
 

 

 

 

 

 

 

Discussion Paper No.241 

 

Delay Dynamics of a Cournot Game with 

Heterogenous Duopolies 

  

 

Akio Matsumoto 

Chuo University 
 

                          Ferenc Szidarovszky 

University of Pécs 

 

January 2015 

 

 

 

 

 

 

 

 

 

 

 

 

INSTITUTE OF ECONOMIC RESEARCH 

Chuo University 

Tokyo, Japan 

 



Delay Dynamics of a Cournot Game with
Heterogenous Duopolies�

Akio Matsumotoy

Chuo University
Ferenc Szidarovszkyz

University of Pécs

Abstract

We construct à la Cournot duopoly model in a continuous-time frame-
work and consider dynamic behavior when the �rms are heterogenous in
determining their output decision: one �rm has an information delay in
the competitor�s output as well as an implementation delay in its own
output while the other �rm does not have any delays. Two main results
are obtained. One is that the information delay does not a¤ect dynamics
of the commodities and the other is that the implementation delay can
destabilize the otherwise stable equilibrium. Furthermore, it is numeri-
cally con�rmed that the two delay duopoly model can generate a wide
spectrum of dynamics ranging from cyclic dynamics to chaos.
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1 Introduction

This paper presents a new characterization of price formation of a single com-
modity by which regular and irregular price oscillations can be constructed in
a continuous-time framework with �xed time delays. In the existing literature
of macro dynamics, it has been well-known since the 1930s that a delay in in-
vestment or production is one of the key factors to generate cyclic dynamics
in national income, capital accumulation, employment rate, etc. See the pio-
neering papers, Kalecki (1935) and Goodwin (1951). On the other hand, in the
existing literature of micro dynamics such as price and commodity oscillations,
it has been less-known that production delays are also able to generate economic
�uctuations of a continuous-time unstable economic system.1 As early as in the
1930s, Haldane (1933) had already shown that cyclic behavior can arise in a
simple price dynamics model with production delay, coaxing an idea from theo-
retical biology.2 Larson (1964) constructs a continuous-time cobweb model for
the pork market in which pork is inelastically supplied with 12 month delay and
gives rise to cyclic behavior. Howroyd and Russel (1984) are the �rst to con-
sider delay dynamics in a N -�rm oligopoly model. On the other hand, Mackey
(1989) formulates the price dynamics of a single commodity market as a non-
linear delay di¤erential equation and rigorously derives the stability conditions
and the birth of a cyclic oscillation via Hopf bifurcation. Recently Matsumoto
and Szidarovszky (2014) reconsider delay dynamics in various monopoly mod-
els and emphasize that delay may explain various dynamic behavior of micro
economic variables. In the existing literature, however, analysis is mostly con-
�ned to cases of a single dimensional model with one delay or multiple delay
or amultiple dimensional model with one delay. In this paper we construct a
multiple dimensional model with multiple delays and examine cyclic behavior
in the model.
This paper revisits the delay duopoly game investigated by Elsadany and Ma-

touk (2014) in order to reconsider the delay e¤ect on stability on the Nash equi-
librium in a continuous-time framework. Their game is built in a discrete-time
framework and its distinguished feature is the heterogeneity of the duopolists.
In predicting competitor�s output, one duopolist uses a combination of the cur-
rent and delayed information while the other adopts naive expectation. The
main result is that the delay has a stabilizing e¤ect: it enlarges the stability
region of the Nash equilibrium. Generally speaking, a continuous-time model
has a larger stability region than a discrete-time model (see, for example, Mat-
sumoto and Szidarovszky (2015)). Further, the delay in a continuous-time model
often exhibits stability switching from stability to instability if it becomes larger
than some threshold value. However, it is not known yet whether such stability
switch occurs in the heterogenous duopoly game. Hence in this paper, we retain
the heterogneity of the discrete-time dynamic system and consider its e¤ect in

1Since Cobweb dynamics examined by Ezekiel (1933), the discrete-time economic models
have a long history in establishing cyclic behavior of the price and the commodity.

2Surprisingly, it was mentioned in the postscript of the paper in which his theory was
completed in 1924.
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a delay continuous-time framework . The followings are the main results:

(I) When only one �rm has information delays in the competitor�s output, such
a heterogeneous expectation formation has no destabilizing e¤ect;

(II) When the �rm has a delay in implementing information about its own
output, the otherwise stable equilibrium can be destabilized and give rise
to simple as well as to complex �uctuations when the delay is su¢ ciently
long.

This paper is organized as follows. In Section 2, the basic elements of El-
sadany and Matouk�s model are recapitulated. In Section 3 the corresponding
continuous-time duopoly model is constructed and the delay e¤ects due to het-
erogenous expectation formation are examined. In Section 4, the destabilizing
e¤ect caused by the implementation delay is analytically and numerically con-
sidered. In the �nal section some concluding remarks are given and further
research directions are outlined.

2 Discrete-time Duopoly Model

A duopoly game with heterogenous bounded rationality is formulated in discrete-
time framework. Two �rms produce a homogenous good. Firm x produces the
quantity x with marginal cost cx; while �rm y produces the quantity y at mar-
ginal cost cy: The market demand is linear and depends on the total output of
the industry,

p = a� b(x+ y)

where a and b are positive constants. The pro�t of �rm z(= x; y) is

�z = [a� b(x+ y)] z � czz:

Bischi and Naimzada (2000) assume bounded rational �rms and introduce gra-
dient dynamics in which the �rms adjust production levels according to their
marginal pro�ts in such a way that a �rm increases output if the marginal pro�t
is positive, decreases it if negative and does not change if zero. The gradient
dynamics with boundedly rational �rm z can be described by

z(t+ 1) = z(t) + �zz(t)
@�z
@z

where �z > 0 is an adjustment coe¢ cient. Hence in the duopoly game, the out-
put adjustment process with gradient method is presented by a two dimensional
system of di¤erence equations,

x(t+ 1) = x(t) + �xx(t) [a� cx � 2bx(t)� bye(t+ 1)] ;

y(t+ 1) = y(t) + �yy(t) [a� cy � bxe(t+ 1)� 2by(t)] ;
(1)
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where xe(t+1) and ye(t+1) are expected outputs at period t+1: The positive
stationary outputs, x� = xe(t) = x(t) = x(t+1) and y� = y(t) = ye(t) = y(t+1);
are given by

x� =
a� 2cx + cy

3b
and y� =

a� 2cy + cx
3b

(2)

with the assumption
a > max[2cx � cy; 2cy � cx]

to ensure the positivity of the outputs. In the literature, traditional expecta-
tion formations such as naive expectation and adaptive expectation are adopted
in dynamic games with homogeneous �rms. Elsadany and Matouk (2014) con-
struct a dynamic game with heterogenous expectation formation, one �rm makes
output decision based on delayed information on the competitor�s output while
the other �rm makes its output decision on current information.3 In particular,
it is assumed that

ye(t+ 1) = �y(t) + (1� �)y(t� 1) and xe(t+ 1) = x(t) (3)

with the weight � being positive and less than unity. It is demonstrated that
dynamic system (1) with (3) enlarges the stability region and generates complex
dynamics via period doubling cascade when stability is lost.

3 Continuous-time Duopoly Models

We modify three issues of the discrete-time model (1) in order to consider "delay
dynamics" in a continuous-time framework. The �rst one is to replace z(t+1)�
z(t) with _z(t); the second is to replace ye(t + 1) with ye(t) and the last one is
to substitute one unit discrete time delay by � continuous time delay. Then the
discrete-time model can be converted to a continuous-time model,

_x(t) = �xx(t) [a� cx � 2bx(t)� bye(t)] ;

_y(t) = �yy(t) [a� cy � bx(t)� 2by(t)] ;
(4)

where ye(t) is the expected output formed at time t. We introduce the follow-
ing four di¤erent expectation formations and then consider how the di¤erent
formations a¤ect dynamics in the continuous-time framework. Forming the ex-
pectation on the competitor�s output, (E1) uses the realized output at time
t � � ; which is similar to the naive expectation in a discrete-time model, (E2)
uses the weighted average of two past outputs at times t��1 and t��2; (E3) is
an extension of (E2) and employs three past outputs at times t� �1; t� �2 and
t� �3 to obtain the weighted average and �nally (E4) generalizes the weighted
average using all past outputs from time 0 to t and the weight is exponentially

3Yassen and Agiza (2003) and Hassan (2004) assume homogeneous expectation formations
in which both �rms use past production data to determine their current outputs.
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declining with the most weight given to the most current output:

(E1) ye(t) = y(t� �);

(E2) ye(t) =
P2

k=1 �ky(t� �k);
P2

k=1 �k = 1;

(E3) ye(t) =
P3

k=1 �ky(t� �k);
P3

k=0 �k = 1;

(E4) ye(t) =

tZ
0

1

T
e�

�
T y(t� �)d� =

tZ
0

1

T
e�

t�s
T y(s)ds:

(5)

3.1 One Fixed Delay

The point (x�; y�) is also the stationary point of the continuous-time model.
Assuming formation (E1) in (5) and introducing new notation, x�(t) = x(t)�x�
and y�(t) = y(t)�y�; we obtain a two dimensional system of linearized equations

_x�(t) = � [�2bx�(t)� by�(t� �)] ;

_y�(t) = � [�bx�(t)� 2by�(t)]
(6)

with
� = �xx

� and � = �yy
�:

Substituting exponential solutions

x�(t) = e
�tu and y�(t) = e�tv

into the linearized system (6) and arranging terms yield an alternative linear
system, 0@ �+ 2b� b�e���

b� �+ 2b�

1A0@ u

v

1A =

0@ 0

0

1A :
Excluding the trivial solutions (i.e., u = v = 0), we obtain non-trivial solutions
by solving the characteristic equation

(�+ 2b�)(�+ 2b�)� b2��e��� = 0: (7)

For � = 0; the characteristic equation is reduced to

�2 + 2b(�+ �)�+ 3��b2 = 0:

Since, by assumption, 2b(�+�) > 0 and 3��b2 > 0; the non-delay characteristic
equation has roots with negative real parts, implying that the stationary point
is locally stable if there is no delay. It is true that the stationary state preserves
stability as far as the delay is positive but su¢ ciently small. We are concerned
with a threshold value (if exists) of the delay for which the stationary point
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is just destabilized. It is well known that if the stability of the stationary
point switches at � = �� ; then the characteristic equation must have a pair of
pure conjugate imaginary roots there. To examine the stability switches of the
dynamic system (6), we determine this threshold value �� : For this purpose, we
substitute a purely imaginary solution � = i! with ! > 0 into equation (7) that
is separated to real and imaginary parts,

�!2 + 4b2�� = b2�� cos �!;

�2b(�+ �)! = b2�� sin �!:

Squaring both sides of these equations and adding the resultant expressions
yield, after arranging terms, a quartic equation in !;

!4 + 4b2(�2 + �2)!2 + 15
�
b2��

�2
= 0: (8)

Since the left hand side is positive for all real values of !; stability switch cannot
occur and therefore the steady state is always stable for any � > 0: In other
words, time delay is harmless.

Theorem 1 Under the expectation formation (E1); the continuous-time dy-
namic system (4) is locally asymptotically stable for any value of � > 0:

3.2 Two Fixed Delays

Assuming (E2) as the output expectation formation and substituting the ex-
ponential forms, x(t) = e�tu and y(t) = e�tv into the linearized equation (4)
yields 0@ �+ 2b� b�

�
�1e

���1 + �2e
���2

�
b� �+ 2b�

1A0@ u

v

1A =

0@ 0

0

1A :
Assuming nontrivial solution gives the corresponding characteristic equation,

(�+ 2b�)(�+ 2b�)� b2��
�
�1e

���1 + �2e
���2

�
= 0:

This is equivalent with equation

a(�; �1; �2) = 1 + a1(�)e
���1 + a2(�)e

���2 (9)

where

ak(�) =
�b2��

(�+ 2b�)(�+ 2b�)
�k for k = 1; 2:

Suppose � = i! with ! > 0; then

ak(i!) =
���b2

�
4b2�� � !2 � i2b(�+ �)!

�
[4b2�� � !2]2 + [2b(�+ �)!]2

�k for k = 1; 2
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and their absolute values are

jak(i!)j =
b2��q

[4b2�� � !2]2 + [2b(�+ �)!]2
�k for k = 1; 2: (10)

Gu et al. (2005) geometrically investigate the two delay equation based on the
idea that solving a(i!; �1; �2) = 0 is equivalent to forming a triangle by treating
three terms in (9) as three vectors in the complex plane and then placing them
head to tail. Since the triangle consists of three line segments, it is a necessary
and su¢ cient condition for the existence of a positive solution ! > 0 of equation
(9) that the sum of the lengths of any two adjacent line segments is not shorter
than the length of the remaining line segment.

Theorem 2 A purely imaginary root � = i! with ! > 0 is a solution of
a(i!; �1; �2) = 0 if and only if the following three inequalities hold:

ja1(i!)j+ ja2(i!)j � 1;

ja1(i!)j+ 1 � ja2(i!)j ;

ja2(i!)j+ 1 � ja1(i!)j :

Proof. Let a; b and c be three line segments. The end points of a and b with a
common starting point can be connected with a segment of length c if and only
if

ja� bj � c � a+ b:
The second inequality gives one condition. The �rst inequality can be rewritten
as

�c � a� b � c;
which means that

b � a+ c
and

a � b+ c:
Three inequality conditions are obtained, which completes the proof.

We check whether the �rst condition of Theorem 2 holds. Substituting (10) into
it presents the inequality condition in parametric terms,

!4 + 4b2(�2 + �2)!2 + 15
�
b2��

�2 � 0: (11)

Notice that the left hand side is positive with all real values of ! implying that
stability switch cannot occur for �1 > 0 and �2 > 0.

Theorem 3 Under the expectation formation (E2); the continuous-time dy-
namic system (4) is locally asymptotically stable for any values of �1 > 0 and
�2 > 0:
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3.3 Three Fixed Delays

In the similar way, we can show that the expectation formation (E3) cannot
destabilize the stationary state as well. As before, sustituting the exponential
forms, x(t) = e�tu and y(t) = e�tv into the linearized system under (E3) yields0@ �+ 2b� b�

�
�1e

���1 + �2e
���2 + �3e

���3
�

b� �+ 2b�

1A0@ u

v

1A =

0@ 0

0

1A :
Nontrivial solution exists if and only if

(�+ 2b�)(�+ 2b�)� b2��
�
�1e

���1 + �2e
���2 + �3e

���3
�
= 0:

As before, this equation can be rewritten as

a(�; �1; �2; �3) = 1 + a1(�)e
���1 + a2(�)e

���2 + a3(�)e
���3 (12)

where

ak(�) =
�b2��

(�+ 2b�)(�+ 2b�)
�k for k = 1; 2; 3;

Suppose � = i! with ! > 0; then

ak(i!) =
�b2��

�
4b2�� � !2 � i2b(�+ �)!

�
[4b2�� � !2]2 + [2b(�+ �)!]2

�k for k = 1; 2; 3;

and their absolute values are

jak(i!)j =
b2��q

[4b2�� � !2]2 + [2b(�+ �)!]2
�k for k = 1; 2; 3: (13)

Almodaresi and Bozorg (2009) give a straightforward extension of the two delay
case considered by Gu et al. (2005) to the more general case of three delays and
obtain the following result:

Theorem 4 Pure imaginary root � = i! with ! > 0 is a solution of a(i!; �1; �2; �3) =
0 if and only if the following four inequalities hold:

ja1(i!)j+ ja2(i!)j+ ja3(i!)j � 1;

ja2(i!)j+ ja3(i!)j+ 1 � ja1(i!)j ;

ja1(i!)j+ ja3(i!)j+ 1 � ja2(i!)j ;

ja1(i!)j+ ja2(i!)j+ 1 � ja3(i!)j :

We again check the �rst condition, which, after substituting (13), can be
written as

!4 + 4b2(�2 + �2)2!2 + 15
�
b2��

�2 � 0:
Similerly to the two delay case, the left hand side is positive with any real value
of !, implying that stability switch cannot occur for any positive delays.
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Theorem 5 Under the expectation formation (E3); the continuous-time dy-
namic system (4) is locally asymptotically stable for any values of �1 > 0; �2 > 0
and �3 > 0:

3.4 Continuously Distributed Delays

The expectation formation (E4) assumes that the expected output is a weighted
average of all past outputs from time 0 to time t. It is a generalization of (E2)
and (E3) with in�nitely many continuously distributed delays. Adding the
time derivative of the expectation (E4) to linearized system (4) yields a three
dimensional system of di¤erential equations,

_x(t) = � [�2bx(t)� bye(t)] ;

_y(t) = � [�bx(t)� 2by(t)] ;

_ye(t) =
1

T
[y(t)� ye(t)] :

The corresponding characteristic equation is given by

�3 + a1�
2 + a2�+ a3 = 0

where

a1 =
1 + 2(�+ �)bT

T
> 0;

a2 =
2(�+ �)b+ 4��b2T

T
> 0

and

a3 =
3��b2

T
> 0:

A set of necessary and su¢ cient conditions for all roots of the cubic characteristic
equation to have negative real parts is

ai > 0 for i = 1; 2; 3 and a1a2 � a3 > 0;

which is a special case of the Routh-Hurwitz criterion. Since all coe¢ cients are
positive, we need to check whether the last condition is satis�ed or not. Clearly

a1a2 � a3 =
b

T 2
�
8b2��(�+ �)T 2 + b

�
4�2 + 9�� + 4�2

�
T + 2(�+ �)

�
(14)

is always positive for any T > 0: Hence, the stationary state of the three dimen-
sional system is locally stable.

Theorem 6 Under the expectation formation (E4); the continuous-time dy-
namic system (4) is locally asymptotically stable for any values of T > 0:
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4 Own and Competitor�s Delays

In this section we examine the e¤ects caused by the two delays on dynamics: one
delay in the competitor�s output and the other delay in the �rm�s own output.
Thus the dynamic system is modi�ed in the following way,

_x(t) = �xx(t) [a� cx � 2bx(t� �x)� by(t� �y)] ;

_y(t) = �yy(t) [a� cy � bx(t)� 2by(t)]
(15)

where �x > 0 is the implementation delay and �y > 0 is the competitor�s infor-
mation delay. The stationary point is the same as given in (2). The linearized
system is

_x�(t) = � [�2bx�(t� �x)� by�(t� �y)] ;

_y�(t) = � [�bx�(t)� 2by�(t)] :
(16)

Substituting exponential solutions x�(t) = e�tu and y�(t) = e�tv reduces the
linear system to an alternative form,0@ �+ 2�be���x b�e���y

b� �+ 2b�

1A0@ u

v

1A =

0@ 0

0

1A :
Nontrivial solution exists if and only if

�2 + 2b��+ 2b�(�+ 2b�)e���x � b2��e���y = 0: (17)

Before turning to a closer examination of equation (17), a few remarks should
be made concerning the e¤ect caused by the implementation delay. Assuming
that �y = 0 and � = i! with ! > 0; we can separate equation (17) into real and
imaginary parts,

2b�(2b� cos �x! + ! sin �x!) = !
2 + b2��;

2b�(! cos �x! � 2b� sin �x!) = �2b�!:
(18)

Adding the squares of these equations yields a fourth-order polynomial equation
in !;

!4 + 2b2
�
�� + 2

�
�2 � �2

��
!2 � 15b4�2�2 = 0

that can be solved for !2 and the positive solution is

!2+ = b
2

�
�[�� + 2

�
�2 � �2

�
] +

q
4�2 + 4��3 + 7�2�2 + (2�2 � ��)2

�
> 0

Solving (18) for cos �x! and sin �x!, substituting !+ into cos �x! and then
solving it for � give the threshold value of the delay,

�nx =
1

!+

"
cos�1

 
b2�2

!2+ + 4b
2�2

!
+ 2n�

#
; for n = 0; 1; 2; :::
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A routine bifurcation analysis shows that stability is lost at the smallest thresh-
old value,

�0x =
1

!+
cos�1

 
b2�2

!2+ + 4b
2�2

!
: (19)

and stability cannot be regained later.

Theorem 7 The stationary point of (15) with �y = 0 is locally asymptotically
stable for �x < �0x; loses stability at �x = �

0
x and bifurcates to a limit cycle via

Hopf bifurcation for �x > �0x:

We now investigate the characteristic equation with two positive delays by
applying Gu�s method (Gu et al. 2005). Dividing both sides by �2 + 2b�� and
introducing new functions

a1(�) =
2b�

�
and a2(�) =

�b2��
�(�+ 2b�)

simplify equation (17) as

a(�; �x; �y) = 1 + a1(�)e
���x + a2(�)e

���y = 0: (20)

Suppose that � = i! with ! > 0: Substituting it into ai(�) yields

a1(i!) = �i
2b�

!

and

a2(i!) =
b2��!

!(!2 + 4b2�2)
+ i

2b3��2

!(!2 + 4b2�2)
:

Their absolute values are

ja1(i!)j =
2b�

!

and

ja2(i!)j =
b2��

!
p
!2 + 4b2�2

:

We check whether the three conditions of Theorem 2 are satis�ed. Substituting
the absolute values reduces the three conditions to the following two conditions,

f(!) = !4 � 4b�!3 + 4b2(�2 + �2)!2 � 16b3��2! + 15b4�2�2 � 0

and

g(!) = !4 + 4b�!3 + 4b2(�2 + �2)!2 + 16b3��2! + 15b4�2�2 � 0:

Notice that g(!) � 0 is always true for ! � 0. However, it is ambiguous whether
f(!) � 0 holds or not. Using the variable transformation

! = x�
�
�4b�
4

�
= x+ b�;
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we rewrite f(!) as

F (x) = x4 � 2b2(�2 � 2�2)x2 � 8b3��2x+ b4�2(�2 + 3�2):

The sequence of the signs of the polynomial coe¢ cients are (+;�;�;+) if �2 >
2�2; (+;+;�;+) if �2 < 2�2; and (+;�;+) if �2 = 2�2: In any sequence,
the number of sign changes is two. According to Descartes�rule of sign, this
polynomial has either two or zero positive roots. If is clear that F (0) > 0 and
F (1) =1: Substituting x = �b yields

F (�b) = �2b4(��2) < 0:

The inequality implies that F (x) = 0 has two positive solutions, x1 and x2
where 0 < x1 < �b and x2 > �b: Hence f(!) = 0 has two positive solutions

!1 = x1 + �b > 0 and !2 = x2 + �b > 0

and f(!) � 0 for ! 2 [!1; !2]; and a routin investigation can show that f(!) > 0
otherwise.4

We will next �nd all pairs of (�1; �2) satisfying a(i!; �1; �2) = 0. The three
terms in (20) are three vectors in the complex plane that construct a triangle.
Let us suppose that 1 is its base and let us denote the angle between 1 and��a1(i!)e�i!�x�� by �1 and an angle between 1 and ��a2(i!)e�i!�y �� by �2: Since,��e�i!�x�� = ��e�i!�x�� = 1; we have, by the law of cosine,

�1(!) = cos�1

 
12 + ja1(i!)j2 � ja2(i!)j2

2 � 1 � ja1(i!)j

!

= cos�1

 
!4 + 4b2(�2 + �2)!2 + 15b4�2�2

4b�!
�
!2 + 4b2�2

� !

and

�2(!) = cos�1

 
12 + ja2(i!)j2 � ja1(i!)j2

2 � 1 � ja2(i!)j

!

= cos�1

 
!4 � 4b2(�2 � �2)!2 � 15b4�2�2

2b2�!
p
!2 + 4b2�2

!
:

Since the triangle may be located above and also under the horizontal axis, we
get two equations as�

arg
�
a1(i!)e

�i�x!
�
+ 2m�

	
� �1(!) = �

and �
arg
�
a2(i!)e

�i�y!
�
+ 2n�

	
� �2(!) = �

4A formal proof is given in the Appendix.

12



which yield the threshold values of the delays:

��x (!; n) =
1

!

�
3�

2
+ (2m� 1)� � �1(!)

�
(21)

and

��y (!; n) =
1

!

�
tan�1

�
2b�

!

�
+ (2n� 1)� � �2(!)

�
: (22)

Let 
 be the set of ! for which f(!) � 0 holds. Then we can �nd all pairs of
(�1; �2) constructing the stability switching curves for ! 2 
 which consists of
two sets of parametric segments,

L1(m;n) = f�+x (!;m); ��y (!; n)g (23)

and
L2(m;n) = f��x (!;m); �+y (!; n)g: (24)

To illustrate the stability switching curves we �rst specify the parameter values:

Assumption: � = � = b = 1:

Under this Assumption, we have

f(!) = !4 � 4!3 + 8!2 � 16! + 15:

It is not di¢ cult to show that f(!) = 0 has two real and positive roots, !s and
!e; both of which are, without a loss of generality, supposed to satisfy !s < !e
where

!s = 1 +
1

2
p
3=K

� 1
2

r
�1
3
(12 +K) + 16

p
3=K ' 1:611

!e = 1 +
1

2
p
3=K

� 1
2

r
�1
3
(12 +K) + 16

p
3=K ' 2:326

with

K = �4 +
�
584� 48

p
87
� 1
3

+ 2
�
73 + 6

p
87
� 1
3

:

The domain of ! is the interval [!s; !e](= 
): So the segment (23) starts at point�
�+x (!s;m); �

�
y (!s; n)

�
and terminate at point

�
�+x (!e;m); �

�
y (!e; n)

�
and so

does the segment (24) at points
�
��x (!s;m); �

+
y (!s; n)

�
and

�
��x (!e;m); �

+
y (!e; n)

�
.

Furthermore the angles of the triangle are

�1(!) = cos
�1
�
!4 + 8!2 + 15

4!(!2 + 4)

�
and

�2(!) = cos
�1
�

!4 � 15
2!
p
!2 + 4

�
:
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It is easily veri�ed that

!4s + 8!
2
s + 15

4!s(!2s + 4)
= 1;

!4e + 8!
2
e + 15

4!e(!2e + 4)
= 1

and
!4s � 15

2!s
p
!2s + 4

= �1, !4e � 15
2!e

p
!2e + 4

= 1

which then imply that
�1(!s) = 0; �1(!e) = 0

and
�2(!s) = �; �2(!e) = 0:

We then have the following results concerning the locations of the curve seg-
ments:

Theorem 8 Given m and n; the segments L1(m;n+1) and L2(m;n) have the
same starting point whereas the segments L1(m;n) and L2(m;n) have the same
end point.

Proof. For analytical simplicity we assume m = 0: The starting points of
L1(0; n) and L2(0; n) are

Ls1(0; n) = f�+x (!s; 0); ��y (!s; n)g

with

�+x (!s; 0) =
1

!s

�

2
and ��y (!s; n) =

1

!s

�
tan�1

�
2

!s

�
+ 2(n� 1)�

�
,

and
Ls2(0; n) = f��x (!s; 0); �+y (!s; n)g

where

��x (!s; 0) =
1

!s

�

2
and �+y (!s; n) =

1

!s

�
tan�1

�
2

!s

�
+ 2n�

�
.

Hence we have
Ls1(0; n+ 1) = L

s
2(0; n):

In the same way, the end points of L1(0; n) and L2(0; n) are

Le1(0; n) = f�+x (!e; 0); ��y (!e; n)g

with

�+x (!e; 0) =
1

!e

�

2
and ��y (!e; n) =

1

!e

�
tan�1

�
2

!e

�
+ (2n� 1)�

�
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and
Le2(0; n) = f��x (!e; 0); �+y (!e; n)g

where

��x (!e; 0) =
1

!e

�

2
and �+y (!e; n) =

1

!e

�
tan�1

�
2

!e

�
+ (2n� 1)�

�
.

Hence we have
Le1(0; n) = L

e
2(0; n):

The same result is obtained for any integer m > 0:

This result is numerically con�rmed in Figure 1 where m = 0. The stability
switching curve consists of the red and blue segments that correspond to L1(0; n)
and L2(0; n) for n = 0; 1; 2: The red and blue segments shift upward when n
increases and to the right when m increases. The upward-sloping blue segment
crossing the horizontal axis at �x = �0x is the L2(0; 0) segment.

5 It connects to
the red L1(0; 1) segment at a point where Ls1(0; 1) = L

s
2(0; 0) holds. As before,

the upper script "s" means the starting (i.e, initial) point of the segment and

Ls1(0; 1) = (�
+
x (!s; 1); �

�
y (!s; 1)) and L

s
2(0; 0) = (�

�
x (!s; 0); �

+
y (!s; 0)):

This L1(0; 1) segment then connects to the blue L2(0; 1) segment at a point
where Le1(0; 1) = Le2(0; 1) holds. The upper script "e" means again the end
point of the segment and

Le1(0; 1) = (�
+
x (!e; 1); �

�
y (!e; 1)) and L

e
2(0; 1) = (�

�
x (!e; 1); �

+
y (!e; 1)):

As n increases, the two segments are connected in the same way to construct
the continuous stability switching curve. The eigenvalues are purely imaginary
on this curve. The stability switching curves L1(0; n) and L2(0; n) divide the
�rst quadrant of the (�1; �2) plane into two parts. One contains the origin and
its every point can be reached from the origin via continuous curve not crossing
the stability switching curve. At the points in this region the real parts of the
eigenvalues are negative, so the system is locally asymptotically stable. The
points of the complement of this region except the curves give points when the
system is unstable. We again notice that the blue L2(0; 0) segment crosses the
horizontal axis at �x = �0x(' 0:824): This indicates that stability is preserved
for �x < �0x and lost for �x > �0x when �y = 0: In other words, this is the
threshold value of �x in the case of one delay. We already discussed the one
delay case and derived the threshold value in (19), which is equal to 0:824 under
Assumption. So we could con�rm this threshold value in two di¤erent ways.
To investigate how stability changes in case of two positive delays, we perform
numerical simulations.

5The L1(0; 0) segment is located in the fourth quadrant so it is not illustrated.
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Figure 1. Stability switching curve

We now examine the e¤ects caused by changing the value of �x; keeping
the value of �y at some positive �xed value. In Figure 2(A) we increase the
value of �x from 0 to 1:3 in 0:001 increments along the horizontal dotted line at
�y = �

a
y(= 2): For each value of �x; the dynamic system runs for 0 � t � 1000

and only the data for 950 � t � 1000 are used to get rid of the transients. The
local maxima and minima are plotted against each value of �x: If the bifurcation
diagram has one point against �x; then the maximum point is identical with the
minimum point, implying that the stationary state is locally stable. If it has
two points, then a limit cycle having one maximum and one minimum emerges
and if many points, then a limit cycle exhibits many ups and downs. The
horizontal dotted line crosses the blue L2(0; 1) segment at �ax ' 0:652 denoted
by the green dot in Figure 1. It is seen that the stationary state is locally
asymptotically stable for �x < �ax and becomes unstable for �x > �

a
x as shown

in Figure 2(A). When stability is lost at �x = �ax; then the stationary point
bifurcates to a limit cycle and does not regain stability for larger values of �x:
We move to the second simulation in which the �xed value of �y is increased
to � by = 4:4 and the same procedure is repeated. As is seen in Figure 1, the
horizontal dotted line at � by crosses the stability switching curve three times as
denoted by three green dots. As described in Figure 2(B), both stability regain
and stability loss occur in this example. In particular, stability is �rst lost at the
�rst crossing point, the left most green dot denoted by �1x(' 0:699) in Figure
2(B). The limit cycle emerges for �x in the interval [�1x; �

2
x] where �

2
x(' 0:892)

corresponds to the middle green point. If the �x-value of the most right green
point is denoted by �3x(' 0:964), then stability is regained for �x 2 [�2x; �3x]: The
stationary state again loses its stability for �x > �3x: The bifurcation diagram
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shows that a trajectory gradually exhibits more complex dynamics through a
quasi period-doubling process as �x become larger and then returns to the simple
limit cycle through a quasi period-halving process as �x further increases.

(A) �ay = 2 (B) � by = 4:4

Figure 2. Bifurcation diagrams with respect to �x; given �y

We now turn attention to the delay e¤ect caused by changing values of �y;
keeping the value of �x at some positive value. We also perform two simulations.
In Figure 1, �x is �xed at �Ax = 0:75 and �y increases along the vertical dotted
line crossing the stability switching curve three times denoted by three black
dotes. Although they are not labelled on the vertical axis to avoid confusion in
Figure 1, we denote their �y-values by �1y(' 1:410); �2y(' 3:138) and �3y(' 4:215)
with ascending order in Figure 3(A). The bifurcation diagram indicates that
stability is lost at �y = �1y, a limit cycle emerges for larger values than �

1
y and

then regains stability at �y = �2y: Stability is preserved for �y < �
3
y and is lost

again for �y = �3y: The diagram implies the similar dynamic cascade in which a
process of stability loss, birth of limit cycle and regain of stability is repeated
as the value of �y increases. In Figure 3(B) the �xed value of �x is increased to
�Bx = 1:2 from �Ax = 0:75 and the value of �y increases along the vertical dotted
line at �Bx = 1:2 located to the right of the stability switching curve in Figure
1. Even for �y = 0; the dynamic system is unstable as �Bx > �

0
x and generates a

limit cycle with one maximum and one minimum. As the value of �y increases,
the bifurcation diagram implies that the diameter of the limit cycle varies and
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then more complex dynamics appears through a period-doubling like process.

(A) �Ax = 0:75 (B) �Bx = 1:2

Figure 3. Bifurcation diagrams with respect to �y; given �x

5 Concluding Remarks

Delay dynamics of heterogeneous duopolies in a continuous-time framework was
investigated. This is an extension of heterogeneous duopolies in a discrete-time
framework considered by Elsadany and Matouk (2014). They investigated a
heterogenous duopoly market in which one �rm forms its expectation on the
competitor�s output only with delayed information and the other �rm uses the
current information. Following their spirit, we assumed that one �rm has a
delay in obtaining information about the competitor�s output (i.e., information
delay) in four di¤erent ways. Applying the recently developed method to exam-
ine stability of delay di¤erential equations, we analytically demonstrated that
the information delay is harmless to stability in the continuous-time duopoly
model. In other words, no stability switch occurs regardless of the length of
the delay. This shows a sharp di¤erence from the main result of the discrete
case that a delay in the competitor�s production can have a stabilizing e¤ect.
Furthermore, we assumed that in addition to the information delay, the �rm has
a delay in implementing information about its own output (i.e., implementation
delay) while the other �rm can make its decision without any delays. It was
demonstrated that the implementation delay matters. Constructing the stabil-
ity switching curve on which stability is lost, we con�rmed that stability can be
switched to instability when the length of the delay takes over some threshold
value. It is numerically veri�ed that various dynamics ranging from simple to
complex can emerge according to the values of the delays.
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There are many directions for future studies. In this study, we assumed het-
erogenous duopolies in which only one �rm has delayed information formulated
in (15). One possible extension is given below in which duopolies are heteroge-
nous and one �rm has an implementation delay and the other has an information
delay.

_x(t) = �xx(t) [a� cx � 2bx(t� �x)� by(t)] ;

_y(t) = �yy(t) [a� cy � bx(t� �y)� 2by(t)] :
However, the characteristic equation derived from this dynamic system is iden-
tical with equation (17). It may be interesting to consider duopoly models with
di¤erent economic backgrounds generating exactly the same dynamics. The
second extension concerns the transformation to a continuous-time model from
a discrete-time model. We make two assumptions: one is replacing the discrete
time di¤erence z(t + 1) � z(t) with time derivative _z(t) and the other is intro-
ducing continuous-time expectation formations concerning ye(t) instead of the
discrete-time formation. The delay discrete-time formation was given as

ye(t+ 1) = �y(t) + (1� �)y(t� 1)

which can be written as

ye(t+ 1) = � [y(t)� y(t� 1)] + y(t� 1)

= � _y(t) + y(t� 1):

If the unit time di¤erence is replace with delay � , then we have the following
form of a continuous-time system:

_x(t) = �xx(t) [a� cx � 2bx(t)� b f� _y(t) + y(t� �x)g] ;

_y(t) = �yy(t) [a� cy � bx(t)� 2by(t)] :

This can be solved for _x(t) and _y(t) to derive a dynamic system of explicit delay
di¤erential equations. Further it is possible to introduce an implementation
delay on the �rm�s own output although analysis will be more complicated.
The third extension is to adopt the modelling method proposed by Berezowski
(2001) and applied by Matsumoto and Szidarovszky (2014) in considering delay
monopoly dynamics. The continuous-time system is described by the following
delay equations,

�x _x(t) + x(t) = x(t� �x) + �xx(t� �x) [a� cx � 2bx(t� �x)� bye(t)] ;

�y _y(t) + y(t) = y(t� �x) + �yy(t� �y) [a� cy � bxe(t)� 2by(t� �y)] ;

in which �x � 0 and �y � 0 denote the inertias (or frictions) in the production
process. It should be noticed that this system can be reduced to system (1)
if �x = �y = 0 and �x = �y = 1. So when �x and �y take smaller values,
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generated dynamics is similar to the discrete-time case (1). On the other hand,
when �x and �y take larger values, it may generate di¤erent dynamics.

Appendix

In this Appendix, we will prove that equation

x4 � 2b2(�2 � 2�2)x2 � 8b3��2x+ b4�2(�2 + 3�2) = 0

has two distinct positive roots and no negative root exists. Let x = �bz; then

�4b4z4 � 2b2(�2 � 2�2)�2b2z2 � 8b3��2�bz + b4�2(�2 + 3�2) = 0

which can be simplifed as

h(z) = �2z4 � 2(�2 � 2�2)z2 � 8�2z + (�2 + 3�2) = 0:

Notice that

h(0) = �2 + 3�2 > 0, lim
z!�1

h(z) =1 and h(1) = ��2 < 0:

The derivative of h(z) has the form

h0(z) = 4(z � 1)
�
�2z2 + �2z + 2�2

�
:

The sign of this derivative depends on the sign of the quadratic function

g(z) = �2z2 + �2z + 2�2

with the discriminant
D = 16�2(�2 � 8�2):

If �2 = 8�2; then it is positive except its negative vertex, so h0(z) < 0 as z < 1
and di¤eres from the vertex, h0(z) > 0 as z > 1 and h0(z) = 0 as z = 1 or the
vertex. Therefore h(z) strictly decreases as z < 1 and strictly increases as z > 1.
If �2 < 8�2; then h0(z) > 0 as z > 1 and h0(z) < 0 as z < 1: Sience h(0) > 0
and both limits at �1 are positive there are two positive roots if h(z) and no
negative root exists. Assume next that �2 > 8�2: Then the quadtratic function
g(z) has two negative roots:

z1;2 = �
1

2
�
p
�2 � 8�2

2�
(z1 < z2):

At these roots

z2 = �z � 2�
2

�2
;

20



so

h(z) = �2
�
�z � 2�

2

�2

�2
� 2(�2 � 2�2)

�
�z � 2�

2

�2

�
� 8�2�2z + (�2 + 3�2)

=
�
�2 � 8�2

�
z +

1

�2
�
�4 + 5�2�2 � 4�4

�
:

Since z1 and z2 are negative and their average value is �1=2, both are larger
than �1. Since �2 > 8�2; �

�2 � 8�2
�
z > 8�2 � �2:

Hence

h(z) > 8�2 � �2 + 1

�2
�
�4 + 5�2�2 � 4�4

�
> 8�2 +

�2

�2
�
5�2 � 4�4

�
> 8�2 +

�2

�2
�
40�2 � 4�4

�
> 0:

Since at both negative starting points the function is negative, h(z) decreases
from the 1 limit as z ! 1 to h(z1) > 0, then increases to h(z2) > 0 and
decreases again until h(1) < 0 and then increases and tends to 1 as z ! 1.
Since h(0) > 0; there are no negative roots, only two distinct positive roots.
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