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Abstract

This study constructs a heterogeneous agents model of a �nancial mar-
ket in continuous time framework. There are two types of agents, fun-
damentalists and chartists. The former follow the traditional e¢ ciency
market theory and have a linear demand function whereas the latter ex-
perience delays in the formation of price trends and possess a S-shaped
demand function. The main feature of this study is a theoretical inves-
tigation on the e¤ects caused by two time delays in a price adjustment
process. In particular, two main results are demonstrated: one is that the
stability switching curves are analytically derived and the other is that
the stability losses and gains can repeatedly occur when the shape of the
curves are meandering. These imply that multiple delays might generate
price deviations from the equilibrium value.
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1 Introduction

In a �nancial market persistent volatility or deviations of the asset price from
the equilibrium value is often observed. Traditionally the e¢ cient market hy-
pothesis is adopted to analyze the behavior of fundamentals and, however, it
fails to explain the discrepancy between the observed market price and the fun-
damental value of the asset. Recently various heterogeneous agents models are
proposed to describe such �uctuations of asset price time evaluation. There
are two types of traders, fundamentalists who follow the traditional e¢ cient
market hypothesis and determine the demand based on the di¤erence between
the observed and the fundamental values of the asset and chartists who base
their decision on the past pattern on price changes. It is shown that these het-
erogeneities with some nonlinear behavior can cause dynamic phenomena that
the fundamental analysis is unable to explain, that is, various dynamics ranging
from cyclic �uctuations to erratic behavior. See Day and Huang (1990), Brock
and Hommes (1998), Chiarella and He (2003), Chiarella et al. (2002, 2006), to
name only a few. These models are considered in a discrete-time framework. In
addition, continuous-time models with heterogeneous agents are also developed.
Chiarella (1992) extends the model of Beja and Goldman (1980) and shows that
it is capable of generating a rich form of price dynamics including sustainable
�uctuations around the fundamental value when the chartist demand possesses
some nonlinearities. Only recently Dibeh (2005) applies the continuous model
to a case in which detection of price movements is less than perfect and presents
the one-asset model with time delays in the price trends.
This study extends the scope of Dibeh�s model one step further. His asset

price dynamics is described by a general di¤erential equation with n-di¤erent
delays. Since the general model is mathematically intractable, numerically spec-
i�ed cases are examined in Dibeh (2005). In particular, convergence of three-
delay models with various speci�ed values of the delays and the birth of limit
cycle in a one-delay model are numerically illustrated. Qu and Wei (2010) pro-
vide theoretical foundations for the one-delay model. This study constructs
a theoretical underpinning of a two-delay model and concerns how the delays
a¤ect price time evolutions. The main results to be obtained are

(1) The stability switching curve is theoretically derived in the two delays
parameter plane.

(2) Limit cycles (i.e., persistent divergence of the market price from the corre-
sponding fundamental value) emerge via Hopf bifurcation when stability
of the equilibrium price is lost.

(3) Stability losses and gains can repeatedly take place as one delay becomes
larger and the other delay is �xed at some length.

This paper is organized as follows. Section 2 recapitulates the basic elements
of the one delay model and derives a benchmark dynamics of the one delay solu-
tion. Section 3 constructs a two delay model and theoretically derives stability
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switching curves on which the birth and death of limit cycles occur. Section 4
presents some numerical simulations concerning the theoretical results. Section
5 contains concluding remarks and further research directions.

2 Model with One Delay

In this section we brie�y summarize a time delay model of speculative asset
prices proposed by Dibeh (2005). There are two types of agents, the fundamen-
talists and the chartists, and the time evolution of the asset price is controlled
by a nonlinear delay di¤erential equation,

_p(t)

p(t)
= (1�m)Dc(p(t); p(t� �)) +mDf (p(t)) (1)

where Df (p) and Dc(p) are the demand functions of the fundamentalists and
the chartists, respectively, and m 2 (0; 1] is the market fraction of the funda-
mentalists. The functions are speci�ed as follows:

Df (p(t)) = �(p(t)� �);

Dc(p(t); p(t� �)) = tanh[p(t)� p(t� �)]:
(2)

The fundamentalists base their demand formation on the di¤erence between
the actual price of the asset, p and the fundamental price of the asset, �: Since
fundamentalists believe that asset prices must converge instantaneously to �;
they will sell (buy) the asset when p > (<)�: The chartists base their decisions
of market participation on the price trend of the asset. If chartists believe that
prices will rise (fall), then their demand for the assets will increase (decrease).
The model becomes

_p(t) = (1�m) tanh [p(t)� p(t� �)] p(t)�m [p(t)� �] p(t) (3)

that is a nonlinear delay di¤erential equation where the �rst term is bounded
from both sides. Clearly p� = p(t) = p(t��) = � is a unique positive equilibrium
price.
If R1H(p(t); p(t � �)) denotes the right hand side of equation (3), then the

linear approximation in a neighborhood of an equilibrium p� = (�; �) is

_p�(t) =
@R1H
@p(t)

����
p�
p�(t) +

@R1H
@p(t� �)

����
p�
p�(t� �)

where p� = p� p�; �

@R1H
@p(t)

����
p�
= (1� 2m)� and @R1H

@p(t� �)

����
p�
= �(1�m)�:

Therefore the linearized equation has the form

_p�(t) = (1� 2m)�p�(t)� (1�m)�p�(t� �) (4)
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Substituting an exponential solution into (4) and arranging the terms yield the
corresponding characteristic equation,

�� (1� 2m)� + (1�m)�e��� = 0: (5)

For � = 0; equation (5) is reduced to

�� (1� 2m)� + (1�m)� = 0

with a unique negative root
� = �m� < 0:

So the model with no delay is locally asymptotically stable. Further the model
with a positive but short delay might be stable. However a longer delay could
destabilize the model. It is clear that � = 0 is not a solution of (5). Hence if
increasing the length of the delay changes stability to instability, then the real
part of an eigenvalue must be zero. Suppose now that the eigenvalue is purely
imaginary, � = i! with ! > 0:1 Substituting it into (5) and breaking down the
resultant characteristic equation into the real and imaginary parts present two
equations,

�(1� 2m)� + (1�m)� cos!� = 0;

! � (1�m)� sin!� = 0:
(6)

Moving the constant terms to the right hand side and adding the squares of the
two equations give the relation

!2 = �2m(2� 3m):

If 2 � 3m � 0; then there is no positive !; implying that there is no solution
such as � = i! with ! > 0: Hence the negative real parts of the eigenvalues do
not change their sign to positive for any value of � and therefore no stability
switches occur. On the other hand, if 2 � 3m > 0; then there is a positive
solution,

!0 = �
p
m(2� 3m):

Substituting it into the �rst equation of (6) and solving for � determines the
values of � for which the characteristic equation has a purely imaginary solution,
given v; m and k;

�k(m; �) =
1

!0
[cos�1

�
1� 2m
1�m

�
+ 2k�] for k = 0; 1; 2; :::

Hence the stability switch might occur when � increases and becomes any of
these threshold values,

�0 = �0(m; v):

1We will have the same results even if ! < 0.
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To check the direction of stability switches, we assume � = �(�) and di¤er-
entiate equation (5) with respect to � to obtain,

d�

d�
+ (1�m)�e���

�
�d�
d�
� � �

�
= 0

that is solved for the inverse of the derivative�
d�

d�

��1
=

1

� [��+ (1� 2m)�] �
�

�

where the relation obtained from the characteristic equation is used,

(1�m)�e��� = ��+ (1� 2m)�:

At � = i!; the real part of the derivative is

Re

"�
d�

d�

��1
�=i!

#
= Re

�
1

i! [�i! + (1� 2m)�]

�

=
1

!2 + (1� 2m)2�2 > 0:

So we have the following result:

Theorem 1 The system is stable with m � 2=3 for all � > 0: If m < 2=3, then
stability is lost at the smallest stability switch curve,

�0(m; �) =

cos�1
�
1� 2m
1�m

�
�
p
m(2� 3m)

and stability cannot be regained later. At � = �0(m; �) Hopf bifurcation occurs
with the possibility of the birth of limit cycles.

Graphical representations are given in Figure 1. The yellow region in Figure
1(A) is the stable region. The upward-sloping black curve is the locus of (m; �)
satisfying � = �0(m; �) and asymptotic to the dotted line at m = 2=3: Thus
this �gure con�rms �rst that the solution of (3) is locally asymptotically stable
for any � � 0 if m � 2=3 and second that it is locally stable for � < �0(m; �)
and unstable for � > �0(m; �) if m < 2=3. Since @�0(m; �)=@� < 0; increasing
the fundamental price shifts the stability switching curve downward and thus
has a destabilizing e¤ect in the sense that the stability region becomes smaller.
Figure 1(B) depicts the bifurcation diagram with respect to � in which the local
maximum and minimum of the trajectories are plotted against � : It shows that
the trajectory converges to the stationary point v for � < �0(m; �); this stability
is lost at � = �0(m; �) and a limit cycle having one maximum and one minimum
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emerges for � > �0(m; �):
2 It is also seen that the limit cycle is expanding as

the length of the delay becomes larger.

(A) Stability switching curve (B) Bifurcation diagram

Figure 1. Dynamics of the one delay model

3 Model with Two Delays

We next extend the model one step further by introducing a second delay in the
price trend. The price dynamic equation with two delays is

_p(t) = (1�m) tanhff([p(t); p(t� �1); p(t� �2)]gp(t)�m [p(t)� �] p(t) (7)

where

f [p(t); p(t� �1); p(t� �2)] = � [p(t)� p(t� �1)] + (1� �) [p(t� �1)� p(t� �2)]

with � 2 [0; 1]: Let RH be right hand side of equation (7). The linear approx-
imation of equation (7) evaluated at the stationary price vector p� = (�; �; �)
is

_p�(t) =
@RH
@p(t)

����
p�
p�(t) +

@RH
@p(t� �1)

����
p�
p�(t� �1) +

@RH
@p(t� �2)

����
p�
p�(t� �2)

where
@RH
@p(t)

����
p�
= � =: [(1�m)� �m] �; (8)

@RH
@p(t� �1)

����
p�
= �1 =: (1�m)(1� 2�)� (9)

2 In particular, we take m = 1=2 and � = 5; which lead to �0(1=2; 5) ' 0:628: If m is
increased to 0:62 as in Dibeh�s example, �0(0:62; 5) ' 1:5304:
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and
@RH

@p(t� �2)

����
p�
= ��2 =: �(1�m)(1� �)� < 0: (10)

Although �2 > 0 always, the signs of � and �1 depend on values of m and � in
the following way,

� R 0 according to � R m

1�m
and

�1 R 0 according to � Q
1

2
:

The linearized equation with these new parameters is rewritten as

_p�(t) = �p�(t) + �1p�(t� �1)� �2p�(t� �2)

which is, with p�(t) = e�tu; further converted into the characteristic equation,

�� �� �1e���1 + �2e���2 = 0: (11)

This is essentially the same equation that Gu et al. (2005) investigate. Following
their method, we determine the location of the eigenvalues. To this end, we
divide the left hand side of (11) by �� � and denote the result as a(�):

a(�) := 1 + a1(�)e
���1 + a2(�)e

���2 (12)

with new functions

a1(�) = �
�1
�� �

and

a2(�) =
�2
�� �:

In the special case of � = 1=2; �1 = 0 implying that a1(�) = 0; so equation
(11) becomes the one-delay equation

�� �+ �2e���2 = 0

or
�� 1

2
(1� 3m)� + 1

2
(1�m)�e���2 = 0:

This equation does not depend on �1; so it can be arbitrary. Similarly to The-
orem 1 we can prove that system is stable for all �2 as m � 1=2. If m < 1=2;
then stability is lost at the smallest stability switching curve,

�2(m; �) =

cos�1
�
1� 3m
1�m

�
�
p
m(1� 2m)

and stability cannot be regained later. Furthermore at �2 = �2(m; �) Hopf
bifurcation occurs. If � 6= 1=2; then both �1 and �2 are nonzero, so equation
(11) is a two-delay equation.
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For � = i! with ! > 0; a1(�) and a2(�) are written as

a1(i!) =
��1

�2 + !2
+ i

�1!

�2 + !2
(13)

and

a2(i!) = �
��2

�2 + !2
� i �2!

�2 + !2
: (14)

Their absolute values are

ja1(i!)j =
j�1jp
�2 + !2

(15)

and

ja2(i!)j =
�2p

�2 + !2
: (16)

We can consider the three terms in a(�) as three vectors in the complex plane.
If i! is a solution of a(�) = 0; then putting these vectors head to tail forms a
triangle. Solving a(i!) = 0 analytically is equivalent to solving the following
three inequality conditions graphically, each of which means that the length of
the sum of two adjacent line segments of the triangle is not shorter than the
length of the remaining line segment,

(i) 1 � ja1(i!)j+ ja2(i!)j ;

(ii) ja1(i!)j � 1 + ja2(i!)j ;

(iii) ja2(i!)j � 1 + ja1(i!)j :

Using the absolute values in (15) and (16), we rewrite these three conditions
in terms of m and �. First, substituting the absolute values into condition (i)
yields p

�2 + !2 � j�1j+ �2 (17)

where the right-hand side has two expressions according to whether the value
of � is less than 1=2 or not,

j�1j+ �2 =

8>><>>:
(1�m)(2� 3�)� if � <

1

2
;

(1�m)�� if � � 1

2

which is nonnegative in both cases. So condition (17) is equivalent to

!2 � �1(m;�) := (j�1j+ �2)
2 � �2: (18)

If �1(m;�) � 0, then there is no ! > 0, implying no stability switch for any
delays. We then look for conditions under which �1(m;�) > 0 or

j�j < j�1j+ �2:
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If � < 1=2; then
j(1�m)� �mj < (1�m)(2� 3�)

yields two inequality conditions,

� < f1(m) :=
2� 3m
2(1�m) (19)

and
� < f2(m) :=

2�m
4(1�m) (20)

where the �rst condition is violated with all � > 0 for m � 2=3; and the second
condition is ine¤ective as f2(m) > 1=2 for m 2 [0; 1]: If � � 1=2; then

j(1�m)� �mj < (1�m)�

generates two inequality conditions, one is

� > f3(m) :=
m

2(1�m) (21)

and the other ism > 0; which is already assumed above. A graphical description
of conditions (19) and (21) is given in Figure 2(A). The vertically-striped region
is surrounded by the curve of f2(m) and � = 1=2 while the horizontally-striped
region is constructed by the curve of f1(m) and � = 1=2: Hence �1(m;�) > 0 in
the union of these striped regions and �1(m;�) � 0 in the gray region including
its boundaries wherem � 2=3 or f1(m) � � � f3(m) hold. Denoting the striped
region by U ;

U = U1[U2

where

U1 =

�
(m;�) j � < 1

2
and � < f1(m)

�
and

U2 =

�
(m;�) j � � 1

2
and � > f3(m)

�
:

We summarize the result concerning condition (i) as follows:

Lemma 1 If (m;�) 2 U ; then �1(m;�) > 0 and condition (i) holds for ! <
!f =

p
�1(m;�) which is violated for ! > !f ; and also for all (m;�) =2 U .

Second, condition (ii) is rewritten as

j�1j � �2 �
p
�2 + !2 (22)
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where the left-hand side has two expressions according to whether the value of
� is less than 1=2 or not,

j�1j � �2 =

8>><>>:
(1�m)(��)� if � <

1

2
;

�(1�m)(2� 3�)� if � � 1

2
:

In the �rst case j�1j � �2 < 0 always and in the second case, it can be of either
sign,

j�1j � �2

8>><>>:
� 0 if � � 2

3
;

< 0 if � <
2

3
:

We see that if � < 2=3; then the left-hand side of (22) is negative implying that
the inequality is satis�ed. On the other hand, if � � 2=3; then (22) is equivalent
to

!2 � �2(m;�) := (j�1j � �2)
2 � �2: (23)

If �2(m;�) � 0, then any ! > 0 satis�es (22). To have �2(m;�) > 0, we then
look for a condition for

jj�1j � �2j > j�j : (24)

Since (22) is satis�ed for � < 2=3 with any ! > 0; we can focus on the case
of � � 2=3: Then (24) can be rewritten as

j(1�m)� �mj < (1�m)(3� � 2)

or
�(1�m)(3� � 2) < (1�m)� �m < (1�m)(3� � 2)

which is two inequalities. The left hand side is

� > f2(m) (25)

and the right hand side is
� > f1(m): (26)

So let

A =

�
(m;�) j � � 2

3
; � > f1(m) and � > f2(m)

�
;

which is the vertically striped region in Figure 2(B). Hence we have the following
result.

Lemma 2 If (m;�) 2 A; then �2(m;�) > 0; and condition (ii) holds if ! >
!g =

p
�2(m;�); and violated if ! � !g: If (m;�) =2 A; then condition (ii)

holds for all ! > 0.
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Lastly, condition (iii) is rendered to

�2 � j�1j �
p
�2 + !2: (27)

It can be shown that �2 � j�1j is nonpositive if � � 2=3 and positive otherwise.
Thus (27) is satis�ed if � � 2=3: So we focus only on the case of � < 2=3. On
the other hand, if the left hand side of (27) is positive, then it is required to
satisfy the equivalent inequality,

!2 � �2(m;�) = (�2 � j�1j)
2 � �2 (28)

which is the same as (23). If (�2 � j�1j)
2��2 � 0; then (27) holds for all ! > 0.

So we need to �nd condition such that �2 � (�2 � j�1j)
2
:

If � < 1=2, then this relation can be written as

�(1�m)� < (1�m)� �m < (1�m)�:

The right hand side always holds, the left hand side can be rewritten as

� > f3(m): (29)

Notice that
f3(m) <

1

2
if m <

1

2
:

The region

B =

�
(m;�) j � < 1

2
; � > f3(m)

�
is the horizontally-striped region in Figure 2(B).
Assume next that 1=2 � � < 2=3. Then �2 � (�2 � j�1j)

2 holds if

�(1�m)(2� 3�) < (1�m)� �m < (1�m)(2� 3�):

The left hand side can be rewritten as

� < f1(m)

and the right hand side as
� < f2(m):

De�ne the region

C =

�
(m;�) j 1

2
� � < 2

3
; � < f1(m); � < f2(m)

�
which is diagonally-striped in Figure 2(B). Our result can be summarized as
follows.

Lemma 3 If (m;�) 2 B [ C, then �2(m;�) > 0; and condition (iii) holds if
! > !g =

p
�2(m;�) and violated if ! � !g: If (m;�) =2 B [ C; then condition

(iii) holds for all ! > 0.
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Notice that �2(m;�) < �1(m;�) for all values of m and �: Lemmas 1, 2
and 3 imply the ful�llment of conditions (i), (ii) and (iii), !2 ��1(m;�) � 0
and !2 ��2(m;�) � 0:

Theorem 2 If (m;�) 2 A [B [C; then

�2(m;�) � !2 � �1(m;�) for ! 2 [!g; !f ]

whereas if (m;�) 2 U �A [B [C; then

0 � !2 � �1(m;�) for ! 2 [0; !f ]:

(A) �1(m;�) > 0 (B) �2(m;�) > 0

Figure 2. The triangle conditions (i), (ii) and (iii)

We will next �nd all pairs of delays (�1; �2) satisfying a(i!) = 0: Treating
the three terms in (12) as three vectors constructing a triangle, we suppose that
j1j is its base and denote the angle between j1j and ja1(i!)j by �1 and the angle
between j1j and ja2(i!)j by �2: Then by the law of cosine, these angles are

�1(!) = cos
�1
�
�2 + !2 + �21 � �22
2 j�1j

p
�2 + !2

�
and

�2(!) = cos
�1
�
�2 + !2 + �22 � �21
2�2

p
�2 + !2

�
:

Since the triangle may be located above and below the horizontal axis in the
complex plain, we have two possibilities,

farg a1(i!)e�!�1 ] + 2k�g � �1(!) = �

12



and
farg a2(i!)e�!�2 ] + 2n�g � �2(!) = �:

Solving these equations for �1 and �2 yields the threshold values of the delays,

��1 (!; k) =
1

!
farg a1(i!) + (2k � 1)� � �1(!)g (30)

and
��2 (!; n) =

1

!
farg a2(i!) + (2n� 1)� � �2(!)g : (31)

Notice that particular values of arg a1(i!) and arg a2(i!) depend on the choice
of the parameter values. Let 
 be the interval of ! speci�ed in Theorem 2. Then
for ! 2 
 we can �nd the pairs of (�1; �2) constructing the stability switching
curves consisting of two sets of parametric segments,

L1(k; n) =
�
�+1 (!; k); �

�
2 (!; n)

	
(32)

and
L2(k; n) =

�
��1 (!; k); �

+
2 (!; n)

	
(33)

where the parameter ! runs through interval 
.

4 Examples

In this section, we specify the parameter values and perform numerical simula-
tions to con�rm the shape of the stability switching curve. As seen in (13) and
(14), the values of arg(a1(i!)) and arg(a2(i!)) depend on the signs of � and �1;
the signs of which, in turn, depend on the values of m and �. The (m;�) plane
is divided into four subregions by the loci of � = 0 and �1 = 0. Accordingly we
select four di¤erent combinations of m and �; keeping � = 5 in the following
examples.

Example 1: m = 1=4, � = 2=5 and � = 5

The speci�ed point (m;�) is in the set B: Under these speci�cations, � > 0
and �1 > 0 so

arg a1(i!) = tan
�1
�!
�

�
and arg a2(i!) = � + tan�1

�!
�

�
:

Substituting them into (30) and (31) gives

��1 (!; k) =
1

!

n
tan�1

�!
�

�
+ (2k � 1)� � �1(!)

o
(34)

and
��2 (!; n) =

1

!

n
tan�1

�!
�

�
+ 2n� � �2(!)

o
: (35)
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The stability switching curve is shown in Figure 3(A) with n = 0 and k =
0; 1; 2; 3. We see that L1(k; 0) and L2(k; 0) for k = 0; 1; 2; 3 are the red and blue
segments of the curve and shift rightward as k increases. The segment L2(0; 0)
is located in the second quadrant in which ��1 (!; 0) is negative and thus is not
depicted. So L1(0; 0) is the left-most red segment, starts at the initial point
(�+1 (!s; 0); �

�
2 (!s; 0)) and arrives at the end point (�

+
1 (!e; 0); �

�
2 (!e; 0)) as !

increases from !s to !e where

!s =

q
(j�1j � �2)

2 � �2 and !e =
q
(j�1j+ �2)

2 � �2:

L2(1; 0) is the left-most blue segment, starts at the initial point (�
�
1 (!s; 1); �

+
2 (!s; 0))

and arrives at the end point (�+1 (!e; 1); �
�
2 (!e; 0)): It can be checked that

�+1 (!s; 0) = �
�
1 (!s; 1) ' 0:947

and
�+2 (!s; 0) = �

�
2 (!s; 0) ' 0:947:

The segments L1(0; 0) and L2(1; 0) have the same initial point located on the
diagonal. The end point of the segment L1(1; 0) is given by (�

+
1 (!e; 1); �

�
2 (!e; 0))

where
�+1 (!e; 1) = �

�
1 (!e; 1) ' 1:548

and
��2 (!e; 0) = �

�
2 (!e; 0) ' 0:495:

Hence the segments L1(1; 0) and L2(1; 0) have the same end points. In this way,
one segment is connected with the other segment and the connecting segments
for n = 0 and k = 0; 1; 2; 3 form the stability switching curve as shown in Figure
3(A). More generally, the following can be shown:

Proposition 1 Given the parameter speci�cations resulting in � > 0 and �1 >
0; the segments L1(k; n) and L2(k+1; n) have the same initial point whereas the
segments L1(k; n) and L2(k; n) have the same end point for any positive integer
values of k and n:

Fixing the value of �2 at ��2 = 0:5 and gradually increasing the value of
�1 from zero to 8; the horizontal line at �2 = ��2 crosses the stability switch-
ing curve �ve times with alternating stability losses and gains. The crossing
points are denoted by the black dots and their �1-coordinates are labelled by
�a1(' 1:548); � b1(' 2:654); �d1(' 3:650) and �d1(' 5:443); respectively, in the as-
cending order.3 The bifurcation diagram of Figure 3(B) shows the stable and
the unstable regions for �1 where two-cycles occur, the magnitude of the oscilla-
tions increases and then decreases back to the stable steady state when stability

3The �fth point �e1(' 5:443) is not labelled in order to avoid graphical conjestion.
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is regained.

(A) Stability switching curve (B) Bifurcation diagram

Figure 3. Illustration of Example 1

Example 2: m = 2=5, � = 7=12 and � = 5

The speci�ed point (m;�) is in the set C and makes � < 0 and �1 < 0:
Therefore

arg a1(i!) = � + tan
�1
�!
�

�
and arg a2(i!) = � + tan�1

�!
�

�
:

Substituting these expressions into (30) and (31) give

��1 (!; k) =
1

!

n
� tan�1

�
�!
�

�
+ (2k + 1)� � �1(!)

o
(36)

and
��2 (!; n) =

1

!

n
� tan�1

�
�!
�

�
+ (2n+ 1)� � �2(!)

o
: (37)

Figure 4(A) shows the stability switching curve. With �xed value of �2 = 1:5;
we gradually increase �1 from 0 to 8. The horizontal line crosses the stability
switching curve three times with two stability losses and one stability regain. As
the bifurcation diagram in Figure 4(B) shows, two-cycles emerge in the unstable
regions of �1 similarly to Example 1. It is possible to obtain the general result
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similar to Proposition 1.

(A) Stability switching curve (B) Bifurcation diagram

Figure 4. Illustration of Example 2

Example 3: m = 2=5, � = 5=6 and � = 5

The speci�ed point (m;�) belongs to the set C: Under these speci�cations,
� > 0 and �1 < 0 so

arg a1(i!) = tan
�1
�!
�

�
and arg a2(i!) = � + tan�1

�!
�

�
:

Substituting these expressions into (30) and (31) give

��1 (!; k) =
1

!

n
tan�1

�!
�

�
+ 2k� � �1(!)

o
(38)

and
��2 (!; n) =

1

!

n
tan�1

�!
�

�
+ 2n� � �2(!)

o
: (39)

The stability switching curve is shown in Figure 5(A) with k = 0 and n =
0; 1; 2: As in Example 1, L1(0; n) and L2(0; n) are the red and blue segments
of the curve and shift upward as n increases. L1(0; 0) is the lowest red seg-
ment crossing the horizontal line at �1 ' 0:785: It starts at the initial point
(�+1 (!s; 0); �

�
2 (!s; 0)) and arrives at the end point (�

+
1 (!e; 0); �

�
2 (!e; 0)) as !

increases from !s to !e:4 L2(0; 0) is the lowest blue segment starting at the initial
point (��1 (!s; 0); �

+
2 (!s; 0)) and arriving at the end point (�

�
1 (!e; 0); �

+
2 (!e; 0)): It

can be checked that the end point is on the diagonal with

�+1 (!e; 0) = �
�
1 (!e; 0) ' 0:559

4 In this example, !s ' 1:414 and !e ' 2:449. Since ��2 (!; 0) � 0 for ! 2 [!s; 2] where
(�+1 (!s; 0); �

�
2 (!s; 0)) ' (0:870; �1:351) and (�+1 (2; 0); �

�
2 (2; 0)) ' (0; 0:785); L1(0; 0) is

depicted in Figure 5(A) for ! 2 [2; !e]
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and
��2 (!e; 0) = �

+
2 (!e; 0) ' 0:559:

These equalities imply that segments L1(0; 0) and L2(0; 0) have the same end
point. The starting point of L1(0; 1) is given by (�

+
1 (!s; 1); �

�
2 (!s; 0)) where

�+1 (!s; 1) = �
�
1 (!s; 0) ' 0:870

and
��2 (!s; 0) = �

+
2 (!s; 0) ' 3:092:

Hence segments L2(0; 0) and L1(0; 1) have the same initial point. More generally,
the following can be shown:

Proposition 2 Given the parameter speci�cations resulting in � > 0 and �1 <
0; the segments L1(k; n) and L2(k; n+1) have the same initial point whereas the
segments L1(k; n) and L2(k; n) have the same end point for any positive integer
values of k and n:

A part of the stability switching curve is enlarged in Figure 5(B), and in
Figure 6 two bifurcation diagrams are shown. With �xed value of �1 = �01,
the value of �2 increases from 0 to 4; and the corresponding vertical line has
three intersections with the stability switching curve with two stability losses
and one regain, which is well shown in Figure 6(A). If the value of �2 is �xed at
�2 = �

0
2 and �1 is increased from 0 to 3=2, then three similar intersections are

obtained with two stability losses and one stability regain. This is also veri�ed
in Figure 6(B). In all cases two-cycles are found in the cases of instability, where
the magnitude increases from 0 to a maximum and then decreases back to zero
when stability is regained. So the dynamics behavior of the system is relatively
simple, limit cycles occur in the unstable regions.

(A) Stability switching curve (B) Enlargement

Figure 5. Stability switching curves in Example 3
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(A) Bifurcation diagram wrt �2 (B) Bifurcation diagram wrt �1

Figure 6. Bifurcation diagrams of Example 3

Example 4: m = 2=5, � = 2=5 and � = 5

The speci�ed point (m;�) is in the set B as in Example 1. Under these
speci�cations, we have � < 0 and �1 < 0 that are di¤erent from those in
Example 1. As ��1 < 0;

arg a1(i!) = � + tan
�1
�!
�

�
and arg a2(i!) = 2� + tan�1

�!
�

�
:

Substituting these expressions into (30) and (31) give

��1 (!; k) =
1

!

n
tan�1

�!
�

�
+ 2k� � �1(!)

o
(40)

and
��2 (!; n) =

1

!

n
tan�1

�!
�

�
+ (2n+ 1)� � �2(!)

o
: (41)

Figure 7(A) shows the stability switching curve and Figure 7(B) is the bifurca-
tion diagram where ��2 = 1:2 and �1 increases from 0 to 8: Stability losses and
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gains also repeatedly occur in this example.

(A) Stability switching curve (B) Bifurcation diagram

Figure 6. Illustration of Example 4

5 Concluding Remarks

We develop a heterogeneous agents model in which the chartists estimate the
price trend with delayed information. It is analytically shown that the delay
plane is divided into two regions by a stability switching curve and the equilib-
rium price is stable in the region including the origin of coordinates even if the
delays are involved while it is unstable in the other region. Concerning global
dynamics, it is numerically shown that �xing one delay at a positive length, the
equilibrium price loses stability when the length of the other delay increases to
arrive at the stability switching curve and it bifurcates to a limit cycle emerges
via Hopf bifurcation when the delay is further increased. Stability regains never
occur in the one delay model while stability losses and regains might repeatedly
occur in the two delay model.
There is a number of directions for further research. Firstly, we should

provide a theoretical analysis of the numerical examples in three-delay models
conducted in Dibeh (2005) in which the convergent damped oscillations are
given and the following conjecture is addressed: the longer is the time delay,
the longer is the convergence time of the asset price to the fundamental value.
Furthermore, the construction of the stability switching surface in the three
delay space is an interesting extension. Secondly, since the model we deal with
is an aggregative descriptive model, there is a need to construct a microeconomic
underpinning. Third, based on the results obtained in the one-asst model, its
extension to a multi-asset model is necessary as the key factor in �nancial theory
is portfolio diversi�cation.
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