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Abstract

In this paper, we examine the effect of sectoral interactions on business cycles in a simple Keynesian model.

As a first step for introducing viewpoints of multiple sectors in the context of business cycles, we consider a

dual economy in which there are only two kinds of goods: the consumption good and the investment good. By

examining a two-sector Keynesian model, we intend to take a look at some phenomena induced by interactions

between the consumption good sector and the investment good sector, which cannot be observed in one-sector

models. We then find that the stability of equilibrium and the possibility of emergence of a periodic orbit

depend upon whether the Keynesian stability condition holds or not and that the consumption good sector lags

behind the investment good sector along the periodic orbit (business cycles). Also, we supplement the analysis

by performing numerical simulations.
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JEL classification: E12; E32; E37

1 Introduction

It is no exaggeration to say that one of the main goals of macroeconomic studies is to explain the mechanism

of business cycles. Soon after the basis of macroeconomics was established by Keynes’ General Theory, a lot of

theories of business cycles were proposed from the late 1930s to the 1950s. For example, Kalecki (1935, 1937) and

Kaldor (1940) put forward models of business cycles by synthesizing the Keynesian multiplier theory and the profit

principle of investment, while Harrod (1936), Samuelson (1939), Metzler (1941), Hicks (1950) and Goodwin (1951)

initiated the so-called multiplier-accelerator model of business cycles by combining the multiplier theory and the

acceleration principle of investment.1 2 These classic models of business cycles can be characterized by the following

∗E-mail: hmura@tamacc.chuo-u.ac.jp
†742-1, Higashi-Nakano, Hachioji, Tokyo 192-0393, Japan.
1Precisely speaking, Kalecki (1935) and Harrod (1936) preceded Keynes (1936), but they can be included in the classic works of the

Keynesian theory of business cycles because their models were based upon the Keynesian principle of effective demand.
2The profit principle of investment states that investment demand is determined by the level of income (or of profit) and by the

volume of capital stock, while the acceleration principle means that investment demand is determined by changes in the level of income.
These two principles are often confused with each other, but they are different.
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“Keynesian” features: (i) quantity or income adjustment governed by the principle of effective demand prevails:3

(ii) variations in investment are the main source of business cycles.4 5 In their models, the mechanism of business

cycles is explained as follows: investment is linked to aggregate income and capital stock and aggregate income and

capital stock are varied through the multiplier process and capital formation induced by investment.

It is true that a lot of models of business cycles, including the aforementioned ones, can describe some aspects

of actual business cycles, but a certain important viewpoint is missing in them: the role of sectoral interactions

in business cycles. This aspect is lacking in one-sector or one-commodity models of business cycles, but it should

not be ignored in discussing actual business cycles. It goes without saying that propagations of shocks from one

industry to another do enhance economic fluctuations in reality. Unfortunately, there have been only a few attempts

made to study the role of sectoral interactions in business cycles from theoretical points of view.6 7 To understand

the mechanism of actual business cycles in depth, it is necessary to present a theoretical foundation for multi-sector

analysis of business cycles.

The purpose of this paper is to examine the effect of sectoral interactions on business cycles in a simple Keynesian

model. As a first step for introducing viewpoints of multiple sectors in the context of business cycles, we consider

a dual economy in which there are only two kinds of goods: the consumption good and the investment good. By

examining a two-sector Keynesian model, we intend to take a look at some phenomena induced by interactions

between the consumption good sector and the investment good sector, which cannot be observed in one-sector

models.

This paper is organized as follows. In Section 2, we set up a two-sector model by decomposing the economy

into the consumption-good sector and the investment-good sector. This two-sector model describes the dynamics

of the quantities of output and stocks of capital of the two sectors. In Section 3, we study the characteristics of

the two-sector model. In particular, we see that the stability of equilibrium and the possibility of emergence of a

periodic orbit depend upon whether the Keynesian stability condition holds or not and that the consumption good

sector lags behind the investment good sector along the periodic orbit (business cycles). In Section 4, we perform

numerical simulations to confirm the validity of our analysis. In Section 5, we summarize our analysis and conclude

this paper.

3We mean by the term “quantity adjustment” that firms adjust the quantity of their products so that it would be equal to the
demand for their products. This is what the principle of effective demand (Keynes, 1936, chap. 3) implies. The opposite concept is
“price adjustment,” which means that firms respond to excess demand or supply by raising or lowering the price of their products.

4Keynes (1936, chap. 22) attributed the main cause of business cycles to violent fluctuations of the marginal efficiency of investment
(i.e., profitability of investment).

5Precisely speaking, Metzler (1941) emphasized variations in inventory investment rather than those in fixed investment as a cause
of economic fluctuations.

6In the context of international trade, Lorenz (1987a, 1987b), Asada et al. (2001), Asada et al. (2003), Asada (2004) and Chiarella
and Flaschel (2000) presented multi-country open-economy Keynesian models of business cycles. However, their concern was with
interactions between countries, not with those between domestic sectors.

7In the field of economic growth, Okishio (1967, 1968) extended the Harrod-Domar model (e.g., Harrod 1939; Domar 1946) to
two-sector ones, while Dutt (1987), Lavoie and Ramı́rez-Gastón (1997), Franke (2000) and Nishi (2014) extended the Kaleckian model
(e.g., Kalecki 1971; Asimakopulos 1975; Rowthorn 1981) to two-sector ones, but they only focused on the stability or instability of
economic growth and did not examine the possibility of business cycles. In the neoclassical two-sector model of economic growth (e.g.,
Shinkai 1960; Uzawa 1961-1962, 1963), on the other hand, Inada (1963) and Stiglitz (1967) examined the possibility of emergence of
cyclical fluctuations, but their studies are based upon the full-employment assumption, and so cycles in their models cannot correspond
to actual business cycles.
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2 The model

In this section, we set up a two-sector Keynesian model of business cycles.

We suppose that there are only two kinds of goods that differ in property and name each of them the consumption

good and the investment good, respectively.8 The consumption good is supposed to be used for consumption

alone and not for production, while the investment good is assumed to be used for production alone and not for

consumption.9 We also suppose for simplicity that the prices of the consumption good and of the investment good

are fixed.10

First, we consider the demand for the consumption good. We assume that the demand for the consumption good

C is dependent upon both the income of the consumption good and that of the investment good.11 Specifically, C

is assumed to be represented by12

C = C(yc, yi), (1)

where C is twice continuously differentiable with

0 < Cyc ≡
∂C

∂yc
< 1, 0 < Cyi ≡

∂C

∂yi
< 1. (2)

In (1), yc and yi stand for the income or output of the consumption good and that of the investment good,

respectively. Condition (2) means that the marginal propensity to consume with respect to each sector’s income

Cyc or Cyi lies between 0 and 1.

Second, the output (supply) of the consumption good yc is assumed to be varied in response to the existing

8Traditionally, the consumption good and the investment good have been interpreted as the output in the agricultural sector and
that in the manufacturing sector, respectively, but in a modern way of thinking, the consumption good may be regarded as the output
in the service sector.

9It is possible to extend our analysis to a more general situation in which the investment good is also enjoyed for consumption. For
simplicity, however, we make the above assumption about the investment good.

10It is quantity or income adjustment governed by Keynes’ (1936, chap. 3) principle of effective demand that is the most distinguished
feature of the Keynesian theory. This point was stressed by Leijonhufvud (1968) as follows:

In [neoclassical] general equilibrium flow models, prices are the only endogenous variables which enter as arguments
into the demand and supply functions of individual households. Tastes and initial resource endowments are parametric.
In “Keynesian” flow models the corresponding arguments are real income and the interest rate. Of these, real income is a
measure of quantity, not of prices. On a highly abstract level, the fundamental distinction between general equilibrium and
Keynesian models lies in the appearance of this quantity variable in the excess demand relation to the latter. The difference
is due to the assumptions made about the adjustment behavior of the two systems. In the short run, the “[Neo]Classical”
system adjusts to changes in money expenditures by means of price-level movements; the Keynesian adjusts primarily by
way of real income movements. (p. 51)

In the Keynesian theory, quantity or income, rather than prices, plays the primary role in dynamic adjustment (see also Tobin (1993)
or Yoshikawa (1984)). To focus on the importance of quantity adjustment, price adjustment is ignored in our analysis.

11Since the prices of the consumption good and of the investment good are assumed to be fixed, we can use the terms “income” and
“output” interchangeably.

12If consumption demand can be assumed to depends upon aggregate income, the consumption function may be expressed as

C = C(yc + yi),

with

0 < Cy ≡
∂C

∂(yc + yi)
< 1.

Equation (1) is, of course, a more general formulation than this.
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excess demand or supply. Specifically, yc is assumed to obey the following process:

ẏc = αc[C(yc, yi)− yc], (3)

where αc is a positive parameter which stands for the speed of adjustment. It is assumed in (3) that the adjustment

of yc is proportional to the existing excess demand or supply, represented by C(yc, yi)− yc. Equation (3) expresses

the Keynesian quantity adjustment process in the consumption good sector.13

Third, we take a look at the demand side of the investment good. For each sector, the consumption good sector

or the investment good sector, the demand for the investment good (including the replacement demand for the

investment good) is assumed to be dependent upon the output of the sector and upon the existing stock of the

investment good (i.e., the existing stock of capital) of the sector. Specifically, we assume that the gross investment

functions of the consumption good sector Ic and of the investment good sector Ii are represented by

Ic = Ic(yc, kc), (4)

Ii = Ii(yi, ki), (5)

where Ic and Ii are twice continuously differentiable with

0 < Iyc ≡
∂Ic
∂yc

< 1, Ikc ≡
∂Ic
∂kc

< 0, (6)

0 < Iyi ≡
∂Ii
∂yi

< 1, Iki ≡
∂Ii
∂ki

< 0. (7)

In (4) and (5), kc and ki denote the existing stocks of the investment good of the consumption good sector and

of the investment good sector, respectively. Equations (4) and (5) with (6) and (7) are consistent with the “profit

principle” of investment.14 It is also assumed in (6) and (7) that the marginal propensity to invest with respect

to each sector’s income Iyc or Iyi lies between 0 and 1.15 In this paper, we assume for simplicity that the rate of

interest r is fixed by the monetary authority. By so doing, we can omit the dependence of Ic or of Ii on r.16

Fourth, we turn to the output (supply) of the investment good yi. As in the consumption good sector, yi is

13It is implicitly assumed that the existing excess demand or supply is absorbed as unintended inventory investment.
14Strictly speaking, the profit principle argues that the more the rate of profit is, the more demand for investment is, but, under the

assumption of fixed price and wage, the (gross) rate of profit for each sector can be shown to be increasing in the level of output and
decreasing in the stock of capital. The profit principle in this form was used first by Kalecki (1937) and Kaldor (1940). For discussions
on microeconomic foundation of this principle in the context of fixed investment, see Murakami (2016a), and, for that in the context of
R&D investment, see Murakami (2017b).

15The usual profit principle does not require that the marginal propensity to invest be less than unity, but this assumption helps to
simplify our analysis, especially the stability analysis in Section 3.

16We may include the rate of interest r in the investment functions Ic and Ii, but if r can be represented as a function of yc and yi
(as the Keynesian liquidity preference theory implies) and the interest elasticity of liquidity preference is sufficiently large (as in the
Keynesian liquidity trap), our argument shall not dramatically be changed.
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assumed to be changed in response to the existing excess demand or supply in the following way:

ẏi = αi[Ic(yc, kc) + Ii(yi, ki)− yi], (8)

where αi is a positive parameter which represents the speed of adjustment. Equation (8) is, of course, the Keynesian

quantity adjustment process in the investment good sector.

Fifth, we describe the capital formation process of each sector. The demand for the investment good of each

sector Ic or Ii is assumed to be realized as the gross increment of the stock of the investment good in the sector kc

or ki, respectively, in the following way:

k̇c = Ic(yc, kc)− δkc, (9)

k̇i = Ii(yi, ki)− δki, (10)

where δ is a positive constant which stands for the rate of capital depreciation. In (9) and (10), it is assumed that all

the existing excess demand (resp. supply) is absorbed as unintended inventory decumulation (resp. accumulation).17

Thus, our two-sector model can be completed as follows:

ẏc = αc[C(yc, yi)− yc], (3)

ẏi = αi[Ic(yc, kc) + Ii(yi, ki)− yi], (8)

k̇c = Ic(yc, kc)− δkc, (9)

k̇i = Ii(yi, ki)− δki. (10)

In what follows, the system of equations (3), (8), (9) and (10) is simply called “System.” The structure of System

is similar to that of Kaldor’s (1940) model,18 but the notable difference from his is that our System consists of two

sectors.

Since System deals with medium-run economic fluctuations but not with long-run economic growth, the levels

of income and capital stocks of both sectors, yc, yi, kc and ki, can be assumed to be bounded.19 For this reason,

17More generally, the demand for the investment good of the investment good sector may not be realized as net capital accumulation
due to the existence of excess demand or supply. To describe this more general situation, it may be better to formalize the capital
formation process in the investment good sector as follows:

k̇i = Ii(yi, ki)− δki − θ[Ic(yc, kc) + Ii(yi, ki)− yi],

where θ ∈ [0, 1]. This kind of formalization can be found in, for instance, Stein (1969) or Fischer (1971). For the sake of simplicity in
analysis, however, equation (10) is adopted in our analysis.

18For extensions of Kaldor’s (1940) model of business cycles (in continuous-time formalizations), see, for example, Chang and Smyth
(1971), Varian (1979), Semmler (1986, 1987), Asada (1987, 1995, 2004), Lorenz (1987), Skott (1989), Chiarella and Flaschel (2000),
Asada et al. (2003), Chiarella et al. (2013) or Murakami (2014, 2015, 2016b).

19In reality, the levels of income and capital stocks of both sectors grow with some trend due to population growth and technical
progress, which implies that they cannot be considered to be bounded. If our variables yc, yi, kc and ki can be viewed as cyclical
components (or detrended versions) of their actual time series, however, we can, without so much difficulty, extend our analysis even in
the context of long-run economic growth.
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we can restrict the domain of the variables in System as follows:

D ≡ {(yc, yi, kc, ki) ∈ R4
++ : yc ∈ [y

c
, yc], yi ∈ [y

i
, yi], kc ∈ [kc, kc], ki ∈ [ki, ki]},

where xj and xj are positive constants with xj < xj for x = y, k and for j = c, i. For x = y, k and for j = c, i,

we may regard xj and xj as the maximum and minimum values of xj in the medium-run context. In this sense,

the compact domain D can be viewed as the set of combinations of yc, yi, kc and ki economically feasible in the

medium run.20

For convenience, we summarize the assumptions made thus far as follows.

Assumption 1. The real valued functions C, Ic and Ii are twice continuously differentiable everywhere on D and

the following conditions are satisfied everywhere on D:21

0 < Cyc < 1, 0 < Cyi < 1, (2)

0 < Iyc < 1, Ikc < 0, (6)

0 < Iyi < 1, Iki < 0. (7)

3 Analysis

In this section, we analyze System, which consists of (3), (8), (9) and (10). First, we verify the existence and

uniqueness of equilibrium in System. Second, we examine the stability of this equilibrium. Third, we explore the

possibility of persistent business cycles being generated.

3.1 Existence and uniqueness of equilibrium

To begin, we define an equilibrium point of System. An equilibrium point of System is defined as a point at which

we have ẏc = ẏi = k̇c = k̇i = 0. We can easily see that an equilibrium point of System, (yc, yi, kc, ki) ∈ D, is given

as a solution of the following simultaneous equations:

yc = C(yc, yi), (11)

yi = Ic(yc, kc) + Ii(yi, ki), (12)

δkc = Ic(yc, kc), (13)

δki = Ii(yi, ki). (14)

20For more detailed economic interpretations of a related compact domain, see Murakami (2014).
21The assumption of twice-continuous differentiability is made for the application of the Hopf bifurcation theorem in our analysis.

For details on this theorem, see Marsden and McCracken (1976).
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In order to establish the existence and uniqueness of an equilibrium point of System, we make the following

assumptions.

Assumption 2. The following conditions are satisfied:

C(yc, yi)− yc < 0 < C(y
c
, y
i
)− y

c
, (15)

Ic(yc, kc) + Ii(yi, ki)− yi < 0 < Ic(yc, kc) + Ii(yi, ki)− yi, (16)

Ic(yc, kc)− δkc < 0 < Ic(yc, kc)− δkc, (17)

Ii(yi, ki)− δki < 0 < Ii(yi, ki)− δki. (18)

Assumption 3. The following conditions is satisfied everywhere on D:

(1− Cyc)IkcIki > [(1− Cyc)(1− Iyi)Ikc + (1− Cyc − CyiIyc)Iki ]δ − [(1− Cyc)(1− Iyi)− CyiIyc ]δ2. (19)

Regarding Assumption 2, conditions (15)-(18) may seem technical, but it is possible to provide economic in-

terpretations for them under Assumption 1. Indeed, Assumption 1 and conditions (15)-(18) imply that for every

(yc, yi, kc, ki) ∈ D

C(yc, yi)− yc ≤ C(yc, yi)− yc < 0 < C(y
c
, y
i
)− y

c
≤ C(y

c
, yi)− yc, (20)

Ic(yc, kc) + Ii(yi, ki)− yi ≤ Ic(yc, kc) + Ii(yi, ki)− yi < 0 < Ic(yc, kc) + Ii(yi, ki)− yi ≤ Ic(yc, kc) + Ii(yi, ki)− yi,

(21)

Ic(yc, kc)− δkc ≤ Ic(yc, kc)− δkc < 0 < Ic(yc, kc)− δkc ≤ Ic(yc, kc)− δkc, (22)

Ii(yi, ki)− δki ≤ Ii(yi, ki)− δki < 0 < Ii(yi, ki)− δki ≤ Ii(yi, ki)− δki. (23)

Condition (20) or (21) means that, when income of each sector yc or yi is sufficiently large (resp. sufficiently small)

or at the maximum yc or yi (resp. at the minimum y
c

or y
i
), this sector is in excess supply (resp. in excess demand);

condition (22) or (23) means that, when capital stock of each sector kc or ki is sufficiently large (resp. sufficiently

small) or at the maximum kc or ki (resp. at the minimum kc or ki), net investment in this sector is negative (resp.

positive). Conditions (20) and (21) may be consistent with the reality in that the propensity to consume and that

to invest tend to decline as the level of income rises (cf. Keynes 1936, chap. 10), while conditions (22) and (23)

can be seen as realistic because net investment demand may be considered to be positive (resp. negative) when

the volume of capital stock is sufficiently small (resp. sufficiently large). Therefore, Assumption 2 can be justified

from economic viewpoints. Moreover, mathematically, conditions (20)-(21) imply that the compact domain D is

positively invariant with respect to System.22 This property is helpful for verifying the existence of an equilibrium

22A (nonempty) closed domain is said to be positively invariant if every solution of the dynamical system under consideration which
starts from this domain at t = 0 will remain in the same domain for all t ≥ 0.
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point of System.23

As for Assumption 3, condition (19) is satisfied under Assumption 1 if the constant rate of capital depreciation

δ is sufficiently small. Since δ is annually around 0.09 in reality (in Japan), condition (19) is highly likely to hold.

In this respect, Assumption 3 is realistic.

Now we are ready to establish the existence and uniqueness of a solution path and of an equilibrium point of

System.

Proposition 1. Let Assumptions 1-3 hold.

(i) For every initial condition (yc(0), yi(0), kc(0), ki(0)) ∈ D, there exists a unique solution path of System,

(yc(t), yi(t), kc(t), ki(t)) ∈ D, for all t ≥ 0.

(ii) There exists a unique equilibrium point of System, (y∗c , y
∗
i , k
∗
c , k
∗
i ) ∈ D◦, where D◦ denotes the interior of D.

Proof. See Appendix A.

3.2 Stability and instability

Next, we study the stability of System. For this purpose, we have a look at the Jacobian matrix, denoted by J∗,

evaluated at the unique equilibrium:

J∗ =



αc(C
∗
yc − 1) αcC

∗
yi 0 0

αiI
∗
yc αi(I

∗
yi − 1) I∗kc I∗ki

I∗yc 0 I∗kc − δ 0

0 I∗yi 0 I∗ki − δ


,

where ∗ signifies the value evaluated at the unique equilibrium point of System. The characteristic equation

associated with J∗ is given by

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, (24)

23Assumption 2 may be viewed as “boundary conditions” for existence of equilibrium in our two-sector Keynesian model. For boundary
conditions in related one-sector Keynesian models, see, for instance, Murakami (2014, 2017a).
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where

a1 = (1− C∗yc)αc + (1− I∗yi)αi + 2δ − I∗kc − I
∗
ki > 0, (25)

a2 = [(1− C∗yc)(1− I
∗
yi)− C

∗
yiI
∗
yc ]αcαi + (1− C∗yc)(2δ − I

∗
kc − I

∗
ki)αc

+ [(1− I∗yi)(2δ − I
∗
kc)− I

∗
ki ]αi + (δ − I∗kc)(δ − I

∗
ki),

(26)

a3 = {2[(1− C∗yc)(1− I
∗
yi)− C

∗
yiI
∗
yc ]δ − (1− C∗yc)(1− I

∗
yi)I

∗
kc − (1− C∗yc − C

∗
yiI
∗
yc)I

∗
ki}αcαi

+ (1− C∗yc)(δ − I
∗
kc)(δ − I

∗
ki)αc + [(1− I∗yi)δ − I

∗
kc ](δ − I

∗
ki)αi,

(27)

a4 = {(1− C∗yc)I
∗
kcI
∗
ki

− [(1− C∗yc)(1− I
∗
yi)I

∗
kc + (1− C∗yc − C

∗
yiI
∗
yc)I

∗
ki ]δ + [(1− C∗yc)(1− I

∗
yi)− C

∗
yiI
∗
yc ]δ

2}αcαi > 0.

(28)

The inequalities follow from Assumptions 1 and 3.

For the unique equilibrium of System to possess the local asymptotic stability, it is necessary and sufficient that

all the roots of the characteristic equation (24) have negative real parts. According to the Routh-Hurwitz criterion,

the following set of conditions is necessary and sufficient:

a1 > 0, a3 > 0, a4 > 0, (a1a2 − a3)a3 > a21a4,

which are, under Assumption 1, equivalent to24

{[(1− C∗yc)(1− I
∗
yi)− C

∗
yiI
∗
yc ]δ − (1− C∗yc)(1− I

∗
yi)I

∗
kc − (1− C∗yc − C

∗
yiI
∗
yc)I

∗
ki}αcαi

+(1− C∗yc)(δ − I
∗
kc)(δ − I

∗
ki)αc + [(1− I∗yi)δ − I

∗
kc ](δ − I

∗
ki)αi > 0,

(29)

f(αc, αi)(≡ (a1a2 − a3)a3 − a21a4)

= [(1− C∗yc)(1− I
∗
yi)− C

∗
yiI
∗
yc ]{[(1− C

∗
yc)(1− I

∗
yi)− C

∗
yiI
∗
yc ]δ − (1− C∗yc)(1− I

∗
yi)I

∗
kc − (1− C∗yc − C

∗
yiI
∗
yc)I

∗
ki}

× [(1− C∗yc)αc + (1− I∗yi)αi]α
2
cα

2
i

+ (1− C∗yc)
3(δ − I∗kc)(δ − I

∗
ki)(2δ − I

∗
kc − I

∗
kI )α

3
c

+ (1− I∗yi)[(1− I
∗
yi)δ − I

∗
kc ][(1− I

∗
yi)(2δ − I

∗
kc)− I

∗
ki ](δ − I

∗
ki)α

3
i (30)

+ b1α
3
cαi + b2αcα

3
i + b3α

2
cα

2
i + b4α

2
cαi + b5αcα

2
i + b6α

2
c + b7α

2
i + b8αcαi

+ (δ − I∗kc)(δ − I
∗
ki)

2(2δ − I∗kc − I
∗
ki){(1− C

∗
yc)(δ − I

∗
kc)αc + [(1− I∗yi)δ − I

∗
kc ]αi} > 0.

To discuss the stability of System, we impose the following realistic assumption.

24The exact values of bl for l = 1, ..., 8 are omitted because they are irrelevant to our analysis.
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Assumption 4. The following condition is satisfied:

2[(1− C∗yc)(1− I
∗
yi)− C

∗
yiI
∗
yc ]δ > (1− C∗yc)(1− I

∗
yi)I

∗
kc + (1− C∗yc − C

∗
yiI
∗
yc)I

∗
ki . (31)

Condition (31) is not so restrictive under Assumption 1 because the right hand side is likely to be negative due

to Cyc, Cyi , Iyc , Iyi ∈ (0, 1) and Ikc , Iki < 0 and the rate of capital depreciation δ is sufficiently small (around

0.09) in reality. Therefore, Assumption 4 can safely be made from realistic viewpoints. Note that condition (29) is

satisfied under Assumptions 1 and 4.

As regards the local asymptotic stability, we can state the following fact.

Proposition 2. Let Assumptions 1-4 hold.

(i) The unique equilibrium point of System is locally asymptotically stable if αc and αi are sufficiently small.

(ii) The unique equilibrium point of System is locally asymptotically stable if αc is sufficiently large and αi is

sufficiently small.

(iii) The unique equilibrium point of System is locally asymptotically stable if αc is sufficiently small and αi is

sufficiently large.

(iv) Assume that the following condition is satisfied:

(1− C∗yc)(1− I
∗
yi) > C∗yiI

∗
yc . (32)

Then, the unique equilibrium point of System is locally asymptotically stable if αc and αi are sufficiently large.

(v) Assume that the following condition is satisfied:

(1− C∗yc)(1− I
∗
yi) < C∗yiI

∗
yc . (33)

Then, the unique equilibrium point of System is locally asymptotically unstable if αc and αi are sufficiently large.

Proof. See Appendix B.

Proposition 2 says that the (local) stability of System is gained when the quantity adjustments in both sectors

are relatively slow or when the quantity adjustment in one of the sectors is comparatively fast while that in the

other is comparatively slow. This proposition also states that when the quantity adjustments in both sectors are

rapid enough, the (local asymptotic) stability of System rests upon whether condition (32) holds or not and the

stability is lost if the reverse condition (33) is satisfied. Since the situation in which both αc and αi are large may

be taken as the Keynesian case (cf. Leijonhufvud 1968; Tobin 1993; Yoshikawa 1984), we may state that conditions

(32) and (33) are, respectively, the stability condition and the instability one in our Keynesian model.

We can find that our stability results are related to the well-established Keynesian stability condition. As is well

10



known, the Keynesian stability condition, which states that the sum of the marginal propensity to consume and

that to invest is less than unity, plays a vital role in stability in one-sector Keynesian models.25 In our two-sector

model, the Keynesian stability condition (at the equilibrium) may be written for each sector as follows:

C∗yc + I∗yc < 1, (34)

C∗yi + I∗yi < 1. (35)

It is seen that condition (32) holds under Assumption 1 and these conditions. Then, it follows from Proposition

2 (iv) that the local asymptotic stability of System obtains for αc and αi sufficiently large. In other words, the

“two-sector” version of Keynesian stability condition, (34) and (35), can assure the stability in our two-sector

System if the quantity adjustment is rapid enough in each sector. On the contrary, if the reverse inequalities hold

both in (34) and in (35), condition (33) is satisfied and the instability arises for αc and αi sufficiently large in

our two-sector System (cf. Proposition 2 (v)). Recently, some economists have cast doubt on the validity of the

Keynesian stability condition and maintained that the reverse condition is realistic.26 Thus, chances are not low

that, in practice, the reverse inequalities may be fulfilled both in (34) and in (35) and that condition (33) holds. In

this way, the (counterpart of) Keynesian stability condition also plays a key role in the stability in our two-sector

Keynesian model.

3.3 Existence of a periodic orbit

Now we examine the phenomenon of the unique equilibrium of System turning from stable to unstable (or from

unstable to stable), i.e., that of “stability switching” occurring to System, through changes in the parameters αc

and αi.

It follows from the above argument that the stability switching occurs only if the following condition is satisfied:27

f(αc, αi) = 0. (36)

Furthermore, according to Asada and Yoshida (2003, p. 527, Theorem 3), a non-constant periodic orbit is generated

by a Hopf bifurcation if either of the following conditions as well as (36) holds:

fαc(αc, αi) 6= 0, (37)

fαi(αc, αi) 6= 0. (38)

25The term of “Keynesian stability condition” was coined by Marglin and Bhaduri (1990). To our best knowledge, Samuelson (1941,
p. 117) was the first economist who found that this condition ensures the (local asymptotic) stability in the Keynesian system.

26For instance, Skott (2012) judged from his empirical study that the Keynesian stability condition is far from realistic.
27Due to (28), the characteristic equation (24) cannot possess any zero root.
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To discuss the possibility of Hopf bifurcations, we make the following assumption.

Assumption 5. The following condition is satisfied:

(1− C∗yc)(1− I
∗
yi) < C∗yiI

∗
yc . (33)

According to Proposition 2 (v), condition (33) is a sufficient condition for the instability of System for αc and

αi sufficiently large. As we have stated above, the validity of (33) may be verified on empirical grounds. In Section

4 and Appendix E, we shall see that condition (33) was empirically satisfied in Japan. In this respect, Assumption

5 can be justified.

Concerning the existence of a periodic orbit, we can establish the following fact.

Proposition 3. Let Assumptions 1-5 hold.

(i) Assume that αi is fixed at some sufficiently large value. Then, there exists at least one positive value α∗c such

that the unique equilibrium of System is locally asymptotically stable (resp. unstable) for αc < α∗c (resp. αc > α∗c)

and that at least one (non-constant) periodic orbit is generated by a Hopf bifurcation for αc sufficiently close to α∗c .

(ii) Assume that αc is fixed at some sufficiently large value. Then, there exists at least one positive value α∗i such

that the unique equilibrium of System is locally asymptotically stable (resp. unstable) for αi < α∗i (resp. αi > α∗i )

and that at least one (non-constant) periodic orbit is generated by a Hopf bifurcation for αi sufficiently close to α∗i .

Proof. See Appendix C.

Proposition 3 states that there can be a periodic orbit generated by Hopf bifurcations through changes in αc or

in αi. Note that it does not tell us about the stability of the periodic orbit. As is well known, there is a criterion to

discern whether a Hopf periodic orbit is stable or not, i.e., whether a Hopf bifurcation is supercritical or subcritical

(cf. Marsden and McCracken 1976, sect. 4). However, it is usually hard to derive economic implications from

this criterion because it requires third order partial derivatives of the relevant functions, which usually do not have

economic meanings, and so we do not analytically investigate the periodic stability.28

3.4 Characteristics of the Hopf periodic orbit

We investigate the properties of a periodic orbit generated by the aforementioned Hopf bifurcation, which are simply

called a “Hopf periodic orbit” in what follows.

To begin, we calculate the period of a Hopf periodic orbit. When a Hopf bifurcation occurs to System, condition

28There have been some attempts made to derive the condition for stability of a Hopf periodic orbit in economics. For example, Lorenz
(1993), Matsumoto (2009) and Dohtani (2010) provided periodic stability conditions in their systems of two-dimensional differential
equations.
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(36) is fulfilled and the characteristic equation (24) has a pair of purely imaginary root ±iω with

ω =

√
a3
a1

=
√
{2[(1−C∗yc )(1−I

∗
yi

)−C∗yi
I∗yc ]δ−(1−C∗yc )(1−I

∗
yi

)I∗
kc
−(1−C∗yc−C

∗
yi
I∗yc )I

∗
ki
}αcαi+(1−C∗yc )(δ−I

∗
kc

)(δ−I∗
ki

)αc+[(1−I∗yi
)δ−I∗

kc
](δ−I∗

ki
)αi

(1−C∗yc )αc+(1−I∗yi
)αi+2δ−I∗

kc
−I∗
ki

.

According to the Hopf bifurcation theorem (cf. Marsden and McCracken 1976, sect. 5), the period of a Hopf

periodic orbit can be approximated by

T =
2π

ω

= 2π

√√√√√ (1−C∗yc )αc+(1−I∗yi
)αi+2δ−I∗

kc
−I∗
ki

{2[(1−C∗yc )(1−I
∗
yi

)−C∗yi
I∗yc ]δ−(1−C∗yc )(1−I

∗
yi

)I∗
kc
−(1−C∗yc−C

∗
yi
I∗yc )I

∗
ki
}αcαi+(1−C∗yc )(δ−I

∗
kc

)(δ−I∗
ki

)αc+[(1−I∗yi
)δ−I∗

kc
](δ−I∗

ki
)αi
.

(39)

Next, we examine the movements of the variables yc, yi, kc and ki along Hopf periodic orbits. A simple way

to look at what happens along Hopf periodic orbits is to draw phase diagrams. In figure 1, the phase diagram

of System is illustrated on the yc-yi plane with kc = k∗c and ki = k∗i (it is drawn under Assumptions 1-5). By

applying the conclusion of the Poincarè-Hopf theorem (cf. Milnor 1965, p. 35), we can find that the point (y∗c , y
∗
i )

is, under Assumption 5, a saddle point on the yc-yi plane with kc = k∗c and ki = k∗i and that the loci of ẏc = 0 and

of ẏi = 0 intersect at least two points other than (y∗c , y
∗
i ) on this plane (note that, letting the other point be, say,

(y∗∗c , y
∗∗
i ), the point (y∗∗c , y

∗∗
i , k

∗
c , k
∗
i ) is not an equilibrium point of the four-dimensional System).29 Since (y∗c , y

∗
i )

is a saddle stationary point, however, we cannot directly gain from this simple method some useful information on

the movements of yc and of yi along Hopf periodic orbits.

29For kc = k∗c and ki = k∗i , the domain D∗ ≡ {(yc, yi) ∈ R2
++ : yc ∈ [y

c
, yc], yi ∈ [y

i
, yi]} is positively invariant with respect to the

subsystem of (3) and (8). By the same logic as used in the proof of Proposition 1 (cf. Appendix A), we can see from the Poincarè-Hopf
theorem that the sum of the indices of all the stationary points of (3) and (8) is +1 on D∗. Since the index of (y∗c , y

∗
i ) is −1 because it

is a saddle point on the yc-yi plane, we can conclude that at least other two stationary points exist on D∗.
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Figure 1: Phase diagram on yc-yi plane

Another way to get information on the properties of Hopf periodic orbits is to make use of the linearized version

of the original System. The linearized version of System, which is linearized around the unique equilibrium point

(y∗c , y
∗
i , k
∗
c , k
∗
i ), can be written in the following form:

ẏc = αc[(C
∗
yc − 1)(yc − y∗c ) + C∗yi(yi − y

∗
i )], (40)

ẏi = αi[I
∗
yc(yc − y

∗
c ) + (I∗yi − 1)(yi − y∗i ) + I∗kc(kc − k

∗
c ) + I∗ki(yi − y

∗
i )], (41)

k̇c = I∗yc(yc − y
∗
c ) + (I∗kc − δ)(kc − k

∗
c ), (42)

k̇i = I∗yi(yi − y
∗
i ) + (I∗ki − δ)(ki − k

∗
i ). (43)

A Hopf bifurcation is a local phenomenon in our analysis, a Hopf periodic orbit of System can be approximated by

the solution path of the system of (40)-(43) with (36). In what follows, we denote the system of equations (40)-(43)

with (36) by “System (L).”
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A (purely) periodic solution of System (L) can be written in the following form:30

yc = y∗c + ayc sin
(2π(t− θyc)

T

)
, (44)

yi = y∗i + ayi sin
(2π(t− θyi)

T

)
, (45)

kc = k∗c + akc sin
(2π(t− θkc)

T

)
, (46)

ki = k∗i + aki sin
(2π(t− θki)

T

)
, (47)

where T is the constant number defined by (39); axj is a positive constant (amplitude) and θxj is a real constant

with θxj ∈ [−T/2, T/2], for x = y, k and j = c, i, where axj and θxj are dependent upon an initial condition.

To study the movements of variables along Hopf periodic orbits, we have a closer look at the phase differences

(i.e., the differences in θxj ). By looking into the phase differences, we can gain helpful information about the lead

and lag between the four variables yc, yi, kc and ki along Hopf periodic orbits. If we have θi < θc, for instance, we

may say from figure 2 that yi reaches its peak earlier than yc does along the periodic orbit of System (L), i.e., that

the movement of yi precedes that of yc (or that the latter lags behind the former). Then, we can approximately

make a judgment on the lead-and-lag relationship between variables along Hopf periodic orbits of (the original)

System.

θ c

y i  - y i *

y c  - y c *

O time
θ i

Figure 2: Phase difference

Concerning the phase differences, we can obtain the following proposition.

30The general solution of System (L), xj , for x = y, k and j = c, i, can be written in the form of

xj = x∗j + axj sin
(2π(t− θxj )

T

)
+ bxj e

λ1t + cxj e
λ2t,

where λ1 and λ2 are the negative roots of (24); axj , bxj and cxj are constants that depend upon an initial condition. The pure periodic
solution can be obtained if the initial condition satisfied bxj = cxj = 0. Note however that, due to λ1 < 0 and λ2 < 0, the above general
solution converges to a periodic orbit with the passage of time.
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Proposition 4. Let Assumptions 1-5 hold. Let a (purely) periodic solution path of System (L) be represented by

(44)-(47).

(i) Assume that

αc(1− C∗yc) + I∗ki − δ ≤ 0. (48)

Then, the following condition holds:

θyi < θki ≤ θyc < θkc . (49)

(ii) Assume that

αc(1− C∗yc) + I∗ki − δ > 0. (50)

Then, either of the following conditions holds:

θyi < θyc < θkc ≤ θki , (51)

θyi < θyc < θki < θkc . (52)

Proof. See Appendix D.

We can find from Proposition 4 that the relationships θyi < θyc , θyc < θkc and θyi < θki always hold but that

which of θyc and θki is greater is conditional.31 It can thus be said that the ups and downs of yi firstly occurs and

those of yc and ki follow them (those of yc are followed by those of kc.) along (purely) periodic orbits of System

(L). In particular, if condition (48) holds, the ups and downs of ki precede those of yc, while otherwise (if condition

(50) is fulfilled), the reverse is true. Since Hopf periodic orbits of System can be approximated by periodic orbits

of System (L), we can infer that, along Hopf periodic orbits of System, the movements of yc and ki lag behind that

of yi and which of yc and ki precedes the other depends upon which of conditions (48) and (50) holds. Moreover,

the lead and lag between the four variables may imply that variations in the output of the investment good sector

play a leading role in business cycles and that the consumption good sector passively responds to changes in the

investment good sector. These lead and lag relationships reflect not only the Keynesian multiplier process but also

the Keynesian view that what causes economic fluctuations is volatility of investment demand.

31It is also conditional which of θkc and θki is larger. To avoid complexity in calculation, we do not dwell on the conditions upon
which θkc is larger than θki and which the reverse is true.
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4 Numerical analysis

We proceed to perform some numerical simulations to check if the conclusions drawn from our analysis are valid.

For this purpose, we need information about the consumption and investment functions.

4.1 Specification

To begin, we specify the investment functions of the consumption good and investment good sectors, Ic and Ii

based upon the empirical data in Japan. We first estimate the gross investment functions of both sectors and then

allow for depreciation of capital. To do so, we make the simplifying assumption that the shape of the gross capital

accumulation function, which relates the rate of gross capital accumulation (i.e., the ratio of gross investment to

capital stock) to the ratio of gross output to capital stock, is common for both sectors. Specifically, we assume that

the gross capital accumulation functions are formalized as follows:

Ic
kc

= g
(yc
kc

)
, (53)

Ii
ki

= g
(yi
ki

)
, (54)

where g is the common gross capital accumulation function. By adopting this simplifying assumption, we give up

formalizing the investment function for each sector. The reason for choosing this approach is that it is difficult

to obtain separately information about the consumption good and investment good sectors. Indeed, to our best

knowledge, there have been only a few attempts made to divide aggregate date into these two sectors (cf. Kuga

1967; Takahashi, et al. 2012). By making use of input-output tables, Kuga (1967) and Takahashi et al. (2012)

estimated the volume of capital stock and the number of employed workers for each of the sectors, but because of the

lack of reliable input-output tables, however, they were only able to obtain these data in every five years.32 Since

we have difficulty in getting input-output tables for every year and we want to estimate the investment functions

for annual investment behaviors, we make the estimation of the investment function for each sector by assuming

that both of these functions are common.

To formalize the gross capital accumulation function, we suppose that there are (only) two types of firms in

terms of attitudes towards investment: “optimists” and “pessimists.”33 Optimists and pessimists are assumed to

carry out the “optimistic” and “pessimistic” plans of investment, respectively, where the optimistic and pessimistic

plans of investment are to spend 100g% and 100g%, respectively, of the (evaluated) value of capital stock on new

(gross) investment with g < g. In other words, all firms are assumed to choose the binary options on investment

plans, one of which realizes a higher rate of capital accumulation g and the other of which a lower one g. Under

32In Japan, in particular, input-output tables are issued in every five years. What is worse, these tables may not be comparable with
each other due to changes in details.

33This kind of assumption was made in Lux (1995) or Brock and Hommes (1997) to describe market sentiments. Also, Franke (2012,
2014) made use of Lux’s (1995) framework to model the transition dynamics of “animal spirits” (cf. Keynes 1936, chap. 12) in the
context of business cycles. Our model is the same in spirit as Franke’s (2012, 2014), but, of course, the details are different.
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this hypothetical setting, the rates of gross capital accumulation are the highest g (resp. the lowest g), when all

firms are optimists (resp. pessimists). Our binary-choice assumption may seem artificial but it can be justified

in terms of aggregate analysis. Since the number of firms is almost infinite in reality, each firm’s behavior cannot

directly be observed. In this sense, aggregate data as macroeconomic or collective behavior should be interpreted

in terms of “distributions.”34 The binary-choice treatment is one of the simplest ways to describe a macroeconomic

phenomenon as a distribution.35 Binary-choice settings may seem to describe only a few limited cases of phenomena

due to the number of options, but this is not correct. Indeed, in our setting, if g and g are regarded as the maximum

and minimum values of rate of gross capital accumulation, every number g ∈ [g, g] can be realized as a rate of gross

capital accumulation when the share of optimists among all firms is (g − g)/(g − g). We may thus argue that the

above binary-option assumption is not inappropriate as a treatment in our analysis.

Now we proceed to give a specific shape to the gross capital accumulation function g. On the basis of the above

argument, we set g in the following form:

g = pg + (1− p)g (55)

where p stands for the probability that a firm is an optimist or the share of optimists. Since all firms are assumed to

choose the binary alternatives, optimists and pessimists, and the current economic condition, especially the current

(gross) output-capital ratio y/k, can be considered to affect positively the share (probability) of optimists p, we can

establish the following relationship:

ln
( p

1− p

)
= β0 + βu

y

k
.

where βu is a positive constant. This is nothing but a logistic formulation of the probability p. Making use of (55),

we obtain

ln
(g − g
g − g

)
= β0 + βu

y

k
. (56)

By setting g and g, we can estimate the parameters βu and β0 in (56). According to Appendix E, the rate of gross

capital accumulation was annually around 0.3 at most (in Japan during 1970-2014). Therefore, we may set the

maximum value of g or g as 0.3. Also, since we know from Appendix E that the estimated constant term is negative

at the 1% confidence level in naive ordinary least squares relating g to y/k, we may conjecture that the minimum

value of g or g is 0, which is required by the definition of the rate of gross capital accumulation, and so g is set as

34Aoki and Yoshikawa (2007, chaps. 3 and 4) and Yoshikawa (2015) emphasized distributions as collective behavior of heterogeneous
agents or of the macro economy and introduced the concept of “stochastic macro-equilibrium” borrowing concepts from statistical
physics.

35Income distributions among workers and capitalists are one of the classic and typical examples of distributions of binary options
(classes). In the two-class income distributions, the share of wage income or that of profit income determines the macroeconomic
distribution.
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0. It thus follows from (56) that we have

ln
( g

0.3− g

)
= β0 + βu

y

k
. (57)

From the results of regression analysis of (57) in Appendix E, we know that the estimated values of βu and β0 are

β̂u = 9.38 and β̂0 = −5.81 and that they are significant at the 0.1% confidence level. Hence, we can set βu = 9.4

and β0 = −5.8. We can thus formalize the gross capital accumulation function g as

g =
0.3

1 + exp(5.8− 9.4(y/k))
.

Utilizing (53) and (54), we can obtain the following investment functions of both sectors:

Ic =
0.3kc

1 + exp(5.8− 9.4(yc/kc))
, (58)

Ii =
0.3ki

1 + exp(5.8− 9.4(yi/ki))
, (59)

Note that the investment functions (58) and (59) have sigmoid shapes with respect to the level of output as in

Kaldor’s (1940) model of business cycles.

Next we specify the consumption function C on the basis of empirical data in Japan. For simplicity, we assume

that C is expressed in the following form:

C = α0 + αyY (60)

where Y is the total (national) income, which is equal to the sum of yc and yi. Note that equation (60) satisfies

Assumption 1 if we have αy ∈ (0, 1).

Since our analysis only deals with business cycles and not with economic growth, we should remove the trend

component from raw data of national income and consumption expenditure. The standard way to do this is to

make use of the Hodrick-Prescott filter suggested by Hodrick and Prescott (1997) or the band-pass filter proposed

by Christiano and Fitzgerald (2003), which is more sophisticated than the Hodrick-Prescott one. Employing the

band-pass filter, the resulting de-trended data will dramatically be changed if a different band of frequencies is

chosen. So we adopt another simpler method. In our analysis, we get rid of the trend component from data by

replacing aggregate income Y and consumption expenditure C with per-capita income and per-capita consumption

both measured in the efficiency unit, respectively. Letting N and A be the number of population and the total factor

productivity, respectively, we define per-capita income y and per-capita consumption measured in the efficiency unit

as y = Y/AN, c = C/AN. According to the results of simple ordinary least squares relating c to y given in Appendix

E, we can obtain the estimated values of the marginal propensity to consume α̂y = 0.532 and of the fundamental
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consumption α̂0 and these values are significant at the 0.1% confidence level. Thus, we may set αy = 0.53. Also,

since the investment functions Ic and Ii, given in (53) and (54), are both homogeneous of degree one in the levels

of output and capital stock and the consumption function is given in the form of (60), the equilibrium values of

yc, yi, kc and ki are homogeneous of degree one in that of α0. Hence, we may normalize α0 as α0 = 1. Therefore,

we may make the following formulation of C:

C = 1 + 0.53(yc + yi). (61)

Finally, we determine the value of the rate of capital depreciation δ. Empirically, according to Appendix E, the

average rate of capital depreciation, denoted by δ̂, was about 0.0873 in Japan (in the period of 1970-2014). Then,

we may set δ = 0.087.

By substituting (58), (59) and (61) in System, we can obtain the following system:

ẏc = αc[1 + 0.53(yc + yi)− yc], (62)

ẏi = αi

[ 0.3kc
1 + exp(5.8− 9.4(yc/kc))

+
0.3ki

1 + exp(5.8− 9.4(yi/ki))
− yi

]
, (63)

k̇c =
0.3kc

1 + exp(5.8− 9.4(yc/kc))
− 0.087kc, (64)

k̇i =
0.3ki

1 + exp(5.8− 9.4(yi/ki))
− 0.087ki. (65)

In what follows, the system of equations (62)-(65) is redefined as “System.”

In System, there is a unique equilibrium point (y∗c , y
∗
i , k
∗
c , k
∗
i ) represented as follows:

(y∗c , y
∗
i , k
∗
c , k
∗
i ) = (2.748, 0.550, 5.266, 1.054) (66)

It is not difficult to verify that all the conditions in Assumptions 1 and 3 are satisfied at least in a neighborhood

of the unique equilibrium point given by (66) and that Assumptions 4 and 5 are fulfilled. Note that, since the

existence and uniqueness of an equilibrium point is already established numerically, Assumption 2, which is made

for the existence, is unnecessary in our numerical analysis.36

4.2 Existence of a Hopf periodic orbit

We discuss periodic orbits generated by Hopf bifurcations in System. To do so, we first explore for what values

of αc and αi periodic orbits are generated by Hopf bifurcations. We have already known from Section 3 that

Hopf bifurcations occur to System if we have (36). Under the specifications of (62)-(66), the curve of (36) can be

illustrated in the following figure. Along the curve in figure 3, System undergoes Hopf bifurcations. That is, for

36It follows that we do not need to dwell upon the domain D of System.

20



every (αc, αi) on the curve, a Hopf bifurcation happens to System. In what follows, the curve is denoted by the

“stability switching curve.” Note that the unique equilibrium point is locally asymptotically stable (resp. unstable)

if (αc, αi) is located on the left (resp. right) side of the stability switching curve.

0 2 4 6 8 10

0

2

4

6

8

10

αc

αi

stable region

unstable region

Figure 3: Stability switching curve

To see if a periodic orbit is actually generated by a Hopf bifurcation, we set the values of (αc, αi) sufficiently

near the stability curve and perform a numerical simulation in of System. For instance, (αc, αi) = (4, 3.292) is on

the stability switching curve. Then, for our simulation, we set

(αc, αi) = (4, 3.293). (67)

Finally, we set the initial condition for our simulation as follows:

(yc(0), yi(0), kc(0), ki(0)) = 2.748, 0.6, 5.266, 1.054) (68)

We are now ready to conduct a numerical simulation of System. In figure 4 described is the solution path of

System (yc(t), yi(t), kc(t), ki(t)) with (67) and (68). We can see from figure 4 that the solution path of System is

periodic with (67). We can thus confirm the validity of Proposition 3.
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Figure 4: Periodic orbit

In Figure 5 depicted are the time paths of yc − y∗c , yi − y∗i , kc − k∗c and ki − k∗i of System with (67) and (68).

This figure illustrates the lead and lag relationships between yc, yi, kc and ki. We can find from figure 5 that the

ups and downs of yi come first and then those of yc, ki and kc follow in order. This consequence is consistent with

Proposition 4.37
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Figure 5: Lead and lag
(—-: yc − y∗c , —-: yi − y∗i , —-: kc − k∗c , —-: ki − k∗i )

37Since System with (67) satisfies (50), condition (51) holds.

22



5 Concluding remarks

We are in a position to summarize our analysis.

As a first step for multi-sectoral analysis of business cycles, we have put forward a two-sector model of business

cycles by disaggregating the economy into two sectors: the consumption good sector and the investment good sector.

We have examined the stability of equilibrium and the possibility of existence of a periodic orbit in our two-sector

model. As a result, we have revealed that the counter part of the Keynesian stability condition plays a key role in

the stability in our two-sector model and that a periodic orbit may arise by way of a Hopf bifurcation if the stability

condition is not satisfied. We have also observed that the consumption good sector lags behind the investment

good sector along the periodic orbit and that interactions between these two sectors do play a significant role in

business cycles. Furthermore, we have numerically investigated the properties of the periodic orbit generated by

Hopf bifurcations in our two-sector model. By conducting numerical simulations, we have verified that periodic

orbits are actually generated by Hopf bifurcations in our two-sector model.

Both consumption and investment are components of aggregate expenditure. As Keynes (1936) argued, however,

they differ on the demand side in that the former responds passively to aggregate income (through the “consumption

function”) while the latter has a decisive role in determination of aggregate income (through the “multiplier process”)

and is the main cause of economic fluctuations. As Harrod (1939) noticed, they also differ on the supply side in

that the former is not utilized as a factor of production while the latter is durable and functions as a factor of

production (the “duality of investment”). These differences cannot properly be described in one-sector models, but

we believe that our two-sector model may shed a new light on them.

Our two-sector model is only a first step for developing a more general multi-sector model of business cycles.

The dichotomy between consumption and investment in our model is artificial in that a lot of goods function both as

a consumption good and as an investment good in reality. Also, our assumption of rigid prices is stringent because

prices fluctuate over business cycles in reality. The removal of these unrealistic points may be left for future study.
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Appendices

A Proof of Proposition 1

Proof. (i)38 Since System is (twice) continuously differentiable on D and D is a compact convex set, it follows from

the mean value theorem that there exist a positive constant K such that for every (y0c , y
0
i , k

0
c , k

0
i ), (y1c , y

1
i , k

1
c , k

1
i ) ∈ D,

we have

|αc[C(y1c , y
1
i )− y1c ]− αc[C(y0c , y

0
i )− y0c ]|+ |αi[Ic(y1c , k1c ) + Ii(y

1
i , k

1
i )− y1i ]− αi[Ic(y0c , k0c ) + Ii(y

0
i , k

0
i )− y0i ]|

+ |[Ic(y1c , k1c )− δk1c ]− [Ic(y
0
c , k

0
c )− δk0c ]|+ |[Ii(y1i , k1i )− δk1i ]− [Ii(y

0
i , k

0
i )− δk0i ]|

≤ K(|y1c − y0c |+ |y1i − y0i |+ |k1c − k0c |+ |k1i − k0i |).

Hence, the Lipschitz condition (Coddington and Levinson 1955, chap. 1) is satisfied on D in System. Thus, for

every initial condition (yc(0), yi(0), kc(0), ki(0)) ∈ D, there exists a nonnegative t0 such that the solution path of

System uniquely exists for t ∈ [0, t0]. Such a constant t0 is called the end point below.

Since conditions (20)-(23) (deduced from Assumptions 1 and 2) imply that D is positively invariant with respect

to System, we can, by applying the argument on the continuation of solution paths of differential equations (cf.

Coddington and Levinson 1955, chap. 1), conclude that, for every initial condition (yc(0), yi(0), kc(0), ki(0)) ∈ D,

the end point t0 can be extended to any positive number.

(ii) Since D is positively invariant with respect to System (by Assumptions 1 and 2), we can apply the Poincarè-

Hopf theorem (cf. Milnor 1965, p. 35) to find that the sum of the indices of all equilibrium points of System is +1,

which already implies the existence of an equilibrium point on D. Moreover, we know from Assumption 3 that the

determinant of the Jacobian matrix J of System is positive everywhere on D, especially at every equilibrium point:

det J = αcαi{(1−Cyc)IkcIki − [(1−Cyc)(1− Iyi)Ikc + (1−Cyc −CyiIyc)Iki ]δ+ [(1−Cyc)(1− Iyi)−CyiIyc ]δ2} > 0.

By definition, we find that the index of each equilibrium point of System is +1. Hence, the number of equilibrium

points has to be one.39 Thus, the existence and uniqueness of an equilibrium point of System (on D) can be

established.

It follows from (20)-(23) that xj or xj cannot be the equilibrium value of xj for x = y, k and j = c, i. Then, the

unique equilibrium point (y∗c , y
∗
i , k
∗
c , k
∗
i ) must be on the interior D◦.

38The method of proof is the same as used in Murakami (2014, 2017a).
39By the same method, Varian (1979) showed the existence and uniqueness of equilibrium of Kaldor’s (1940) model of business cycles.
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B Proof of Proposition 2

Proof. (i) If αc and αi are sufficiently small, the dominant term of f is given by40

(δ − I∗kc)(δ − I
∗
ki)

2(2δ − I∗kc − I
∗
ki){(1− C

∗
yc)(δ − I

∗
kc)αc + [(1− I∗yi)δ − I

∗
kc ]αi} > 0.

The inequality follows from Assumption 1. Hence, condition (30) holds if αc and αi is sufficiently small.

(ii) If αc is sufficiently large and αi is sufficiently small, the dominant term of f is given by

(1− C∗yc)
3(δ − I∗kc)(δ − I

∗
ki)(2δ − I

∗
kc − I

∗
kI )α

3
c > 0,

where the inequality holds under Assumption 1. Then, the same logic as in (i) applies.

(iii) If αc is sufficiently small and αi is sufficiently large, the dominant term of f is

(1− I∗yi)[(1− I
∗
yi)δ − I

∗
kc ][(1− I

∗
yi)(2δ − I

∗
kc)− I

∗
ki ](δ − I

∗
ki)α

3
i > 0,

where the inequality holds under Assumption 1. The same logic as in (i) applies.

(iv) If αc and αi are sufficiently large, the dominant term of f is

[(1− C∗yc)(1− I
∗
yi)− C

∗
yiI
∗
yc ]{[(1− C

∗
yc)(1− I

∗
yi)− C

∗
yiI
∗
yc ]δ − (1− C∗yc)(1− I

∗
yi)I

∗
kc + (1− C∗yc − C

∗
yiI
∗
yc)I

∗
ki}

×[(1− C∗yc)αc + (1− I∗yi)αi]α
2
cα

2
i > 0,

where the inequality holds under Assumptions 1 and 4 and condition (32). Then, the same logic as in (i) applies.

(v) If αc and αi are sufficiently large, the dominant term of f is

[(1− C∗yc)(1− I
∗
yi)− C

∗
yiI
∗
yc ]{[(1− C

∗
yc)(1− I

∗
yi)− C

∗
yiI
∗
yc ]δ − (1− C∗yc)(1− I

∗
yi)I

∗
kc + (1− C∗yc − C

∗
yiI
∗
yc)I

∗
ki}

×[(1− C∗yc)αc + (1− I∗yi)αi]α
2
cα

2
i < 0.

The inequality holds under Assumptions 1 and 4 and condition (33). Thus, condition (30) is violated if both αc

and αi are sufficiently large.

C Proof of Proposition 3

Proof. (i) If αi is sufficiently large, the dominant term of f(0, αi) is

(1− I∗yi)[(1− I
∗
yi)δ − I

∗
kc ][(1− I

∗
yi)(2δ − I

∗
kc)− I

∗
ki ](δ − I

∗
ki)α

3
i > 0,

40We mean by a “dominant term” the one which is sufficiently large compared with the other terms in absolute values.

25



while we have

lim
αc→∞

f(αc, αi) = −∞,

under Assumptions 1 and 5. Then, equation (36) has at least one positive root α∗c for αi sufficiently large. Since

f(αc, αi) turns from positive to negative at αc = α∗c for αi sufficiently large value, we have (37) at αc = α∗c . It

follows from Asada and Yoshida’s (2003) theorem that a periodic orbit is generated by a Hopf bifurcation.

(ii) Fix αi at a sufficiently large value. Then, the dominant term of f(αc, 0) is

(1− C∗yc)
3(δ − I∗kc)(δ − I

∗
ki)(2δ − I

∗
kc − I

∗
kI )α

3
c > 0,

while we have

lim
αi→∞

f(αc, αi) = −∞,

under Assumptions 1 and 5. Hence, the same logic as in (i) applies.

D Proof of Proposition 4

Proof. (i) We substitute (44)-(47) in System (L) to obtain the following:

2πayc
T

cos
(2π(t− θyc)

T

)
= αc

[
(C∗yc − 1)ayc sin

(2π(t− θyc)
T

)
+ C∗yiayi sin

(2π(t− θyi)
T

)]
, (69)

2πayi
T

cos
(2π(t− θyi)

T

)
= αi

[
I∗ycayc sin

(2π(t− θyc)
T

)
+ (I∗yi − 1)ayi sin

(2π(t− θyi)
T

)
+ I∗kcakc sin

(2π(t− θkc)
T

)
+ I∗kiaki sin

(2π(t− θki)
T

)]
,

(70)

2πakc
T

cos
(2π(t− θkc)

T

)
= I∗ycayc sin

(2π(t− θyc)
T

)
+ (I∗kc − δ)akc sin

(2π(t− θkc)
T

)
, (71)

2πaki
T

cos
(2π(t− θki)

T

)
= I∗yiayi sin

(2π(t− θyi)
T

)
+ (I∗ki − δ)aki sin

(2π(t− θki)
T

)
. (72)

Equations (69), (71) and (72) can be transformed into the following:

ayc

√
α2
c(1− C∗yc)2 +

(2π

T

)2
sin
(2π[t− θyc + (θyc − θyi)]

T

)
= αcC

∗
yiayi sin

(2π(t− θyi)
T

)
,

akc

√
(I∗kc − δ)

2 +
(2π

T

)2
sin
(2π[t− θkc + (θkc − θyc)]

T

)
= I∗ycayc sin

(2π(t− θyc)
T

)
,

aki

√
(I∗ki − δ)

2 +
(2π

T

)2
sin
(2π[t− θki + (θki − θyi)]

T

)
= I∗yiayi sin

(2π(t− θyi)
T

)
,
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where we can find that

sin
(2π(θyc − θyi)

T

)
=

2π

T

/√
α2
c(1− C∗yc)2 +

(2π

T

)2
> 0,

cos
(2π(θyc − θyi)

T

)
= αc(1− C∗yc)

/√
α2
c(1− C∗yc)2 +

(2π

T

)2
> 0,

(73)

sin
(2π(θkc − θyc)

T

)
=

2π

T

/√
(I∗kc − δ)

2 +
(2π

T

)2
> 0,

cos
(2π(θkc − θyc)

T

)
= (δ − I∗kc)

/√
(I∗kc − δ)

2 +
(2π

T

)2
> 0,

(74)

sin
(2π(θki − θyi)

T

)
=

2π

T

/√
(I∗ki − δ)

2 +
(2π

T

)2
> 0,

cos
(2π(θki − θyi)

T

)
= (δ − I∗ki)

/√
(I∗ki − δ)

2 +
(2π

T

)2
> 0.

(75)

Since we have θx′
j′
− θxj ∈ [−T, T ], for x, x′ = y, k and j, j′ = c, i, it follows from (73)-(75) that

0 < θyc − θyi <
T

4
, (76)

0 < θkc − θyc <
T

4
, (77)

0 < θki − θyi <
T

4
. (78)

Under Assumption 1 and (48), it is seen from (73) and (75) that

sin
(2π(θki − θyi)

T

)
≤ sin

(2π(θyc − θyi)
T

)
.

Taking account of (76) and (78), this leads us to the following:

0 < θki − θyi ≤ θyc − θyi <
T

4
.

Combined with (77), this implies (49).

(ii) By the same argument as made in (i), the following holds under (50):

0 < θyc − θyi ≤ θki − θyi <
T

4
.

Since we have (76)-(78) even under (50), condition (51) or (52) follows.

E Data and estimations

The data on the levels of GDP (Y ), consumption expenditure (C), investment expenditure (I), private capital stock

(K) and private capital depreciation (D) are taken from Annual Report on National Accounts, issued by Cabinet
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Office, Japan. Those on the number of population (N) and TFP (A) are taken from Population Estimates, issued

by Statistics Bureau, Ministry of Internal Affairs and Communications, Japan and from Japan Main Productivity-

indicators database, issued by Japan Productivity Center. Utilizing the data, we calculate the following variables:

yt =
Yt

AtNt
,

ct =
Ct
AtNt

,

ut =
Yt
Kt

,

gt =
It

Kt−1

δt =
Dt

Kt−1

The time series of these variables are presented in the following tables.

Table 1: Data on consumption
Year t yt ct Year t yt ct
1955 52447.3506 34078.17756 1985 153864.6269 89699.92055
1956 55013.68838 36252.61448 1986 156125.3148 91544.53121
1957 57051.96345 37738.24008 1987 160426.0343 93905.94445
1958 58857.36951 38997.9724 1988 164549.1842 95469.94741
1959 61051.11748 40095.62564 1989 168585.833 97651.33145
1960 64366.22915 41542.98532 1990 171990.8208 98974.13324
1961 67253.57605 42877.80707 1991 176003.1668 100020.5226
1962 69996.92529 44211.67471 1992 177044.9549 101452.4419
1963 73190.66295 46248.96586 1993 175630.2417 101480.57
1964 76795.21284 48392.68646 1994 176118.6834 103152.4538
1965 80267.59664 50603.66094 1995 175845.3864 103596.6206
1966 85122.8436 53539.14072 1996 182791.9129 105245.92
1967 89969.47849 56223.1002 1997 186026.6593 105731.2342
1968 95430.56721 57869.02348 1998 181965.3922 105323.1219
1969 100619.3079 60123.4434 1999 182625.5191 102412.1456
1970 107199.8807 62343.77079 2000 182809.3908 101142.4088
1971 112666.7582 66164.99703 2001 180842.1034 100756.6888
1972 116869.9426 68892.10944 2002 178970.9385 100721.831
1973 122953.1865 72984.65676 2003 178867.2086 99765.28645
1974 123443.5707 74273.6232 2004 179031.4318 99019.39508
1975 124399.5791 75746.47524 2005 178190.8678 99257.60558
1976 129684.7461 78144.77558 2006 179831.7834 100116.0771
1977 133693.7278 80248.55244 2007 182361.6312 100462.7929
1978 137986.3474 82740.0092 2008 178401.1968 100210.9704
1979 143074.6262 86525.30545 2009 172986.7644 101109.3692
1980 146750.7696 87371.41093 2010 177937.5003 103898.083
1981 147392.5621 86463.48082 2011 176238.1682 105074.604
1982 149528.3098 88612.99813 2012 173891.8425 103461.576
1983 151563.7855 90633.92518 2013 173969.832 103845.6398
1984 154098.0531 90951.2639 2014 175641.2031 104349.2264
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Table 2: Data on investment
Year t ut−1 gt Year t ut−1 gt
1970 0.920540411 0.2981151 1993 0.586731409 0.124239961
1971 0.861842909 0.240154214 1994 0.580881778 0.117256516
1972 0.816810644 0.229252888 1995 0.582359019 0.11697812
1973 0.746888181 0.243385516 1996 0.583256859 0.125143077
1974 0.656871046 0.202108329 1997 0.588555194 0.124770106
1975 0.630956113 0.163178192 1998 0.575262762 0.107852181
1976 0.645727528 0.162766744 1999 0.570474009 0.101667537
1977 0.641003805 0.150631948 2000 0.521879901 0.095604815
1978 0.668038815 0.151325608 2001 0.525945192 0.091719391
1979 0.684368258 0.161263592 2002 0.528027288 0.086284506
1980 0.637740358 0.152370902 2003 0.528254957 0.088409658
1981 0.620540451 0.141145521 2004 0.524990784 0.089575079
1982 0.630148695 0.135851506 2005 0.525998606 0.092253872
1983 0.62946249 0.128638911 2006 0.518379046 0.094179211
1984 0.638086432 0.136205692 2007 0.509119624 0.093929706
1985 0.647524516 0.143041077 2008 0.503120972 0.089334967
1986 0.642018714 0.138712231 2009 0.482781297 0.072974815
1987 0.656702825 0.147648958 2010 0.473082549 0.07450905
1988 0.638795784 0.15672139 2011 0.490865069 0.077885821
1989 0.639862382 0.164925227 2012 0.483356602 0.080982492
1990 0.616123054 0.166810789 2013 0.49127967 0.083401591
1991 0.60327599 0.159280002 2014 0.485373411 0.084423299
1992 0.593849223 0.140180568

Table 3: Data on capital depreciation
Year δt Year δt
1970 0.127447471 1993 0.085978657
1971 0.113426883 1994 0.085382263
1972 0.115418444 1995 0.08625172
1973 0.110588994 1996 0.088598348
1974 0.093032028 1997 0.088046291
1975 0.079194407 1998 0.085682152
1976 0.079162266 1999 0.096150697
1977 0.077645084 2000 0.086042349
1978 0.078456826 2001 0.085210528
1979 0.080642677 2002 0.085517862
1980 0.077040678 2003 0.084997226
1981 0.076879552 2004 0.084576848
1982 0.077099521 2005 0.084427673
1983 0.077819367 2006 0.085566701
1984 0.08060643 2007 0.085775444
1985 0.08465134 2008 0.085740372
1986 0.084312335 2009 0.082681698
1987 0.088034464 2010 0.083173753
1988 0.088379331 2011 0.082248902
1989 0.092058328 2012 0.081851671
1990 0.090016885 2013 0.083653054
1991 0.089415745 2014 0.083354347
1992 0.087763779
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Based upon the argument in Section 4, we make use of the following equations for our estimations.

ct = α0 + αyyt + εc, (79)

ln
( gt

0.3− gt

)
= β0 + βuut−1 + εg, (80)

where εc and εg obey N(0, σ2
c ) and N(0, σ2

g), respectively. In (79), the level of consumption is assumed to be

dependent upon that of income in the year, while in (80), the level of investment is assumed to be dependent upon

that of income in the previous year. This difference reflects the reality that the Robertsonian consumption lag (i.e.,

the time lag between earnings of income and consumption expenditure) is shorter than the investment decision lag

(i.e., the time lag between earnings of income and investment expenditure).41

The results of estimations on (79) and (80) are given in the following tables.

Table 4: Estimations
(79) (80)

yt 0.5318∗∗∗ ut−1 9.3798∗∗∗

(0.005691) (0.6899)
Constant 7675∗∗∗ Constant −5.8092∗∗∗

(829.9) (0.4212)
Observations 60 Observations 45
Adjusted R2 0.9933 Adjusted R2 0.8069

Standard errors in parentheses
*** p < 0.001

The average rate of capital depreciation can directly be calculated from table 3 as follows:

δ̂ = 0.0873.
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