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Abstract

This study develops a macroeconomic model that considers two time lags in the

public sector—a government expenditure lag and a tax collection lag—and examines

the effects of these lags on local stability of the steady state. According to previous

studies, a sufficiently large expenditure lag causes economic instability. However,

we show that a tax collection lag can have a stabilizing effect on the steady state. In

addition, we develop an analysis of global dynamics to demonstrate that an increase

in a tax collection lag can yield complex behaviors.

JEL Classification: E12; E30; E62

Keywords: Keynesian macrodynamic model, fiscal policy lag, delay differential equa-

tions, stability analysis

1 Introduction

Recently, many studies have examined the effects of time lags on macroeconomic stability

using traditional Keynesian models. For instance, Sportelli and Cesare (2005) introduce

a tax collection lag into the dynamic IS-LM model developed by Schinasi (1981) and

Sasakura (1994), which is a traditional Keynesian model, and examine the local and

global dynamics of the system. The standard dynamic IS-LM model with no policy lag

comprises three equations that represent the goods market, monetary market, and budget

constraints of the consolidated government. These equations form an ODE (ordinary

∗Faculty of Economics, Chiba Keizai University, Chiba, Japan; Tel.: +81-43-253-9745; Fax: +81-43-

254-6600; E-mail: tsuzukie5@gmail.com
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differential equations) system. The introduction of a time lag transforms this system

from an ODE to a DDE (delay differential equations) system.1

Generally, models with a time lag can be categorized into two types: fixed lag model

and distributed lag model. Fanti and Manfredi (2007) develop a dynamic IS-LM model

with a distributed tax collection lag, whereas Sportelli and Cesare (2005) analyze the case

of a fixed lag. Both these studies demonstrate that a time lag evidently causes complex

behaviors, including chaos, and that a traditional fiscal policy is likely to be ineffective.

Moreover, Matsumoto and Szidarovszky (2013) compare the case of a fixed lag with that

of a distributed lag in tax collections. They demonstrate that a larger stable region can

be established in the case of a fixed lag compared with a distributed lag.

Another type of traditional Keynesian macrodynamic model that incorporates a capi-

tal accumulation equation in place of the disequilibrium adjustment function of the mon-

etary market, which is often termed the Kaldorian model, has been proposed. This model

originated from Kaldor (1940) and its primary characteristic is found in the assumption

of an S-shaped configuration of the investment function. Chang and Smyth (1971) recon-

struct the Kaldorian model to form an ODE system. Asada and Yoshida (2001) introduce

a fixed government expenditure lag into the model proposed by Chang and Smyth (1971)

and show that an increase in the responsiveness of a fiscal policy could lead to economic

instability.

Further, Gabisch and Lorenz (1989) propose a hybrid model of the standard dynamic

IS-LM model and the Kaldorian model, which involves both functions of capital accumu-

lation and disequilibrium adjustment in the monetary market. Cai (2005) and Neamţu,

Opriş, and Chilarescu (2007) introduce a fixed capital accumulation lag and a fixed tax

collection lag, respectively, into this hybrid model and comprehensively discuss the occur-

rence of a Hopf bifurcation.

Moreover, Zhou and Li (2009) and Sportelli, Cesare, and Binetti (2014) propose macro-

dynamic models with two fixed time lags. Zhou and Li (2009) develop Cai’s (2005) model

to include two capital accumulation lags. In addition, Sportelli, Cesare, and Binetti (2014)

present a dynamic IS-LM model with two time lags in the public sector: a government

expenditure lag and a tax collection lag. These studies demonstrate that the steady states

fluctuate between stability and instability as a certain lag increases.

1Schinasi (1981) does not consider disequilibrium of the monetary market. Sasakura (1994) develops

Schinasi’s (1981) model by introducing a disequilibrium adjustment function of the monetary market.

Sasakura’s (1994) model is now used as a benchmark of the dynamic IS-LM model.
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Unlike in Sportelli, Cesare, and Binetti (2014), this study uses the Kaldorian macrody-

namic model to investigate the interaction of two time lags in the public sector. Therefore,

our model can be considered as introducing a tax collection lag into Asada and Yoshida’s

(2001) model. We examine two cases where a fiscal policy is active and where it is pas-

sive. An active fiscal policy strongly responds to the national income, whereas a passive

fiscal policy is less responsive to the national income. In addition, we perform a stabil-

ity analysis employing a mathematical method developed by Gu, Niculescu, and Chen

(2005). This method enables us to present an exact figure of a stability crossing curve—a

curve that separates stable and unstable regions on a parameter plane. Few studies have

employed this method for economic analysis.2

This study proceeds as follows: Section 2 presents a dynamic system that represents

a model economy. Section 3 examines the local dynamics around the steady state. Sub-

sequently, Section 4 examines the global dynamics. Section 5 presents our conclusion.

2We shall refer other Keynesian macrodynamic models that consider a time lag as follows. The time-to-

build model developed by Kalecki (1935) is the basis of economic models with a fixed time lag. Szydlowski

(2002, 2003) develops this model into models with economic growth. Moreover, Yoshida and Asada (2007)

examine the effects of a lag in government expenditure (where they examine both distributed and fixed

lags) using the so-called Keynes–Goodwin model. Further, Asada and Matsumoto (2014) introduce a

distributed lag of monetary policy implementation into the Keynesian equilibrium model proposed by

Asada (2010). Asada’s (2010) model comprises a monetary policy rule and an expectation adjustment

function. A fixed lag version of this model is proposed by Tsuduki (2015). Furthermore, Matsumoto and

Szidarovszky (2014) develop a nonlinear multiplier-accelerator model with investment and consumption

lags. Finally, Bellman and Cooke (1963) provide a helpful introductory textbook of delay differential

equations (i.e., differential-difference equations).
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2 The model

2.1 Dynamic system

The model economy comprises the following equations:

Ẏ (t) = α[C(t) + I(t) + G(t) − Y (t)]; α > 0, (1)

C(t) = c[Y (t) − T (t)] + C̄; 0 < c < 1; C̄ > 0, (2)

T (t) = τY (t − θ2) − T̄ ; 0 < τ < 1; T̄ ≥ 0, (3)

I(t) = I(Y (t), K(t), r(t)); IY > 0; IK < 0; Ir < 0, (4)

K̇(t) = I(Y (t), K(t), r(t)), (5)

G(t) = β[Ȳ − Y (t − θ1)] + Ḡ; β > 0; Ȳ > 0; Ḡ > 0, (6)

M(t)/P (t) = L(Y (t), r(t)); LY > 0; Lr < 0, (7)

M(t) = γ[Ȳ − Y (t)] + M̄ ; γ > 0; M̄ > 0, (8)

P (t) = P (Y (t)); PY > 0, (9)

where Y = real national income (output); C = real private consumption; I = real private

investment; G = real government expenditure; T = real income tax; K = real capital

stock; M = nominal money supply; P = price level; r = nominal interest rate; α =

adjustment speed of the goods market; c = marginal propensity to consume; C̄ = base

consumption; τ = marginal tax rate; T̄ = real subsidy; β = responsiveness of government

expenditure to national income (i.e., activeness level of the fiscal policy); Ȳ = target

level of real national income; Ḡ = target level of real government expenditure; γ =

responsiveness of nominal money supply to national income (i.e., activeness level of the

monetary policy); M̄ = target level of nominal money supply; t = time; θ1 = government

expenditure lag; and θ2 = tax collection lag.

Equations (1) and (2) represent a disequilibrium adjustment function of the goods

market and a consumption function, respectively. Equation (3) is a tax collection function

that represents income tax T as a function of past national income Y (t − θ2). It may be

more general to formulate T as a function not only of a past income but also of the present

income denoted by Y (t). However, this change does not affect the nature of our argument;

hence, we simply assume that T is a function only of Y (t − θ2). Equations (4) and (5)

represent an investment function and a capital accumulation function, respectively. For

simplicity, we assume that capital depreciation does not exist. Equation (6) represents a
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fiscal policy reaction function with a government expenditure lag. Equation (7) represents

the monetary market equilibrium condition, where the left-hand side denotes real money

balance and the right-hand side denotes a demand function for money. In this study, we

ensure that the adjustment of the monetary market is rapid, and therefore, the balance

of demand and supply of this market is always maintained. Equation (8) represents a

monetary policy reaction function. Finally, Equation (9) represents an aggregate supply

function, by which the price level is determined.

In the case of no tax collection lag (i.e., θ2 = 0), the system compounded from Equa-

tions (1)–(9) essentially becomes similar to that of Asada and Yoshida (2001). However,

the existence of a positive θ2 significantly complicates the dynamic property of the system,

thereby resulting in a major change in the economic implication of time lags.

2.2 Summarizing the equations

In this section, we summarize Equations (1)–(9) in a two-dimensional dynamic system.

Substituting Equations (8) and (9) into Equation (7) and solving for r, we obtain

r(t) = r(Y (t)), (10)

where rY = −(γP + PY M + P 2LY )/P 2Lr > 0.

Substituting Equation (3) into Equation (2) and substituting Equation (10) into Equa-

tion (4), we obtain

C(t) = cY (t) − cτY (t − θ2) + C̄ + cT̄ , (11)

I(t) = I(Y (t), K(t), r(Y (t))). (12)

Finally, substituting Equations (6), (11), and (12) into Equation (1) and substituting

Equation (12) into Equation (5) yields the following system of differential equations with

two time lags:

Ẏ (t) = α[I(Y (t), K(t), r(Y (t))) − (1 − c)Y (t) − βY (t − θ1) − cτY (t − θ2)

+ C̄ + cT̄ + βȲ + Ḡ],

K̇(t) = I(Y (t), K(t), r(Y (t))).

(13)
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2.3 Linearization

To analyze the local dynamics of System (13), we linearize the system around the steady

state (Y ∗, K∗) and obtain

˙̂
Y (t) = α[{A1 − (1 − c)}Ŷ (t) − βŶ (t − θ1) − cτ Ŷ (t − θ2) + IKK̂(t)],

˙̂
K(t) = A1Ŷ (t) + IKK̂(t),

(14)

where Ŷ (t) = Y (t) − Y ∗, K̂(t) = K(t) − K∗, and A1 = IY + IrrY . By necessity, the

coefficients of these equations are evaluated at the steady state.

Assuming the exponential functions Ŷ (t) = C1e
λt and K̂(t) = C2e

λt (where C1 and

C2 are arbitrary constants, and λ denotes the eigenvalue) as the solutions of the above

system and substituting these into System (14), we obtain
[

λ − α{A1 − (1 − c)} + αβe−θ1λ + αcτe−θ2λ −αIK

−A1 λ − IK

][

Ŷ (t)

K̂(t)

]

=

[

0

0

]

.

For non-trivial solutions to exist for this system, the determinant of the left-hand side

matrix, denoted by ∆(λ), must equal zero; i.e.,

∆(λ) = λ2 − [IK + α{A1 − (1 − c)}]λ − α(1 − c)IK

+ αβ(λ − IK)e−θ1λ + αcτ(λ − IK)e−θ2λ = 0

= p0(λ) + p1(λ)e−θ1λ + p2(λ)e−θ2λ = 0, (15)

where

p0(λ) = λ2 + b1λ + b2,

b1 = −[IK + α{A1 − (1 − c)}],
b2 = −α(1 − c)IK ,

p1(λ) = αβ(λ − IK),

p2(λ) = αcτ(λ − IK).

Equation (15) is a characteristic equation of System (14). The significant feature of this

equation is the existence of the exponential terms (e−θ1λ and e−θ2λ).

First, we examine the case with no time lags. When θ1 = θ2 = 0, Equation (15) can

be rewritten as follows:

∆(λ) = λ2 + (b1 + α(β + cτ))λ + b2 − αIK(β + cτ) = 0, (16)
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which is an ordinary quadratic equation of λ.

Thus, we can state that if b1 + α(β + cτ) > 0 (i.e., the coefficient of λ from Equation

16 is positive), the real parts of the roots of Equation (16) are negative.3 In contrast, if

b1+α(β+cτ) < 0, then the real parts of the roots are positive. Therefore, if b1+α(β+cτ) >

0, the steady state is locally stable, and if b1 + α(β + cτ) < 0, it is unstable.

In the discussion below, we assume the following condition:

Assumption 2.1 b1 + α(β + cτ) > 0.

This assumption implies that if a lag does not exist in the public sector, an economy is

stable. Under this assumption, we analyze the effects of the lags (θ1, θ2) on local stability.

3 Local dynamics

The following analysis is performed based on the technique developed by Gu, Niculescu,

and Chen (2005).

3.1 Preconditions

First, to apply the technique of Gu, Niculescu, and Chen (2005), some preconditions

should be checked. According to their study, Equation (15) should satisfy the following

conditions:

(I) deg(p0(λ)) ≥ max{deg(p1(λ)), deg(p2(λ))};

(II) ∆(0) 6= 0;

(III) a solution common to all three polynomials p0(λ) = 0, p1(λ) = 0, and p2(λ) = 0

does not exist;

(IV) limλ→∞(|p1(λ)/p0(λ)| + |p2(λ)/p0(λ)|) < 1.

In our system, Condition (I) is satisfied by 2 > max{1, 1}. Condition (II) is also

satisfied by ∆(0) = αIK [−(1 − c) − β − cτ ] > 0. Concerning Condition (III), we can

check as follows: substituting IK into p1(λ) and p2(λ), we obtain p1(IK) = p2(IK) = 0.

3See Chapter 18 in Gandolfo (2010) for details of the relationship between the roots and coefficients

of a quadric equation.
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However, p0(IK) = −αA1IK 6= 0. Hence, Condition (III) is satisfied. Finally, Condition

(IV) is satisfied by limλ→∞(|p1(λ)/p0(λ)| + |p2(λ)/p0(λ)|) = 0.

Now, we examine the effects of lags (θ1, θ2) on the stability of the steady state. The

analysis proceeds as follows:

(1) We characterize the points at which the local dynamics can change, i.e., the points

at which the pure imaginary roots appear.4 These points are referred to as the

crossing points.

(2) We depict the sets of the crossing points (which we refer to as the crossing curves)

on the θ1-θ2 plane by using numerical simulation.

(3) We reveal the directions of changes in the signs of the real parts that occur when

lags (θ1, θ2) cross the crossing curves.

3.2 Crossing points

Dividing Equation (15) by p0(λ), we obtain

1 + a1(λ)e−θ1λ + a2(λ)e−θ2λ = 0, (17)

where

a1(λ) =
p1(λ)

p0(λ)
=

αβ(λ − IK)

λ2 + b1λ + b2

, (18)

a2(λ) =
p2(λ)

p0(λ)
=

αcτ(λ − IK)

λ2 + b1λ + b2
. (19)

Moreover, we denote a pure imaginary root as λ = vi (where v = imaginary part 6= 0

and i =
√
−1). Then, the values of v that satisfy Equation (17) can be characterized by

the following lemma:

Lemma 3.1 (Gu, Niculescu, and Chen 2005, Proposition 3.1) For each v satisfy-

ing p0(vi) 6= 0, λ = vi is a solution of ∆(λ) = 0 for some (θ1, θ2) ∈ R
2
+ if and only if

|a1(iv)| + |a2(iv)| ≥ 1, (20)

−1 ≤ |a1(iv)| − |a2(iv)| ≤ 1. (21)

4It is ensured from precondition (III) that a zero real root cannot be a root.
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We denote the set of v > 0 that satisfy conditions (20) and (21) as Ω, which is termed

as the crossing set.5 For any given v ∈ Ω, the sets (θ1, θ2) satisfying Equation (17) (each

of which corresponds to a crossing point) must satisfy the following relationships (Figure

1).

∓δ1 = arg(a1(iv)e−ivθ1) + 2mπ; m = 0, 1, 2, · · · , (22)

±δ2 = arg(a2(iv)e−ivθ2) + 2nπ; n = 0, 1, 2, · · · , (23)

where δ1, δ2 ∈ [0, π].

0 Re

Im

δ2 δ1 -@
@

@
@

@
@

@
@I�

�
�

�
�

�
�

�	
1

a1(iv)e−ivθ1

a2(iv)e−ivθ2

Figure 1: Triangle formed by 1, |a1(iv)|, and |a2(iv)| on the complex plane

Incidentally, on the complex plane, a multiplication of amplitudes becomes a sum of

parts; therefore, we obtain

arg(a1(iv)e−ivθ1) = arg(a1(iv)) − vθ1, (24)

arg(a2(iv)e−ivθ2) = arg(a2(iv)) − vθ2. (25)

Figure 1 also demonstrates that the following relationships hold:

arg(a1(iv)) = tan−1

(

Im(a1(iv))

Re(a1(iv))

)

, (26)

arg(a2(iv)) = tan−1

(

Im(a2(iv))

Re(a2(iv))

)

. (27)

5Pure imaginary roots are always conjugated. Therefore, we can assume v > 0 without a loss of

generality.
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Moreover, after some manipulation, Equations (18) and (19) derive the following ex-

pression:

Im(a1(iv))

Re(a1(iv))
=

Im(a2(iv))

Re(a2(iv))
=

b1vIK + v(b2 − v2)

b1v2 − IK(b2 − v2)
. (28)

Thus, using Equations (24)–(28), Equations (22) and (23) can be rewritten as follows:

θ1 =
tan−1( b1vIK+v(b2−v2)

b1v2−IK(b2−v2)
) ± δ1 + 2mπ

v
, (29)

θ2 =
tan−1( b1vIK+v(b2−v2)

b1v2−IK(b2−v2)
) ∓ δ2 + 2nπ

v
, (30)

where the interior angles of the triangle denoted by δ1 and δ2 are given by the cosine

theorem as follows:

δ1 = cos−1

(

1 + |a1(iv)|2 − |a2(iv)|2
2|a1(iv)|

)

= cos−1

(

(b2 − v2)2 + (b1v)2 + (αβIK)2 + (αβv)2 − (αcτIK)2 − (αcτv)2

2
√

(αβIK)2 + (αβv)2
√

(b2 − v2)2 + (b1v)2

)

,

δ2 = cos−1

(

1 + |a2(iv)|2 − |a1(iv)|2
2|a2(iv)|

)

= cos−1

(

(b2 − v2)2 + (b1v)2 − (αβIK)2 − (αβv)2 + (αcτIK)2 + (αcτv)2

2
√

(αcτIK)2 + (αcτv)2
√

(b2 − v2)2 + (b1v)2

)

.

Equations (29) and (30) characterize the sets of the crossing points (θ1, θ2) ∈ R
2
+.

Depending on the signs of δ1 and δ2, we can define two types of crossing points, denoted

by L1(m, n) and L2(m, n), as follows:

L1(m, n) :
θ1 =

tan−1( b1vIK+v(b2−v2)
b1v2−IK(b2−v2)

) + δ1 + 2mπ

v
,

θ2 =
tan−1( b1vIK+v(b2−v2)

b1v2−IK(b2−v2)
) − δ2 + 2nπ

v
,

L2(m, n) :
θ1 =

tan−1( b1vIK+v(b2−v2)
b1v2−IK(b2−v2)

) − δ1 + 2mπ

v
,

θ2 =
tan−1( b1vIK+v(b2−v2)

b1v2−IK(b2−v2)
) + δ2 + 2nπ

v
.

In the next section, based on the study of Asada and Yoshida (2001), we illustrate the

examples of L1(m, n) and L2(m, n) by using numerical simulations.
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3.3 Numerical simulations

Following Asada and Yoshida’s (2001) study, we assume the investment function as fol-

lows:

I(Y (t), K(t), r(Y (t))) =
400

1 + 12e−0.1(Y (t)−400)
− 0.01

√

Y (t) − 0.5K(t) − 10γ(
√

Y (t) −
√

Ȳ ).

Further, we set the parameter values as follows: α = 0.9; c = 0.625; τ = 0.2; Ȳ = 400;

C̄ + cT̄ + Ḡ = 200; and γ = 8.6. Under these specifications, the steady-state values of

System (13) are given by (Y ∗, K∗) = (400, 61.138).

In the following discussion, we compare two cases: the case of an active fiscal policy

with that of a passive fiscal policy.

3.3.1 Example 1

When β = 4.1, which represents a relatively active fiscal policy, the crossing set Ω is

given by v ∈ (3.6506, 3.8716) (Figure 2). For v ∈ Ω, we can depict L1(m, n) and L2(m, n)

as shown in Figure 3, where m = 0, 1, 2 and n = 0, 1, 2. The dotted curves represent

L1(m, n), and the solid curves represent L2(m, n). These curves are referred to as the

crossing curves.

3.3.2 Example 2

When β = 0.1, which represents a passive fiscal policy, the crossing set Ω is given by

v ∈ (0.2636, 0.5120) (Figure 4). In this case, the crossing curves L1(m, n) and L2(m, n)

can be depicted for v ∈ Ω as shown in Figure 5. The starting points of both curves

L1(m, n) and L2(m, n) (i.e., the points corresponding to v = 0.2636) are given by the

upper connecting points of the circles.

Next, we examine how the real parts of the roots change when lags (θ1, θ2) cross the

crossing curves.

3.4 Direction of crossing

We reveal the direction in which the roots cross the imaginary axis when the value of θ1

increases. It is determined by the sign of dReλ/dθ1|λ=iv (where v∈Ω). If dReλ/dθ1|λ=iv > 0,

the roots cross the imaginary axis from left to right with an increase in θ1 (which indicates

destabilization). In contrast, if dReλ/dθ1|λ=iv < 0, the roots cross the imaginary axis
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from right to left with an increase in θ1 (which indicates stabilization). For convenience

of calculation, we observe the sign of Re(dλ/dθ1)
−1|λ=iv instead of that of dReλ/dθ1|λ=iv.

Differentiating Equation (17) with respect to θ1, we obtain

[

a′

1(λ)e−θ1λ − a1(λ)e−θ1λθ1 + a′

2(λ)e−θ2λ − a2(λ)e−θ2θ2

] dλ

dθ1
= a1(λ)e−θ1λλ,

or equivalently

(

dλ

dθ1

)

−1

=
a′

1(λ)e−θ1λ + a′

2(λ)e−θ2λ − a2(λ)e−θ2λθ2

a1(λ)e−θ1λλ
− θ1

λ
, (31)

where

a′

1(λ) =
αβp0(λ) − αβ(λ − IK)(2λ + b1)

p0(λ)2
,

a′

2(λ) =
αcτp0(λ) − αcτ(λ − IK)(2λ + b1)

p0(λ)2
.

3.4.1 Example 1

Suppose that β = 4.1. In this case, describing the real part of Equation (31) as a function

of v ∈ Ω, we can derive Figure 6, where the dotted curves are the functions evaluated on

curve L1(m, n), and the solid curves are the functions evaluated on curve L2(m, n).

Figure 6 shows that Re(dλ/dθ1)
−1|λ=iv > 0 holds for all cases in Figure 3. Therefore,

at least two imaginary roots with positive real parts emerge when θ1 crosses the crossing

curves from left to right.

Now, a curve formed by connecting curves Lj(0, n) (where j = 1, 2; n = 0, 1, 2) is

termed as m0 (an enlarged representation of this curve is proposed in Figure 7). Then,

we can make the following proposition:

Proposition 3.1 For lags (θ1, θ2) lying to the left of curve m0, the steady state is locally

stable. However, for lags (θ1, θ2) lying to the right of curve m0, the steady state is

unstable.

Based on this proposition, we can state the following: In the case of θ1 < 0.384, the

steady state is locally stable irrespective of the value of θ2, i.e., if a government expenditure

lag is sufficiently small, a tax collection lag does not affect economic stability. Moreover, in

the case of θ1 ∈ (0.384, 0.412), the steady state fluctuates between stability and instability

as θ2 increases. Thus, a tax collection lag can contribute toward stabilizing an economy.
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Figure 6: Direction of crossing (β = 4.1)
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3.4.2 Example 2

When β = 0.1, the direction of crossing is determined by Figure 8. Figures 8 and 5

demonstrate the following proposition:

Proposition 3.2 In Figure 5, the regions enclosed within curves L1(m, n) and L2(m, n)

(i.e., regions inside the circles) are unstable, whereas the others are stable.

0.3 0.4 0.5
-40

-20

0

20

R
e(

d
λ/

d
θ 1

)-1

L
1
(0,0) and L

2
(0,0)

0.3 0.4 0.5

-100

0

100

L
1
(0,1) and L

2
(0,1)

0.3 0.4 0.5
-200

0

200

L
1
(0,2) and L

2
(0,2)

0.3 0.4 0.5
-40

-20

0

20

R
e(

d
λ/

d
θ 1

)-1

L
1
(1,0) and L

2
(1,0)

0.3 0.4 0.5

-100

0

100

L
1
(1,1) and L

2
(1,1)

0.3 0.4 0.5
-200

0

200

L
1
(1,2) and L

2
(1,2)

0.3 0.4 0.5
-40

-20

0

20

v

R
e(

d
λ/

d
θ 1

)-1

L
1
(2,0) and L

2
(2,0)

0.3 0.4 0.5

-100

0

100

v

L
1
(2,1) and L

2
(2,1)

0.3 0.4 0.5
-200

0

200

v

L
1
(2,2) and L

2
(2,2)

Figure 8: Direction of crossing (β = 0.1)

Comparing the case of a passive policy (β = 0.1) with that of an active policy (β = 4.1)

within an economically meaningful region of (θ1, θ2) (i.e., θ1 and θ2 take values between

0 and 3), the former achieves a larger stable region. This suggests that an active policy

stance may increase economic instability. This result cannot be derived from a model

without a time lag. Furthermore, as indicated by Figure 5, in the case of β = 0.1, the

steady state fluctuates between stability and instability with increases in not only θ2 but

also θ1. Therefore, not only tax collection but also government expenditure lags can

contribute towards stabilizing an economy.
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4 Global dynamics

Thus far, we analyzed the local dynamics of System (13) with regard to the steady state.

In this section, we illustrate phase diagrams to visually confirm the result established in

the previous section and provide an example of global dynamics of the system.

We set the same parameter values as those in the previous section and assume that

β = 4.1 (This section only examines the case with an active fiscal policy.). Further, we

assume θ1 = 0.4. As indicated by Figure 7, if θ2 is sufficiently small (i.e., θ2 ≤ 0.038),

the steady state is locally stable. However, if θ2 > 0.038, then the dynamics of the

solutions change depending on the value of θ2 (Figure 9). When θ2 = 0.7, a stable

cycle exists and the solutions starting from the initial values of (Y (0), K(0)) = (390, 55)

converge to the cycle. When θ2 = 1.7, the steady state becomes locally stable again, and

the solutions converge to the steady state. Moreover, when θ2 = 3.6, a strange-shaped

attractor emerges, and the solutions exhibit chaotic behaviors.
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Figure 9: θ1 = 0.4

This example demonstrates that while an increase in a tax collection lag contributes

toward local stability, it can cause globally complex behaviors.

17



5 Conclusion

In this study, we developed the Kaldorian model with government expenditure and tax

collection lags and examined the effects of these lags on local stability by using numerical

simulations. In addition, we also examined global dynamics.

As shown by Asada (1987), under a fiscal policy without a lag, the steady state

is locally stable as long as the government is sufficiently active. However, Asada and

Yoshida (2001) show that under a policy with a sufficiently large expenditure lag, the

steady state becomes unstable even if the government is sufficiently active. This study

showed that under a policy with government expenditure and tax collection lags, a policy

lag can have a stabilizing effect on the steady state.

Under an active policy stance, if a government expenditure lag exceeds a certain

threshold level, then the steady state becomes unstable. This result is similar to that

in Asada and Yoshida’s (2001) study. However, we further demonstrated that in the

neighborhood of the threshold, certain positive values of a tax collection lag can achieve

local stability. Therefore, a tax collection lag can contribute toward economic stability.

Similarly, under a passive policy stance, both tax collection as well as government

expenditure lags can contribute to stabilizing an economy.

We also demonstrated that in an unstable parameter region, limit cycles and complex

behaviors can emerge. Therefore, while an increase in a tax collection lag contributes

toward local stability, it can cause globally complex behaviors.

According to Friedman (1948), policy lags are classified into three types: recognition,

implementation, and diffusion lag. Unlike recognition and diffusion lag, implementation

lag can be considered as adjustable to some extent. Therefore, this study suggests that an

adjustment of the timing of policy implementation can be a means to achieve stabilization.
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