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1 Introduction

Seminal papers of Day [1982,83] shed light on nonlinearities existing in tra-
ditional economic models and indicate a possibility of chaotic fluctuations.
Those focus on roles of nonlinearities played in dynamic process, nonlin-
earities which are necessarily involved in economic models and which the
traditional economics rarely pays much attentions to. Since then, nonlinear
analysis has received an increasing amount of concern. It has been demon-
strated that any economic dynamic model can give rise complex dynamics
involving chaos if it has strong nonlinearities. Main results obtained so far are
summarized in Day [1994], Lorenze [1993], Majumder, Mitra and Nishimura
[2000], and Rosser [2000], to name only a few.
In the literature of nonlinear economic dynamics, it is a usual procedure

to perform numerical simulations to detect dynamic characteristics of such a
nonlinear system since common analytical properties are limited. Computer
simulations visualize how a dynamics process evolves over time even if ana-
lytical treatment is insufficient and thus are useful and helpful for nonlinear
analysis. However, in spite of rapid development of speed and accuracy of
computer, it is still possible that simulation results do not approximate a true
solution of discrete-time system. According to Lorenze [1993], the deviation
between the numerical simulations and analytical solutions is mainly due to
two storage properties of computers; truncating a rational number and the
binary representation of a number.1 One way to deal with this immanent
features of computers is to find an analytical solution of discrete time sys-
tem. In this study, we construct an nonlinear dynamical system of Cournot
duopoly and aim at finding its general analytical solution.
The paper is organized as follows. Section 2 constructs a nonlinear

duopoly model with production externality and shows its stability condi-
tion. Section 3 consider the existence of particular as well as general analytic
solutions and demonstrates explicit forms of those solutions. Section 4 is for
concluding remarks.

2 Nonlinear Duopoly Model

In this section, we construct a discrete-time Cournot model to consider the
existence of a fixed point and its stability properties. An inverse demand
function is assumed to be linear and decreasing,

p = a− bQ, a > 0 and b > 0,
1See Appendix 4 of Lorenze [1993] for more detailed discussion.
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where Q is the industry output, provided demand equals supply. To sim-
plify a dynamic process, only two firms are considered in this study. Those
duopolists, denoted byX and Y, produce homogenous output x and y so that
the total supply is made up of supplies of two duopolists, x + y = Q. Each
firm is assumed to have production externality in a sense that the choice of
any one firm affects the production possibility of the other firm. Although
externalities come in many variates, we confine our analysis to the case in
which the externality affects the cost of production. In particular, we deal
with the simplest presence of externality in which the production cost of a
firm is linear with respect to its own production and nonlinear with respect
to its rival’s production. Namely, the cost functions of firm X and Y are
given by

Cx(x, yex) = cx(y
ex)x and Cy(y, x) = cy(xex)y.

where xex and yex are output expectations. This specification implies that
the marginal cost of production of one firm depends on the amount of out-
put produced by the other firm. We say it has a positive externality if the
marginal cost is decreasing for an increment of the rival’s output and a neg-
ative externality if it is increasing. Solving the profit maximization problems
yields reaction functions of duopolists; for firm X

rx(yex) = argMax
x

Πx(x, yex),

and for firm Y,
ry(xex) = argMax

y
Πy(xex, y),

where the profit functions are defined by

Πx(x, yex) = (a− b(x+ yex))x− cx(yex)x,

and
Πy(y, xex) = (a− b(xex + y))x− cy(xex)y.

Due to the presence of production externality, the reaction function can
be up- or downward-sloping according to the external effect is positive or
negative. A profile of the reaction function depends on a specification of the
cost function. In this study, following Kopel [1996], we adopt the convenient
form of the marginal cost functions,

cx(y
ex,α) = (a− b(1 + 2α)yex + 2bα(yex)2) and cy(xex,β) = cx(xex,β).

that make the reactions functions to be identical with the logistic map. If
duopolists have naive expectations, xext = xt−1 and yext = yt−1, the adjustment
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process of output is described by the double logistic system,

DS1 :

 xt+1 = αyt(1− yt),

yt+1 = βxt(1− xt)
where α and β are positive adjustment coefficients. Apparently, the system
possesses only the trivial solution when those coefficients are less than unity
and possibly generates negative solutions when either or both of those co-
efficients is greater than four. To eliminate those uninteresting cases, we
assume

Assumption 1: 1 < α < 4 and 1 < β < 4.

We consider the existence of the non-trivial fixed point and its stability
properties. An intersection of those two reaction curves determines a fixed
point (i.e., Cournot-Nash equilibrium). Since the curves are unimodal, multi-
ple fixed points are possible.We thus clarify the parametric condition under
which DS1 possesses multiple fixed points.
Substituting the second equation ofDS1 into the first and equating it to x

yields, after transposition and factorization, the following fourth-order equa-
tion where the time subscript is omitted for a while only for the notational
simplicity,

−x(1− αβ + αβx+ αβ2x− 2αβ2x2 + αβ2x3) = 0.

Apparently x = 0 is a trivial fixed point. To find another fixed point, we
define

fα,β(x) = 1− αβ + αβx+ αβ2x− 2αβ2x2 + αβ2x3.

This is a cubic polynomial and has either one real root and a conjugate pair
of complex roots or three real roots according to combinations of α and β.
As illustrated in Figure 1, fα,β(x) with α = 2 and β = 3 is depicted by the
monotonically increasing dotted line and intersects the horizontal axis only
once while fα,β(x) with α = 3.5 and β = 3.8 is depicted by the concave-
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convex real line and intersects the horizontal line three times.
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Figure 1. Two Profiles of f(x)̇

We find critical values of α and β that distinguish one case from the other.
fα,β(x) is defined on the unit interval and, for two end points, it has

fα,β(x) = 1− αβ < 0 for x = 0, and fα,β(x) = 1 for x = 1,

where the direction of inequality is due to Assumption 1. To see how the
curvature of fα,β(x) changes as x increases from zero to unity, we differentiate
fα,β(x) with respect to x to obtain its derivative which is, after arranging
terms, given by

f 0α,β(x) = αβ2{ 1
β
+ (3x− 1)(x− 1)}.

(3x − 1)(x − 1) has a minimum −1
3
at x = 2

3
. Thus, if β < 3 holds, then

it must be the case that f 0α,β(x) > 0 for 0 ≤ x ≤ 1 regardless of a value
of α. fα,β(x) is monotonically increasing and crosses the horizontal line (i.e.,
the x = 0 locus) only once. Accordingly, the adjustment process DS1 has a
unique fixed point other than the trivial solution (i.e., x = y = 0) for β < 3.
f 0α,β(x) = 0 has identical roots for β = 3 and two distinct roots in the

unit interval for β > 3,

x1 =
2
√
β −√β − 3
3
√
β

and x2 =
2
√
β +
√
β − 3

3
√
β

.

This implies that fα,β(x) has a concave-convex-shaped profile and takes a
local maximum at x1 and a local minimum at x2. Therefore fα,β(x) = 0 has
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three distinct roots if the maximum is positive and the minimum is negative.
We then solve fα,β(xmax) = 0 and fα,β(xmin) = 0 for β to find two critical
lines,

αmax(β) =
27

6
√
β − 3√β + 9β − 2√β − 3

p
β3 − 2β2

,

αmin(β) =
27

−6√β − 3√β + 9β + 2√β − 3
p

β3 − 2β2
,

both which are defined for β > 3. Furthermore, αmax(β) > αmin(β) and
α0max(β) > 0 and a0min(β) > 0 for β > 3 so that those lines divide a set of
parameters where 3 < α < 4 and 3 < β < 4 into three subregions. It can be
checked that

fα,β(xmax) > 0 for (α, β) such that α < αmax(β)

fα,β(xmin) < 0 for (α,β) such that α > αmin(β).

Then we can define the subregion surrounded by those two lines and two
straight lines, α = 4 and β = 4

S = {(α, β) | 3 < α < 4, 3 < β < 4, fα,β(xmax) > 0 and fα,β(xmin) < 0}.

fα,β(x) has three distinct roots for (α,β) ∈ S and accordingly, DS1 has three
distinct fixed points.
Returning to DS1, substituting the first equation into the second equa-

tion, and then following the same procedure to get fα,β(x), we have the cubic
polynomial for y which can be expressed by fβ,α(y) as it is symmetric with
fα,β(x) in parameters and output. Therefore the same argument used for
distinguishing the number of roots fα,β(x) possesses implies that fβ,α(y) has
one real root if α < 3 regardless of values of β, and a set of parameters that
produces fβ,α(ymax) > 0 and fβ,α(ymin) < 0 is identical with S. To summarize,
we have

Theorem 1 Under Assumption 1, the dynamical system DS1 has three dis-
tinct fixed points if (α, β) ∈ S and one fixed point otherwise.

To examine the stability of a fixed point, we linearized DS1 at the fixed
point to have the Jacobi matrix,

J =

µ
0 α(1− 2ye)
β(1− 2xe) 0

¶
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where (xe, ye) is the fixed point. The eigen values λ1 and λ2 satisfy λ1 + λ2 = 0,

λ1λ2 = −αβ(1− 2xe)(1− 2ye).
Set λ = λ1 = −λ2 > 0.The fixed point is stable if λ

2 = αβ(1− 2xe)(1− 2ye)
is less than unity. The stability apparently depends on values of xe and ye.
Suppose that α < 3 and β < 3. Then DS1 has one fixed point according
to Theorem 1. Since fa,β(x) as well as fβ,α(y) is a cubic polynomial, it is
possible to obtain an explicit expression of the fixed point which turn out to
be,2 

xe =
2

3
+

3
√
2(α− 3)β
3 3
p
∆(α,β)

+
3
p
∆(α,β)

3 3
√
2αβ

,

ye =
2

3
+

3
√
2(β − 3)α
3 3
p
∆(β,α)

+
3
p
∆(β,α)

3 3
√
2αβ

,

where

∆(α,β) = αβ2{−27 + 9αβ}− 2α2β + 3
√
3
p
27− αβ(18− 4(α+ β) + αβ).

Although both of xe and ye have complicated expressions, it is logically pos-
sible to derive a locus of (α,β) describing all parametric combinations that
yield λ2 = 1. However, instead of pursuing the logical possibility, we depict
a 3D illustration of αβ(1− 2xe)(1− 2ye) to confirm that the eigenvalues are
less than unity in absolute value for α < 3 and β < 3.

1
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1
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2
2.5b
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2
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Figure 2. λ2 surface
2Calculations are done with Mathematica, ver.4.1.
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3 Analytical Solution

3.1 Transformation of Variable

We are ready to find an analytical solution of DS1. As a starting point for
a more complete study, we confine our analysis to a case in which the fixed
point is stable. The stable fixed point provides a convenient heuristic setting
to detect analytical properties of the Cournot output adjustment; it makes
the formidable mathematical problem simpler and manageable; further, it
enable us to derive rigorous results. We detect an analytic particular solution
of the dynamical system, DS1, in the first half of this section and then find
an analytic general solution in the latter half. In Figure 2, we graphically
confirm the stability of DS1 at least for 1 < α < 3, and 1 < β < 3. So it is
safe to make

Assumption 2. −1 < −αβ(1− 2xe)(1− 2ye) < 0.
Assumption 2 leads to | λ1 |=| λ2 |< 1. For a technical reason, we further

assume time t to be a complex variable in the sequel, although it is usually
used as a real number. To emphasize this alternation, we change the notation
of variable dependency on time from xt to x(t) hereafter.
We transform the dynamical system DS1 to the equilibrium point by

changing variables by u(t) = x(t)− xe and v(t) = y(t)− ye,

DS2 :

 u(t+ 1) = α{v(t)(1− v(t)) + 2v(t)ye},

v(t+ 1) = β{u(t)(1− u(t)) + 2u(t)xe}.
For the sake of simplicity, we further transform this simultaneous system to
a second-order difference equation of u. Let the first equation of DS2 shift in
one period ahead, and then substituting the second equation into the shifted
first equation yields

DS3 :


u(t+ 2) = α(1− 2ye){β(1− 2xe)u(t)− βu(t)2}− αβ2{(1− 2xe)u(t)− u(t)2}2,

v(t) := Φ(u(t+ 1)) =
1− 2ye
2

{1−
s
1− 4αu(t+ 1)

α(1− 2ye)2}.

For the notational simplicity in the latter analysis, we further change vari-
ables by setting s(t) = u(t) and w(t) = u(t + 1) and denote the resultant
expressions as F and G,

DS4 :

 s(t+ 1) = F (s(t), w(t)),

w(t+ 1) = G(s(t), w(t)),
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where F (s(t), w(t)) = w(t),

G(s(t), w(t)) = α(1− 2ye){β(1− 2xe)s(t)− βs(t)2}− αβ2{(1− 2xe)s(t)− s(t)2}2.

Any of those dynamics systems are conjugate to any other so that all generate
qualitatively the same dynamics.

3.2 Existence of Analytic Solution

The first equation of DS3 has a formal solution which is an infinite series of
the form,

u(t) =
∞X
n=1

anλ
nt. (1)

We, first, prove the existence of an analytic solution of DS3 that has the
expansion (1) in a half plane

| λt |=| et logλ |≤ η, log λ ·Re[t] ≤ log η,
with constant η > 0, and then find an analytic general solution of DS1. To
get formal solution (1), we substitute (1) into the first equation of DS3 and
compare the coefficients of λnt on its right hand side and the ones of the left
hand side to find

a1D(λ) = 0,

akD(λ
2k) = Ck(a1, a2, ..., ak−1) for k ≥ 2,

whereD(λ) = λ2−αβ(1−2ye){(1−2xe) and Ck polynomials of a1, a2, ..., ak−1

are determined successively in calculations.3 By the definition of the char-
acteristic equation, D(λ) is zero, and thus α1 is arbitrary but not zero. Al-
though (1) is a formal solution of DS3, we can show that it is convergent and
thus can be an exact solution of DS3.
In order to simplify the notations, we sets = u(t) and z = u(t+2) inDS3.

Transposing u(t + 2) in the right hand side of the first equation of DS3 to
the right hand side and denote the resultant expression as an implicit form
of s and z,

H(s, z) = −z+αβ(1−2ye){(1−2xe)s−s2}−αβ2{(1−2xe)2s2−2(1−2xe)s3+s4}.
Since H(s, z) is holomorphic in a neighborhood of z = 0, we get the following
result,

3An illustraive example for determinations of coefficients and constructions of Ck are
given in Appendix A.
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Lemma 2 There exists a constant ρ > 0 and a holomorphic function φ in a
neighborhood of z = 0 such that φ(0) = 0 and

H(φ(z), z) = 0 for | z |≤ ρ.

Proof. Since H(0, 0) = 0, and ∂H(0,0)
∂s

= −λ1λ2 > 0, the implicit function
theorem confirms that a holomorphic function φ exists in a neighborhood
of z = 0 such that φ(0) = 0 and H(φ(z), z) = 0. Furthermore, we have a
constant K such that | s |=| φ(z) |≤ K | z |for| z |≤ ρ.

Our main purpose is to show the existence of an analytic solution of u(t)
such that u(t) = φ(u(t+2)). Since we have already defined a formal solution
of u(t) in (1), it suffices for our purpose to prove the convergence of the
infinite series, (1).
Given a positive integer N, we can define a partial sum of the formal

solution by PN(t) =
PN

n=1 αnλ
nt. If a convergent analytic solution u(t) of

(DS3) that has the expression (1) exists, then we are able to derive a conver-
gent infinite series, p(t) = u(t) − PN(t) = O(| λt |N+1). Conversely if there
exists a function pN(t) such that pN(t) + PN(t) = φ(pN(t + 2) + PN(t + 2))
and pN(t) = O(| λt |N+1) for | λt |≤ ηN with some ηN > 0, then we can
define a convergent series as a sum of p(t) and PN(t), u(t) = p(t) + PN(t),
which can be an exact solution of DS3. We will show the existence of u(t)
with three steps: we first show the existence of pN for | λt |≤ ηN with some
ηN > 0 in Lemma 3; then we prove the uniqueness of pN in Lemma 4; finally
we demonstrate that the infinite series pN(t) +PN(t) is independent from a
choice of N in Lemma 5. Before proceeding, we rewrite pN(t) = p(t), ηN = η
and

p(t) = u(t)− PN(t),
= {φ(p(t+ 2) + PN(t+ 2))− φ(PN(t+ 2))}+ {φ(PN(t+ 2)− PN(t)},
= g1(t, p(t+ 2)) + g2(t),

where

g1(t, p(t+ 2)) = φ(p(t+ 2) + PN(t+ 2))− φ(PN(t+ 2)),

and
g2(t) = φ(PN(t+ 2))− PN(t).

Now we define
S(η) = {t ∈ C :| λt |≤ η}.
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Taking A > 0 and 0 < η < 1 which is determined later, we also define

J(A, η) = {p : p(t) is holomorphic and | p(t) |≤ A | λt |N+1 for t ∈ S(η)}.
For p(t) ∈ J(A, η), we further define map T such that

T [p](t) = g3(t, p(t+ 2)) = g1(t, p(t+ 2)) + g2(t).

Lemma 3 Given N and ρ > 0, there exists a fixed point p(t) = pN(t) ∈
J(A, η) of map T for t ∈ S(η).

Proof. Since φ is holomorphic on | z |≤ ρ, we have

d

dz
φ(z) =

1

2πi

Z
|ξ|=ρ

φ(ξ)

(ξ − z)2dξ.

When | z |≤ ρ
2
, we have | ξ − z |≥| ξ | − | z |≥ ρ− ρ

2
= ρ

2
and hence

| d
dz

φ(z) |≤ 1

π

Z
|ξ|=ρ

| φ(ξ) |
(ρ

2
)2
dξ ≤ 1

π

Z
|ξ|=ρ

K

(ρ
2
)2
dξ =

8K

ρ
. (2)

Next we choose A and η such that AηN+1 < ρ
4
. Then for sufficiently large t,

we have
| p(t) |≤ A | λt |N+1≤ AηN+1 <

ρ

4
.

The inequality still holds even for t+ 2,

| p(t+ 2) |≤ A | λt+2 |N+1= A | λ |2(N+1)| λt |N+1<
ρ

4
. (3)

Consequently, for t large enough, | PN(t+ 2) |< ρ
4
and then

| z |=| p(t+ 2) + PN(t+ 2) |≤ ρ

4
+

ρ

4
=

ρ

2
. (4)

Since

g1(t, p(t+ 2)) =

Z 1

0

d

dr
φ(rp(t+ 2) + PN(t+ 2))dr

=

Z 1

0

p(t+ 2)
d

dr
φ(rp(t+ 2) + PN(t+ 2))dr,

(2), (3) and (4) imply

| g1(t, p(t+ 2)) | ≤
R 1

0
| p(t+ 2) || d

dr
φ(rp(t+ 2) + PN(t+ 2)) | dr,

≤ R 1

0
A | λt |N+1| λ |2(N+1) 8K

ρ
dr,

≤ 8K
ρ
A | λ |N+1| λt |N+1 .

(5)
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From the definition of g2, we have

| g2(t) |≤ K2 | λt |N+1 (6)

where K2 is a constant but its magnitude depends on N. Hence using (5)
and (6), we have

| T [p](t) |≤| g1(t, p(t+1), p(t+2)) | + | g2(t) |≤ (8K
ρ
A | λ |N+1 +K2) | λt |N+1 .

If we suppose N is so large that

8K

ρ
A | λ |N+1<

1

2
,

then we have
| T [p](t) |≤ (1

2
A+K2) | λt |N+1 .

Furthermore, if we take A to be so large that

A > 2K2,

then
| T [p](t) |≤ A | λt |N+1 .

Hence we find that T maps J(A, η) into itself. The map T is obviously
continuous ifJ(A, η) is endowed with topology of uniform convergence on
compact in S(η). J(A, η) is clearly convex and is relatively compact due
to the theorem of Montel[??]. Since requirements of Schauder’s fixed point
theorem are all satisfied, we can show the existence of a fixed point p(t) =
pN(t) ∈ J(A, η) of T which depends on N. This proves Lemma 3.
We turn to the uniqueness of the fixed point.

Lemma 4 The fixed point pN(t) ∈ J(A, η) of T is unique.

Proof. Suppose that there exists another fixed point, p∗(t) = p∗N(t) ∈
J(A∗, η∗). Put

A0 = max(A,A∗), η0 ≤ min(η, η∗),
u(t) = pN(t) + PN(t), u

∗(t) = p∗N(t) + PN(t)

and
q(t) = p∗N(t)− pN(t).
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Since the backward mapping u∗(t) = φ(u∗(t+2))u(t) and u(t) = φ(u(t+2))
hold, we have

q(t) = {φ(p∗N(t+ 2) + PN(t+ 2))− φ(PN(t+ 2))− PN(t)}
−{φ(pN(t+ 2) + PN(t+ 2))− φ(PN(t+ 2))− PN(t)}

= φ(q(t+ 2) + uN(t+ 2))− φ(uN(t+ 2))

=

Z 1

0

q(t+ 2)
d

dz
φ(rq(t+ 2) + uN(t+ 2))dr.

If η0 is sufficiently small, then

| d
dz

φ(rq(t+ 2) + uN(t+ 2)) |< 8K

η
, and | λ |N+1<

η

32K
.

Consequently we have

| q(t) | ≤ R 1

0

8K

ρ
| q(t+ 2) | dr

≤ R 1

0

8K

ρ
| λ |N+1 (2A0 | λt |N+1)dr

=
16K

ρ
A0 | λ |N+1| λt |N+1

<
1

2
A0 | λt |N+1,

Hence

| q(t) |=| p∗N(t)− pN(t) |≤
1

2
A0 | λt |N+1= (

1

4
)2A0 | λt |N+1 .

Repeating this procedure k times, we obtain

| p∗N(t)− pN(t) |< (
1

4
)k(2A0) | λt |N+1, k = 1, 2, ....

where the inequality holds for any k. Letting k →∞, we have
p∗N(t) = pN(t) for t ∈ S(η0).

Since this implies that, p∗N(t) = p(t) and pN(t) = p(t) are holomorphic in
| λt |≤ min(η, η∗), . we concludes p∗(t) ≡ p(t).
In Lemmas 3 and 4, the solution uN(t) = pN(t) + PN(t) has a subscript

N and thus seems to sensitive to the value of N . Lemma 5 show that this is
not the case.

Lemma 5 The solution uN(t) = pN(t) + PN(t) is independent of N.
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Proof. Let pN(t) ∈ J(AN , ηN) and pN+1(t) ∈ J(AN+1, ηN+1) be fixed
points of T, and

uN+1(t) = pN+1(t) + PN+1(t)

= pN+1(t) + aN+1λ
(N+1)t + PN(t)

= p̃N(t) + PN(t)

Then we have

p̃N(t) = | pN+1(t) + aN+1λ
(N+1)t |

≤ AN+1λ
N+2 | λt |N+2 + | aN+1 || λt |N+1

= (AN+1 | λ | + | aN+1 |) | λt |N+1

= A∗N | λt |N+1 .

By the uniqueness of the fixed point, p̃N(t) = pN(t) for t ∈ S(ηN)∩S(ηN+1).
Thus

uN+1(t) = uN(t) for t ∈ S(ηN) ∩ S(ηN+1).

By analytic prolongation, both uN(t) and uN+1(t) are holomorphic in S(ηN)∪
S(ηN+1) and coincide. This completes the proof of Lemma 5.

Lemmas 3, 4 and 5 have demonstrated that a solution u(t) of DS3 is
defined and holomorphic in S(η) for η > 0, which has the expansion u(t) =P∞

n=1 anλ
nt. To summarize those results, we have

Theorem 6 Under Assumption 2, .we have holomorphic solution of u(t) of
DS3 in S(η) for η > 0 that has the expansion u(t) =

P∞
n=1 anλ

nt.

However, we cannot assure the following condition

∂H(s, z)

∂s
6= 0 for all z.

This indicates that a uniqueness of φ such that s = φ(z) is not confirmed
globally. Hence when we have s = φ(z) from w = u(t+ 1) and z = u(t+ 2),
there may be some branch points.
The analytic solution obtained in Theorem 6 is thought as a ”particular

solution” of the difference equation. A general analytic solutions of DS3 is
also derived..

Theorem 7 Assume the condition (D), and λ = λ1 = −λ2 > 0 where λi
(i = 1, 2) are solutions of D(λ) = 0. Suppose that uτ be the analytic solution
of DS3 which has the expansion ut =

P∞
n=1 anλ

nt. Furthermore, suppose that
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χt is an analytical solution of DS3 such that χt+n → 0 as n→ +∞ uniformly
on any compact set. Then there is a periodic entire function πt such that

χt =
∞X
n=1

anλ
n(

log π(t)
log λ

+t)

where π(t) is an arbitrarily periodic function with period one.
Conversely if we put

χt =
∞X
n=1

αnλ
n( log π(t)

log λ
+t)

where πt is a periodic function with period one, then χt is a solution of DS3.

Proof. See Appendix B.

Now we have a general solution vt = Φ(χt) of the second equation of DS2.
Therefore we can obtain stable analytic general solution (xt, yt) of DS1 by

xt = χt + x
e, and yt = Φ(χt) + y

e.

4 Concluding Remarks

We have demonstrated that if the absolute values of eigen values are less than
unity, it is possible to find particular as well as general analytic solutions of
nonlinear Cournot Duopoly model. The principle and techniques utilized in
this study can be applied to another discrete dynamic system.
In the theory of discrete dynamics, we have no existence theorem that

causes difficulties in finding an analytical solution. Thus it is worthwhile
to present the existence condition for analytical solution and a closed form
solution. Our result applies to rigorously analyze and predict dynamic phe-
nomenon observed in not only economics but also other areal such as ecology,
biology so and so forth.
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Appendix A
In this appendix we outline the procedure to determine values of coefficients
an.
DS3 is spelled out as

u(t+ 2) = αβ(1− 2xe)(1− 2ye)u(t)− αβ{(1− 2ye) + β(1− 2xe)2}u(t)2
+2αβ2(1− 2xe)u(t)3 − αβ2u(t)4.

By the definition of the formal solution, we u(t) =
P∞

n=1 anλ
nt and u(t+2) =P∞

n=1 anλ
n(t+2), which are substituted into the above equation,

a1λ
2λt + a2λ

4λ2t + a3λ
6λ3t + · · ·

= αβ2(1− 2xe)(1− 2ye){a1λ
t + a2λ

2t + a3λ
3t + · · ·}

−αβ{(1− 2ye) + β(1− 2xe)2}{a1λ
t + a2λ

2t + a3λ
3t + · · ·}2

+2αβ2(1− 2xe){a1λ
t + a2λ

2t + a3λ
3t + · · ·}3

−αβ2{a1λ
t + a2λ

2t + a3λ
3t + · · ·}4.

We compare the coefficients of λnt in the left hand side of the above equation
with the ones in the right hand side. For the coefficient of λt,we have

a1{λ2 − αβ(1− 2xe)(1− 2ye)} = a1D(λ)

where D(λ) = λ2− αβ(1− 2xe)(1− 2ye) is the characteristics polynomial of
DS3. Since D(λ) = 0 identically, a1 can be arbitrary. For the coefficients of
λ2t, we have

a2D(λ
2) = −α{β(1− 2ye) + α2(1− 2xe)2}a2

1.

Since λ2 6= λ1, λ2, we have D(λ
k) 6= 0 (k ≥ 2). So we can determine a2 by

dividing the both side by D(λ2),

a2 =
C2(α1)

D(λ2)

where C2(α1) = −α{β(1 − 2ye) + α2(1 − 2xe)2}a2
1. By the same token, for

the coefficient λ3t, we have

a3D(λ
3) = −2α{(β(1− 2ye) + α2(1− 2xe)2)a1a2 − αβ(1− 2xe)a3

1}
and then

a3 =
C3(a1, a2)

D(λ3)
,
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where C3(a1, a2) = −2α{(β(1− 2ye) + α2(1− 2xe)2)a1a2 − αβ(1− 2xe)a3
1}.

Similarly, for the coefficient of λnt(n ≥ 4), αn is sequentially determined by
a1, a2, ....an−1 by

an =
Cn(a1, a2, ....an−1)

D(λn)
,

where Cn(a1, a2, ....an−1) is defined accordingly.

Appendix B
In this appendix we give formal proof of Theorem 1.
Let u(τ) be a particular solution of DS3, and χ(t) be a solution of DS3

such that χ(t+ n)→ 0 as n →∞ uniformly on any compact set. We define

U(λt) =
∞X
n=1

anλ
t, a1 6= 0.

It can be seen that U as well as χ is an open set. Since U(0) = χ(0) = 0, for
any η1 > 0, there is some constant η2 > 0 such that

U(| τ |< η1) ⊃ {| χ |< η2}.
So there is a large R such that if | t0 + n |> R , then | χ(t0 + n) |> η2. Hence
there is a τ = λσ such that

χ(t0 + n) = U 0(τ) = U(λσ).

Since α1 6= 0, we have a U−1, with a help of the implicit function theorem,
such that

λσ = U−1(χ(t0 + n)).

Put t = t0 + n, then λσ = U−1(χ(t)), and taking logarithm its both sides
yields

σ = l(t) = logλ U
−1(χ(t)).

WhenDS3 has the solution χ(t), we can prove, according to Suzuki [1999],
the existence of Ψ such that

ψ(F (χ,Φ(χ))) = G(χ,Φ(χ))

Then we have the first-order difference equation from DS3,

χ(t+ 1) = Ψ(χ(t)).

Therefore we have

χ(t+ 1) = Ψ(χ(t)) = Ψ(U(λσ).) = Ψ(u(σ)) = u(σ + 1),
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and
σ + 1 = l(t+ 1), l(t) + 1 = l(t+ 1).

Hence we obtain
l(t) = t+ π(t)

where π(t) is an periodic function with period one. Then

σ = t+ π(t)

and

χ(t) = U(λσ) =
∞X
n=1

an(λ
t+π(t))n =

∞X
n=1

an(λ
π(t)λt)n

Now we put λπ(t) into π(t) so that χ(t) can be written as

χ(t) =
∞X
n=1

anλ
n(

log π(t)
log λ

+t)

This completes the proof.
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