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1 Introduction
This is a continuation of the earlier work of Matsumoto and Szidarovszky
(2010A) that compares Bertrand and Cournot equilibria in a differentiated n-
firm oligopoly with linear demands and asymmetric constant marginal costs.
In the literature of the Bertrand and Cournot competitions, there has been
the conventional view that price competition is more competitive than quan-
tity competition in a sense that the price-adjusting firm charges a lower price
and produces more quantity of output than the quantity-adjusting firm. It has
been challenged by a number of theoretical models under various conditions
whether this view is true or not. Singh and Vives (1984) find that the view is
true in a linear duopoly framework. Häckner (2000) reconsiders general n-firm
oligopoly and points out that the results of Singh and Vives are sensitive to
the duopoly assumption. These are static results. In the dynamic context of
a n-firm oligopoly without product differentiation, Theocharis (1960) reminds
us of the controversial result that the non-differentiated Cournot equilibrium is
locally asymptotically stable under the naive adjustment process if and only if
the number of firms is two. Matsumoto and Szidarovszky (2010A) analyze the
general n-firm oligopoly model of Häckner, which is a direct extension of the
duopoly model used by Singh and Vives. In particular, they address two issues:
one is comparing the differentiated Bertrand and Cournot equilibria from the
static point of view and the other is examining the stability of the equilibria.
After deriving the optimal strategies of output, price and profit, they provide
positive support for Theocharis’ result however negative support for the con-
ventional view on comparison between the two equilibria:

(i) Bertrand and Cournot equilibria can be locally unstable when the number
of the firms is strictly greater than three.

(ii) The conventional view is not always true in the n-firm oligopoly.

Looking at these results from a dynamic point of view, it is clear that several
important issues remain unsolved. The first issue relates to controlling unstable
equilibria. In consequence of those two results (i) and (ii), it is probable that the
conventional view does not hold and the one of the equilibria becomes locally
unstable. Namely, the Bertrand price can be higher than the Cournot price while
it is locally unstable or the Cournot output can be larger than the Bertrand
output while it is locally unstable. In such cases comparing equilibria does
not make any economic sense. Applying the results obtained in Matsumoto
and Szidarovszky (2010B) in which a general n-firm oligopoly is examined with
isoelastic price function and linear cost under Cournot competition, we will
provide economic circumstances under which the unstable quantity and price
dynamics can be stabilized. The second issue relates to global stability of a
locally unstable equilibrium. Our main findings are the followings: it is possible
to stabilize an equilibrium if some learning process is introduced and a locally
unstable trajectory converges to a period-2 cycle if the non-negativity constraint
is explicitly taken into account.
The paper is organized as follows. The next section introduces a linear

n-firm oligopoly model with product differentiation and obtain the Cournot
and Bertrand equilibria. Section 3 considers the control of unstable Cournot
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and Bertrand dynamics with naive expectations through partial and adaptive
adjustments. Section 4 concludes the paper.

2 n-Firm Oligopoly Model
We recapitulate the main structure of the general oligopoly model constructed
in Matsumoto and Szidarovszky (2010A) and proceed to dynamic analysis. The
linear inverse demand function or the price function of good k is given by

pk = αk − qk − γ
nX
6̀=k
q` for k = 1, 2, ..., n, (1)

where qk is quantity of good k, pk is its price, γ measures the degree of differen-
tiation between the goods and αk measures the quality of good k.1 In this study,
we assume that |γ| < 1 and γ 6= 0, to confine our analysis to the case in which
the goods are imperfect substitutes or complements and are not independent.
Solving (1) for quantities yields the direct demand of good k,

qk =

(1 + (n− 2)γ)(αk − pk)− γ
nP̀
6=k
(α` − p`)

(1− γ)(1 + (n− 1)γ) for k = 1, 2, ..., n. (2)

It is linear in the other firms’ prices and its price-independent demand is assumed

to be positive, that is, (1+(n−2)γ)αk−γ
nP̀
6=k

α` > 0. It is further assumed that

there is no fixed cost and the cost function of firm k is linear. The marginal
cost is denoted by ck. To avoid negative optimal production, it is also assumed
that αk − ck is positive. We can call this difference net quality of good k.
In Cournot competition, firm k chooses a quantity of good k to maximize its

profit πk = (pk − ck)qk subject to (1), taking the other firms’ quantities given.
Assuming an interior maximum and solving its first-order condition yield the
best reply of firm k,

qk = R
C
k

⎛⎝ nX
` 6=k

q`

⎞⎠ for k = 1, 2, ..., n.

where

RCk

⎛⎝ nX
6̀=k
q`

⎞⎠ =
αk − ck
2− γ

− γ

2

nX
` 6=k

q`. (3)

1The price function (1) can be derived as a solution of the utility maximization of the
following form

U =
n[
i=1

αiqi −
1

2

⎛⎝ n[
i=1

q2i + 2γ
n[
i=1

n[
j>i

qiqj

⎞⎠− n[
i=1

piqi.

Here αi can be considered to be a proxy for the quality of good k because an increase in αi
positively affects the utitliy level.
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It is easily checked that the second-order condition is certainly satisfied. The
Cournot equilibrium output and price of firm k are

qCk =
αk − ck
2− γ

− γ

(2− γ)(2 + (n− 1)γ)
nP̀
=1

(α` − c`) (4)

and

pCk =
αk + ck − γck

2− γ
− γ

(2− γ)(2 + (n− 1)γ)
nP̀
=1

(α` − c`). (5)

The superscript ”C” is attached to variables to indicate that they are evaluated
at the Cournot equilibrium. Subtracting (4) from (5) yields pCk −ck = qCk which
is, then, substituted into the profit function to obtain the Cournot profit,

πCk =
¡
qCk
¢2
. (6)

In Bertrand competition, firm k chooses the price of good k to maximize
the profit πk = (pk − ck)qk subject to (2), taking the other firms’ prices given.
Solving the first-order condition yields the best reply of firm k,

pk = R
B
k

Ã
nP̀
6=k
p`

!
, for k = 1, 2, ..., n,

where

RBk

Ã
nP̀
6=k
p`

!
=

αk + ck
2

− γ

2[1 + (n− 2)γ]
nP̀
6=k
(α` − p`). (7)

The second-order condition

∂2πk
∂p2k

= − 1 + (n− 2)γ
(1− γ)(1 + (n− 1)γ) < 0,

for an interior optimum solution is definitely satisfied for γ > 0. However the
sign of the second derivative is ambiguous when γ < 0. This gives rise to make
the following assumption:

Assumption 1 1 + (n− 1)γ > 0 when γ < 0.

The Bertrand equilibrium price and output of firm k are given by

pBk =
(2+(n−3)γ)[(1+(n−1)γ)(αk+ck)−γck]−γ(1+(n−2)γ)

nP̀
=1

(α`−c`)

(2+(2n−3)γ)(2+(n−3)γ) (8)

and

qBk =
1 + (n− 2)γ

(1− γ)(1 + (n− 1)γ)(p
B
k − ck) (9)

implying that

pBk − ck=
(2+(n−3)γ)(1+(n−1)γ)(αk−ck)−γ(1+(n−2)γ)

nP̀
=1

(α`−c`)

(2+(2n−3)γ)(2+(n−3)γ) . (10)

The superscript ”B” is attached to variables to indicate that they are computed
at the Bertrand equilibrium. Due to (9), the Bertrand profit of firm k is given
as

πBk =
(1− γ)(1 + (n− 1)γ)

1 + (n− 2)γ (qBk )
2. (11)
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The price, quantity and profit comparisons are summarized in Table 1, which
were shown earlier by Matsumoto and Szidarovszky (2010A). Let βk denote the
ratio of the average difference net quality of all firms over the net quality of firm
k,

βk =

1

n

Pn
`=1(α` − c`)
αk − ck

.

Firm k is called higher- or lower-qualified according to βk is greater or less
than unity. The results with "Q" are newly obtained. Accordingly, it can
be observed that as far as the outputs and the prices are concerned, higher-
qualified Cournot firms charge higher prices and produces less outputs than
higher-qualified Bertrand firms regardless of whether the goods are substitutes
or complements. It is also observed that profitability of these firms are ambigu-
ous. On the other hand, when the firms are lower-qualified, then the Cournot
profit is larger than the Bertrand profit when the goods are substitutes and the
inequality is reversed when the goods are complements. The same results holds
in the duopoly framework. However the conventional view does not necessarily
hold in n-firm oligopolies.

Substitutes (γ > 0) Complements (γ < 0)

Higher-qualified
(βk < 1)

pCk > p
B
k

qCk < q
B
k

πCk Q πBk

pCk > p
B
k

qCk < q
B
k

πCk Q πBk

Lower-qualified
(βk > 1)

pCk > p
B
k

qCk Q qBk

πCk > πBk

pCk Q pBk

qCk < q
B
k

πCk < πBk

Table 1. Comparison of Cournot and Bertrand strategies

3 Dynamic Adjustment Processes
In addition to the results summarized in Table 1, it is also demonstrated in
Matsumoto and Szidarovszky (2010A), and will be reviewed shortly, that under
the native expectation scheme, the Cournot output can be locally unstable when
the goods are substitutes while the Bertrand price can be locally unstable when
the goods are complements. In consequence, we naturally raise two questions:

(1) Are there any other expectation schemes under which the Cournot and
Bertrand equilibria are stable?

(2) Where does an unstable trajectory of output or price go when it starts in
a neighborhood of a locally unstable equilibrium?
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We introduce two expectation schemes: partial adjustment towards best
response with naive expectations and the best reply dynamics with adaptive
expectation. Then we answer the first question by finding that the smaller
values of the adjustment coefficients stabilize the otherwise unstable equilibrium.
Concerning the second question, global dynamics of locally unstable Cournot
equilibria is examined and the existence of a period-2 cycle is shown. The
quantity-adjusting system is examined in Section 3-1 and the price-adjusting
system is discussed in Section 3-2.

3.1 Cournot Dynamics

3.1.1 Local Adjustment

We turn our attention to the adjustment process and assume that in period
t+1, each firm expects the total output of the rest of the industry and changes
its output level to the best response accordingly. This process can be written
as

qk(t+ 1) = R
C
k (Q

E
k (t+ 1))

where QEk (t + 1) is the expected output of firm k. The adjustment process
depends on how the firms form their expectations. If firm k has naive belief
that the other firms’ output will remain unchanged, then the expected output
is determined by

QEk (t+ 1) =
nX
` 6=k

q`(t).

This formation is called the naive expectation. So we call the dynamic adjust-
ment process based on this most simple expectation formation the best reply
dynamics with naive expectations that will be associated to naive dynamics

qk(t+ 1) = R
C
k

⎛⎝ nX
` 6=k

q`(t)

⎞⎠ , k = 1, 2, ..., n. (12)

According to naive dynamics, firm k immediately jumps to its best reply
level. However, concerning changes of the output levels of any firm in most
industries, it is clear that the changes require time, new employments, purchase
of new machinery, etc. Therefore there are a lot of circumstances in which output
changes are made gradually. It may be plausible under such a circumstance
that the firms adjust their previous output levels in the direction towards the
optimal levels in the next period. If the new output level is a weighted average
of the current output and the naively-determined optimal output, then the
resulting adjustment process is called partial adjustment towards the best reply
with naive expectations that will be abbreviated as partial dynamics. Firm k
gradually moves into the direction towards its profit maximizing output. This
process is described by the following n-dimensional dynamic system:

qk(t+ 1) = (1− μk)qk(t) + μkR
C
k

⎛⎝X
` 6=k

q`(t)

⎞⎠ , k = 1, 2, ..., n. (13)
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where μk ∈ (0, 1] is the adjustment coefficient. The Jacobian of this system has
the form

JC =

⎛⎜⎜⎜⎜⎜⎜⎝
1− μ1 θC1 μ1 · · · θC1 μ1
θC2 μ2 1− μ2 · · · θC2 μ2
·
·
·

·
·
·

· · ·
· · ·
· · ·

·
·
·

θCnμn θCnμn · · · 1− μn

⎞⎟⎟⎟⎟⎟⎟⎠
where

θCk =
∂RCk
∂q`

= −γ
2
.

Notice that in the case of μk = 1 for all k, partial dynamics reduces to naive
dynamics and firm k reaches its profit maximizing output. The corresponding
characteristic equation reads

det(JC − λI) = (−1)n
³
λ− γ

2

´n−1µ
λ+

(n− 1)γ
2

¶
= 0

which implies that there are n− 1 identical eigenvalues and one different eigen-
value. Since |γ| < 1 is assumed, it is apparent that the naive dynamics are

locally asymptotically stable if
¯̄̄
λCn

¯̄̄
< 1 where

λCn = −
(n− 1)γ

2
.

Under Assumption 1,
¯̄̄
λCn

¯̄̄
< 1 always if γ < 0. On the other hand, the following

results are obtained when γ > 0:¯̄̄
λC2

¯̄̄
=
¯̄̄
−γ
2

¯̄̄
< 1 for n = 2,

¯̄̄
λC3

¯̄̄
= |−γ| < 1 for n = 3

and solving λCn = −1 yields the stability condition of the Cournot output for
n > 3,

n < 1 +
γ

2
.

Hence we have the benchmark result concerning the local dynamics of the
Cournot output2:

Theorem 1 Under Assumption 1, the best reply dynamics of the Cournot out-
put with naive expectations is locally asymptotically stable if the goods are com-
plements(i.e., γ < 0) while the local stability can be lost if the goods are substi-
tutes(i.e., γ > 0) and the number of the firms are strictly greater than three.

We now turn our attention to the case of μk < 1. Notice that

JC =D + abT

2This is essentially the same as Theorem 1 of Matsumoto and Szidarovszky (2010A).
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with
aT = (μ1,μ2, ...,μn), b

T =
³
−γ
2
,−γ
2
, ...,−γ

2

´
and

D = diag
³
1− μ1

³
1− γ

2

´
, 1− μ2

³
1− γ

2

´
, ..., 1− μn

³
1− γ

2

´´
The characteristic polynomial of JC can be decomposed by using the simple
fact that if x, y ∈ Rn, then

det
¡
I + xyT

¢
= 1 + yTx (14)

where I is the n× n identity matrix. We can rewrite the determinant as

det(JC − λI) = det
³
D + abT − λI

´
= det(D − λI) det

³
I + (D − λI)−1abT

´
.

The first determinant is diagonal, the second has the special structure of (14)
with x = (D−λI)−1a and y = b. Identity (14) gives the characteristic equation
of JC as

nY
k=1

³
1− μk(1−

γ

2
)− λ

´"
1 +

nX
k=1

μk(−γ/2)
1− μk(1− γ/2)− λ

#
= 0. (15)

The roots of the first factor are 1 − μk(1 − γ
2 ) which are inside the unit circle

if and only if their absolute values are less than unity. Direct calculations show
that it is the case if and only if

μk(2− γ) < 4.

The other eigenvalues are the roots of equation

g(λ) = 1 +
nX
k=1

μk(−γ/2)
1− μk(1− γ/2)− λ

= 0

with
lim

λ→±∞
g(λ) = 1, lim

λ→1−μk(1−γ/2)±0
g(λ) = ±∞

and

g0(λ) =
nX
k=1

μk(−γ/2)
(1− μk(1− γ/2)− λ)2

< 0.

All eigenvalues are inside the unit circle if and only if g(−1) > 0 which can be
rewritten as

nX
k=1

γμk
4− μk(2− γ)

< 1.

In summary, we can present conditions for the local asymptotic stability of the
partial dynamics (13).3

3This is a modifed version of the first half of Theorem 2.1 in Bischi et al. (2010).

8



Theorem 2 The Cournot output is locally asymptotically stable if for all k,

μk(2− γ) < 4

and
nX
k=1

γμk
4− μk(2− γ)

< 1.

Let us now shift the emphasis of the stability analysis to two special cases.
Consider first the case when the firms select identical adjustment coefficients
(i.e., μk = μ for all k). The two conditions of Theorem 2 reduce, respectively,
to

μ(2− γ) < 4 and μ(2 + (n− 1)γ) < 4
where the first inequality always holds for any γ ∈ (0, 1) and μ ∈ (0, 1]. The
corresponding characteristic equation can be written in the form³

1− μ(1− γ

2
)− λ

´nµ
1 +

nμ(−γ/2)
1− μ(1− γ/2)− λ

¶
= 0.

Assuming that the first n− 1 eigenvalue are the same, we conclude that

λ̃
C

i = 1− μ(1− γ

2
) for i = 1, 2, ..., n− 1

which is less than unity and positive if μ(2−γ) < 4, that is, if the first condition
of Theorem 2 is fulfilled. Making the second factor of the characteristic equation
equal to zero and solving it for λ yield the remaining eigenvalue of JC with
μk = μ for all k as

λ̃
C

n = 1− μ
³
1 + (n− 1)γ

2

´
.

This is less than unity in absolute value if μ(2 + (n − 1)γ) < 4, that is, if the
second condition of Theorem 2 is fulfilled.
We can represent the second stability condition graphically. Given μ, the

μ(2 + (n − 1)γ) = 4 locus is a partition line dividing the positive (γ, n) plane
into two parts; the stable region with μ(2 + (n − 1)γ) < 4 below the line and
the unstable region with μ(2 + (n − 1)γ) > 4 above. In Figure 1 in which the
red-hyperbola is the (n − 1)γ = 2 locus (i.e., the partition line with μ = 1),
the Cournot output is locally stable in the light-gray region and unstable in the
darker-gray region under the naive dynamics, as Theorem 1 indicates. Three
dotted loci are associated with three different values of μ and the boundaries
between the stable and instable regions. It can be seen that the boundary shifts

upward as the value of μ decreases. This means that the stability region of λ̃
C

n

enlarges as μ decreases to zero from unity. Any unstable Cournot output under
naive dynamics can be stabilized with partial dynamics by selecting sufficiently
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small values of μ.

Figure 1 Enlargment of the stable region

Consider next a numerically-specified case with different values of μk. Let
us consider the set of parameters n = 4, μ1 = 0.6, μ2 = 0.5, μ3 = 0.3, μ4 = 0.2,
and γ = 0.8.4 The corresponding characteristic equation has the form

4Y
k=1

³
1− μk(1−

γ

2
)− λ

´"
1 +

4X
k=1

μk(−γ/2)
1− μk(1− γ/2)− λ

#
= 0

and the different μks indicate that 1−μk(1− γ
2 ) is not an eigenvalue of JC . All

eigenvalues are the roots of equation g(λ) = 0 with n = 4. Solving it yields four
distinctive real roots,

λ̃
C

1 ' 0.07, λ̃
C

2 ' 0.67, λ̃
C

3 ' 0.79 and λ̃
C

4 ' 0.87,

all of which are positive and less than unity. Hence the Cournot output is locally
asymptotically stable under the partial dynamics.
Although the calculations are done with Mathematica (version 7), the roots

are graphically obtained and confirmed to be less than unity in absolute value
as follows. In Figure 2, the graph of g(λ) is illustrated. Since 1 > μ1 > μ2 >
μ3 > μ4 > 0 and 0 < μi(1−γ/2) < 1, the four dotted vertical lines pass through
each of the points, 1−μi(1−γ/2) for i = 1, 2, 3, 4. As we have already seen that

lim
λ→±∞

g(λ) = 1, lim
λ→1−μi(1−γ/2)±0

g(λ) = ±∞ and g0(λ) < 0

which imply that some parts of the graph of g(λ) are located between the dotted
lines and cross the horizontal axis. Three of the four roots are found and depicted
as the red points in the interval between the smallest 1 − μ1(1− γ/2) and the
largest 1− μ4(1− γ/2). Furthermore

−1 < 1− μ1(1− γ/2)(= 0.64) and g(−1) ' 0.63 > 0

implying that the first root, the most left red dot, found to be less than unity
in absolute value, in particular it is about 0.07 in this case. It is thus confirmed

4Theorem 1 implies that 4 is the minimum integer number of the firms when the Cournot
output is locally unstable under naive dynamics.

10



that all roots are real and inside the unit interval. Therefore the Cournot
output is locally asymptotically stable under partial dynamics. Notice that
the same Cournot output is locally unstable under the naive dynamics because
λC4 = −6/5.

Figure 2 Graph of g(λ) with n = 4

3.1.2 Global Adjustment

We are interested in global dynamics when the Cournot output is locally un-
stable. For the sake of simplicity, we focus on naive dynamics. Summing both
sides of (12) over all values of k and taking into account the non-negativity of
the total output yield the piecewise linear dynamic equation of the total output,
Q =

Pn
`=1 q`, as

Q(t+ 1) =

⎧⎪⎨⎪⎩
n(ᾱ− c̄)

2
− γ(n− 1)

2
Q(t) if Q(t) < Q0,

0 otherwise.

(16)

where Q0 is the threshold value of the total output for which the first case of
(16) generates zero output in the next period,

Q0 =
n(ᾱ− c̄)
(n− 1)γ

and ᾱ and c̄ are the averages of αi and ci defined by

ᾱ =
1

n

nX
`=1

α` and c̄ =
1

n

nX
`=1

c`.

A fixed point of (16) is

QC =
n(ᾱ− c̄)

2 + (n− 1)γ
and it is locally stable if the slope of the first linear equation of (16) is less
than unity in absolute value. When γ < 0, QC is always stable in the region
where Bertrand competition is feasible.5 On the other hand, when γ > 0, QC

5Assumption 1 implies that

0 < −γ(n− 1)
2

<
1

2
.
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can lose its stability. Hence we draw attention to the global dynamics of the
locally unstable Cournot equilibrium of the total output by making the following
assumption:

Assumption 2.
γ(n− 1)

2
> 1.

Following Puu (2006), we can derive an asymptotic dynamic process of the
individual output associated with changes of the total output. In particular, us-
ing (12), we first form an output difference dynamics by subtracting the dynamic
equation of firm k from that of firm `,

q`(t+ 1)− qk(t+ 1) =
(α` − c`)− (αk − ck)

2
− γ

2
(q`(t)− qk(t)) .

Given 0 < γ < 1, the sequences of these differences are convergent, and the
output difference eventually approaches a fixed quantity. After any transient
has been passed, the equation can be rewritten as

q`(t) = qk(t) +
(α` − c`)− (αk − ck)

2− γ
.

Summing this equation over all values of ` and solving the resultant equation
for qk(t) gives the output dynamic equation of firm k depending on the total
output as follows:

qk(t) =
Q(t)

n
− (ᾱ− c̄)− (αk − ck)

2− γ
. (17)

Substituting the last equation into the price function (1) yields the price dynamic
equation associated with the total output,

pk(t) = −
1 + (n− 1)γ

n
Q(t) +

αk(2− γ)− (1− γ)[(αk − ck)− (ᾱ− c̄)]
2− γ

. (18)

It is clear that individual dynamics of qk(t) and pk(t) are synchronized with
dynamics of the total output Q(t). It, therefore, suffices for our purpose to
confine attention to global dynamics of the total output.
Regardless of a choice of an initial point, the divergent quantity-adjustment

process (16) with Assumption 2 sooner or later generates Q(t − 1) > Q0 at
period t− 1. However the non-negativity constraint prevents the output in the
next period from being negative and thus the total output is replaced with zero
output.6 Substituting Q(t) = 0 into the dynamic equation (16) gives the total
output at period t+ 1,

Q(t+ 1) =
n(ᾱ− c̄)

2
> 0

so qk(t+1) ≥ 0.7 Substituting Q(t+1) into the first equation of (16) yields the
total output at period t+ 2,

Q(t+ 2) =
n(ᾱ− c̄)

2

µ
1− γ(n− 1)

2

¶
< 0,

6 Since qk(t) cannot be negative, Q(t) = 0 implies qk(t) = 0 for all k.
7Given Q(t+ 1), equation (17) determines the output of firm k as

2(αk − ck)− γ(ᾱ− c̄)
2(2− γ)

=
(αk − ck)(2− γβk)

2(2− γ)
.

Notice that 2 > γβk is necessary to have non-negative individual output.
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where the inequality is due to Assumption 2. The non-negativity constraint
replaces the negative value of Q(t+ 2) with zero output, and then this process
repeats itself. In summary we have the following result on global dynamics:

Theorem 3 Given Assumption 2, the aggregate dynamic system (16) generates
a period-2 cycle of the total output with periodic points

Q1 = 0 and Q2 =
n(ᾱ− c̄)

2
.

3.2 Bertrand Dynamics

If the Bertrand firms naively form their expectations on the prices, then the best
reply dynamics of Bertrand price of firm k is obtained by lagging the variables,

pk(t+ 1) = R
B
k (
X
` 6=k

p`(t)).

We move one step forward and introduce a learning process in which each firm
observes the other firms’ choice of price and revises its price expectations based
on earlier data. The most popular such learning process is obtained when the
firms adjust their expectations adaptively according to

PEk (t+ 1) = P
E
k (t) + μk

⎛⎝ nX
6̀=k
p`(t)− PEk (t)

⎞⎠
in which PEk (t+ 1) is the sum of the prices of the rest of the industry expected
by firm k and the expectation is revised on the basis of the discrepancy between
the observed value and the previously expected value. This adjustment process
is called the best reply dynamics with adaptive expectations which will be ab-
breviated as adaptive dynamics and described by the 2n-dimensional system

pk(t+ 1) = R
B
k

³
μk
Pn
` 6=k p`(t) + (1− μk)P

E
k (t)

´
,

PEk (t+ 1) = μk
Pn
` 6=k p`(t) + (1− μk)P

E
k (t),

for k = 1, 2, ..., n. Notice that μk = 1 for all k reduces the adaptive dynamics to
naive dynamics. The Jacobian of adaptive dynamics evaluated at the Bertrand
price has the form

JAB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 θB1 μ1 · θB1 μ1 θB1 (1− μ1) 0 · 0

θB2 μ2 0 · θB2 μ2 0 θB2 (1− μ2) · 0
· · · · · · · ·

θBn μn θBn μn · 0 0 0 · θBn (1− μn)
0 μ1 · μ1 1− μ1 0 · 0
μ2 0 · μ2 0 1− μ2 · 0
· · · · · · · ·
μn μn · 0 0 0 · 1− μn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

θBk =
∂RBk
∂p`

=
γ

2[1 + (n− 2)γ] .

13



The eigenvalue equation of this matrix has the form

JABx = λx with x = (p1, ..., pn, p
e
1, ..., p

e
n)

which is equivalently written as⎧⎨⎩
θBk μk

Pn
6̀=k p` + θBk (1− μk)p

e
k = λpk, 1 ≤ k ≤ n,

μk
Pn
` 6=k p` + (1− μk)p

e
k = λpek, 1 ≤ k ≤ n.

Subtracting the θBk -multiple of the second equation from the first one gives

λ(pk − θBk p
e
k) = 0.

The value λ = 0 cannot destroy stability, so we may assume λ 6= 0. Then
pk = θBk p

e
k, and by substituting it into the second equation, we have

μk

nX
` 6=k

θB` p` + (1− μk)p
e
k = λpek, 1 ≤ k ≤ n.

This equation with θBk = θB` is the eigenvalue problem of the n× n matrix

JB =

⎛⎜⎜⎜⎜⎜⎜⎝
1− μ1 θB1 μ1 · · · θB1 μ1
θB2 μ2 1− μ2 · · · θB2 μ2
·
·
·

·
·
·

· · ·
· · ·
· · ·

·
·
·

θBn μn θBn μn · · · 1− μn

⎞⎟⎟⎟⎟⎟⎟⎠ .

As in the Cournot competition, we first deal with the case of μk = 1. The
Jacobian JB has the same structure of JC with μk = 1 for all k. Replacing θ

C
k

with θBk yields the eigenvalues

λB1 = · · · = λBn−1 = −
γ

2[1 + (n− 2)γ] and λBn =
(n− 1)γ

2[1 + (n− 2)γ] .

The stability of the Bertrand price under the naive dynamics is summarized as
follows8:

Theorem 4 Under Assumption 1, the best reply dynamics of the Bertrand
price with naive expectations is locally asymptotically stable if the goods are
substitutes(i.e., γ > 0) while it can be locally unstable if the goods are comple-
ments(i.e., γ < 0) and the number of the firms are strictly greater than three.

Even in the case of μk < 1, JB is exactly the same as JC if the derivatives
of the Cournot best reply (i.e., θCk ) are replaced with the derivatives of the
Bertrand best reply(i.e., θBk ). From these facts we can conclude first that the
local stability conditions of the adaptive dynamics are identical with those of
the partial dynamics regardless of whether the quantities or prices are adjusted,
and second that the stability conditions of the Bertrand prices are obtained by
replacing the derivatives in Theorem 2 that provides the stability conditions of
the Cournot output under partial dynamics. In summary asymptotically stable
conditions for the Bertrand prices under adaptive dynamics as well as for partial
dynamics are given as follows:

8This is the same as Theorem 2 of Matsumoto and Szidarovszky (2010).
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Theorem 5 The Bertrand price is locally asymptotically stable under adaptive
dynamics if for all k,

μk

µ
1 +

γ

2[1 + (n− 2)γ]

¶
< 2

and
nX
k=1

μkγ

2[1 + (n− 2)γ]− μk (2 + (2n− 3)γ)
> −1.

The first condition of Theorem 4 is always fulfilled since μk ∈ (0, 1], |γ| < 1
and n > 3. The second condition is satisfied if the μk values are sufficiently
small. In particular Figure 2 illustrates how the Bertrand unstable price is
stabilized by selecting the smaller values of μ when the adjustment coefficients
are assumed to be identical (i.e., μk = μ). The four dotted curves are associated
with the four different values of μ and divides the (γ, n) plane with γ < 0 into the
stability region under the curve and the instability region above. The Bertrand
price is locally stable in the light-gray region and locally unstable in the dark-
gray region when naive dynamics is adopted. The unstable region is surrounded
by the two red loci: the 1 + (n − 1)γ = 0 locus and the partition locus with
μ = 1. It can be seen that as the value of μ becomes smaller, the dotted curves
shift upward enlarging the stability region. In summary, the stability region
under adaptive dynamics as well as partial dynamics enlarges as the speed of
adjustment gets smaller.

Figure 3. Enlargment of the stability region

4 Concluding Remarks
The main purpose of this paper is to reconsider, from the dynamic point of
view, the conventional wisdom that price competition is more competitive than
quantity competition. To this end, we shed light on the asymptotic behavior of
Bertrand and Cournot equilibria. For the sake of mathematical simplicity we use
a n-firm oligopoly with product differentiation in a linear framework in which
price and demand functions are linear and so are cost functions. The best replies
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and the equilibria in Cournot and Bertrand competitions are determined first
and then it is shown that differentiated Bertrand and Cournot equilibria can be
locally unstable if the firms have naive belief that all other firms’ behavior will
remain unchanged. The asymptotic behavior of both equilibria and the global
behavior of locally unstable Cournot equilibrium are examined to obtain the
following three results:

1) The local stability conditions of the best reply dynamics with naive expec-
tations (i.e., adaptive dynamics) are identical with those of the partial
adjustment towards the best reply with naive expectations (i.e., partial
dynamics);

2) As a consequence of the second result, if the firms have either partial dynam-
ics or adaptive dynamics, the smaller adjustment coefficient leads to larger
stable region in which the equilibrium is locally asymptotically stable;

3) In Cournot competition, the total output as well as the individual outputs
generates a period-2 cycle if the best reply dynamics with naive expecta-
tion is locally unstable.
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