

�
+ 2n�

(18)

They also form a continuous curve which is periodic in both directions �
1 and
�
2. Figure 2 shows it with k = 0 where the curves `1(0; n) are shown in red
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color while the curves `2(0; n) with blue color.

Figure 2. Partition curve in the (�
1; �
2) plane
with �xing k = 0

We will next examine the directions of the stability switches on the di¤erent
segments of the curves L1(k; n) and L2(k; n). We �x the value of 
2 and select 
1
as the bifurcation parameter, so the eigenvalues are functions of 
1 : �� = �(
1):
By di¤erentiating the characteristic equation (3) implicitly with respect to 
1 we
have

d��

d
1
+ !e�

��
1(� d
��

d
1

1 � ��) + (1� !)e�

��
2

�
� d

��

d
1

2

�
= 0

implying that
d��

d
1
=

��!e�
��
1

1� !
1e�
��
1 � (1� !)
2e�

��
2
(19)

If �� = ��; then

d��

d
1
=

i�!(cos(�
1)� i sin(�
1))
1� !
1 cos(�
1)� (1� !)
2 cos(�
2) + i[!
1 sin(�
1) + (1� !)
2 sin(�
2)]

:

The sign of Re[d��=d
1] is the same as the sign of

sin(�
1)� (1� !)
2[sin(�
1) cos(�
2)� cos(�
1) sin(�
2)]:

By using equation (4), this can be rewritten as

sign

�
Re

�
d��

d
1

��
= sign [Re [sin(�
1) + 
2 cos(�
1) f! sin(�
1) + (1� !) sin(�
2)g]]
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where the braced expression equals � by equation (5). Hence

Re

�
d��

d
1

�
R 0 if and only if sin(�
1) + �
2 cos(�
1) R 0

Consider �rst the case of crossing any segment L1(k; n) from the left. Here
�
1 2 (0; �=2], so both sin(�
1) and cos(�
2) are positive. Hence stability is
lost everywhere on any segment of L1(k; n): Consider the case when crossing
the segments of L2(k; n) from the left. Here �
1 2 [�=2; �]; so cos(�
1) < 0:
Combining (16) and the conditions for the sign of Re[d��=d
1]; we have that

Re

�
d��

d
1

�
R 0 if and only if @
2

@�
R 0:

That is, stability is lost when 
2 increases in � and stability is gained when 
2
decreases in �:
For each 
2 > 0; de�ne

m(
2) = min

1
f(
1; 
2) 2 L1(k; n) [ L2(k; n); k; n � 0g (20)

Then the stability region is given as

f(
1; 
2) j 
2 > 0; 
1 < m(
2)g : (21)

At 
1 = 0 the system is asymptotically stable with all 
2 > 0: With �xed
value of 
2 by increasing the value of 
1 the �rst intercept with m(
2) should
be a stability loss, since there is no stability switch before. Notice that this is
the same result which was obtained earlier by Hale and Huang (1993) by using
di¤erent approach.

3 The Symmetric Case

Assume next that ! = 1=2: Then equations (4) and (5) imply that

cos(�
1) + cos(�
2) = 0

� � 1
2 (sin(�
1) + sin(�
2)) = 0

and the curves L1(k; n) and L2(k; n) are simpli�ed as follows:

L1(k; n) :

8>><>>:

1 =

1

�

�
sin�1(�) + 2k�

�

2 =

1

�

�
� � sin�1(�) + 2n�

� (22)

and

L2(k; n) :

8>><>>:

1 =

1

�

�
� � sin�1(�) + 2k�

�

2 =

1

�

�
sin�1(�) + 2n�

� (23)
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which are shown in Figure 3. The same argument as shown above for the
nonsymmetric case can be applied here as well to show that stability region is
given by (20) and (21), where the shape of the stability region di¤ers from that
of the nonsymmetric case. It is illustrated in Figure 3 by the shaded domain.

Figure 3. Partition curve in the (
1; 
2) plane with
! = 1

2

Notice that at each segment of `2(k; n) there are at most two intercepts with
the �
2 = � tan(�
1) curve, so the same holds for L2(k; n): At every other point
Re[d��=d
1] 6= 0; so at these points Hopf bifurcation occurs giving the possibility
of the birth of limit cycles.

4 Conclusions

Ordinary di¤erential equation were examined with two delays. After �nding the
possible stability switches, their curves were determined. Hopf bifurcation was
used to �nd segments with stability losses and stability gains. The boundary
of the stability region are the 
2 = 0; 
1 = 0 and the 
1 = m(
2) curves. All
other points on the curves L1(k; n) and L2(k; n) for k � 1 do not lead to actual
stability switches, since the system is already unstable.
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