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Abstract

A modified Cournot oligopoly is introduced and examined in which the
firms can treat their wastes up to a certain amount, and if the amount of
waste is even higher, then an outside facility is used with a given fixed cost
and higher unit cost. The resulting payoff functions become discontinuous.
The best response functions of firms are nonincreasing and also might be
discontinuous. The best response functions can be modified to depend
on the total indutry output, which also might be discontinuous as well as
multiple valued. The existence of at least one equilibrium is proved and
numerical examples show the possibility of a unique equilibrium as well
as that of multiple equilibria.
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1 Introduction

Oligopoly theory is one of the most frequently studied subjects in mathemat-
ical economics. It dates back to the pioneering work of Cournot (1838) and
since then a large number of researchers devoted their efforts to this interesting
area. The monograph of Okuguchi (1976) is considered as the most important
summary of the earlier results which also includes some of his own fundamental
contributions. The multi-product extension of the classical theory with some
applications is presented in Okuguchi and Szidarovszky (1999). In recent years
nonlinear models occupied the main research focus, a comprehensive summary
of the more recent developments is presented in Bischi et al. (2010). Most ear-
lier models assumed differentiable payoff functions, where the analytic treatment
was straightforward. In Szidarovszky and Yakowitz (1982) only the continuity of
the price and cost functions are assumed with the possibility of infinitely many
equilibria where the industry output is unique. The uniqueness of the equilib-
rium is guaranteed if the price function is differentiable at this point. More
recently, Zhao and Szidarovszky (2008) introduced production adjustment costs
resulting in non-differentiable payoff functions, where the existence of usually
infinitely many equilibria is proved. Similar situation is found in Burr et al.
(2014) where the output adjustments are limited from both above and below.
The payoff functions are non-differentiable and the best responses discontinuous
in this case and there are again infinitely many equilibria except in special cases.

In this paper another variant of the Cournot model is introduced, where the
payoff functions are discontinuous, therefore the best responses as functions of
the output of the rest of the industry are also discontinuous. Furthermore the
best responses as functions of the total industry output are not only discontin-
uous but might have multiple values.

This paper develops as follows. In Section 2, the mathematical model is
introduced and the best responses are determined. In Section 3, the existence of
at least one equilibrium is proved and numerical examples shown the possibility
of both unique and multiple equilibria. Section 4 concludes the paper and
further research directions are mentioned.

2 The Model and Best Responses

Consider an N -firm single-product oligopoly without product differentiation.
For mathematical simplicity assume linear price and cost functions,

p(s) = A−Bs

and
Ck(xk) = ckxk

where xk is the output of firm k and s =
∑N

k=1
xk is the industry output.

Assume that each firm produces some waste proportional to its production level,
which can be cleaned or deposited by the firm until a certain amount, and if the
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waste amount is larger than a certain threshold, then it has to be shipped to be
cleaned or deposited by a contractor with higher unit cost than that if the firm
itself does the cleaning or depositing and in addition the firm also has to pay a
certain fixed cost, which can be interpreted as the setup or transportation cost.
So the payoff of firm k can be written as follows:

ϕk = xk(A−Bsk −Bxk)− ckxk −






αkxk if xk ≤ Kk,

ak + βkxk if xk > Kk

(1)

where sk =
∑N

ℓ�=k xℓ is the output of the rest of the industry for firm k, αk
and βk are the costs of cleaning or depositing the waste per unit production
(since amount of waste is proportional to the output level), and ak is the fixed
cost and Kk is the maximum output level which generates the maximum waste
amount that the firm can treat. There are several possibilities for the shape of
ϕk, which are summarized in Figure 1, where Lk is the capacity limit of the
firm.

Figure 1. Possible shapes of the payoff functions

Case 1

It occurs, when
∂ϕk
∂xk

≤ 0 at xk = 0,

which is the case when
A−Bsk − ck − αk ≤ 0

that is,

sk ≥
A− ck − αk

B
. (2)

In this case the best response of the firm is

Rk(sk) = 0. (3)
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Case 2

It occurs, when

∂ϕk
∂xk

> 0 at xk = 0 and
∂ϕk
∂xk

≤ 0 at xk = Kk− ,

that is, when (2) is violated with strict inequality and

A−Bsk − 2BKk − ck − αk ≤ 0,

so
A− ck − αk

B
− 2Kk ≤ sk <

A− ck − αk
B

, (4)

and in this case the best response is the stationary point:

Rk(sk) =
A− ck − αk

2B
−
sk

2
. (5)

Case 3

This is the case when

∂ϕk
∂xk

> 0 at both xk = 0 and xk = Kk− ,

so

sk <
A− ck − αk

B
− 2Kk. (6)

There are three subcases depending on the signs of the derivative

∂ϕk
∂xk

at xk = Kk+ and xk = Lk.

In case 3(a),
∂ϕk
∂xk

≤ 0 at xk = Kk+

which can be written as

sk ≥
A− ck − βk

B
− 2Kk, (7)

and clearly
Rk(sk) = Kk (8)

in this case.
Case 3(b) occurs when in addition to (6),

∂ϕk
∂xk

> 0 at xk = Kk+ and
∂ϕk
∂xk

< 0 at xk = Lk.
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That is,
A− ck − βk

B
− 2Lk < sk <

A− ck − βk
B

− 2Kk. (9)

The stationary point between Kk and Lk is

x∗k =
A− ck − βk

2B
−
sk

2
(10)

and now the function values ϕk(x
∗
k
) and ϕk(Kk) have to be compared. Notice

first that

ϕk(x
∗
k) =

(
A− ck − βk

2B
−
sk

2

)(
A−Bsk −

A− ck − βk −Bsk
2

− ck − βk

)
− ak

=
B

4

(
A− ck − βk

B
− sk

)2
− ak.

Since
ϕk(Kk) = Kk (A−Bsk −BKk − ck − αk) ,

we have
ϕk(x

∗
k) > ϕk(Kk)

if and only if

(
A− ck − βk

B
− sk

)2
>
4Kk
B

(A−Bsk −BKk − ck − αk) +
4ak
B
,

which is a quadratic inequality for sk:

0 < s2k+sk

(
4Kk − 2

A− ck − βk
B

)
+

(

−
4AKk
B

+ 4K2
k +

4Kk(ck + αk)

B
+

(
A− ck − βk

B

)2
−
4ak
B

)

.

The discriminant of the right hand side is

D =
16

B
(ak +Kk(βk − αk)) ,

so its two roots are

s±
k
=
A− ck − βk

B
− 2Kk ±

√
4

B
(ak +Kk(βk − αk)). (11)

The root s+
k

violates (9), so the only feasible root is s−
k
, if it satisfies the left

hand side of (9),

A− ck − βk
B

− 2Kk −

√
4

B
(ak +Kk(βk − αk)) >

A− ck − βk
B

− 2Lk

which can be rewritten as

Lk −Kk >

√
ak +Kk(βk − αk)

B
. (12)
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In the case of sk < s
−
k
,

Rk(sk) = x
∗
k.

If sk > s
−
k

, then
Rk(sk) = Kk

and if sk = s
−
k
, then

Rk(sk) = {Kk, x
∗
k}.

If s−
k

is not feasible, then

s−
k
≤
A− ck − βk

B
− 2Lk,

so in the entire interval (9),
Rk(sk) = Kk.

Notice that s−
k

satisfies the right hand side of (9).
In the case of 3(c),

∂ϕk
∂xk

≥ 0 at xk = Lk,

so

0 ≤ sk ≤
A− ck − βk

B
− 2Lk (13)

and in this case both Kk and Lk might be best response, so we have to compare
the values of ϕk(Kk) and ϕk(Lk). Notice first that

ϕk(Kk) > ϕk(Lk)

if and only if

Kk (A−Bsk −BKk − ck − αk) > Lk (A−Bsk −BLk − ck − βk)− ak

which can be written as

sk > s
∗
k =

A− ck − βk
B

− (Lk +Kk)−
ak +Kk(βk − αk)

B(Lk −Kk)
. (14)

It is easy to see that

s∗k ≤
A− ck − βk

B
− 2Lk

if and only if

Lk −Kk ≤

√
ak +Kk(βk − αk)

B
. (15)

It is easy to see that s∗
k
≤ s−

k
, and equality holds if and only if

s−
k
= s∗k =

A− ck − βk
B

− 2Lk.

In comparing (12) and (15), we can conclude the followings:
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If s−
k

is interior in interval (9), then (12) holds with strict inequality, then (15)
is violated, so

s∗k >
A− ck − βk

B
− 2Lk

implying that Rk(sk) = Lk in interval (13).

If

s−
k
=
A− ck − βk

B
− 2Lk,

then (12) holds with equality, so (15) implies that s−
k
= s∗

k
at this point,

so
Rk(s

−
k
) = {Kk;Lk}

and
Rk(sk) = Lk again in all other points of interval (13).

If

s−
k
<
A− ck − βk

B
− 2Lk,

then (12) is violated with strict inequality, so (15) implies that

s∗k <
A− ck − βk

B
− 2Lk.

If it is positive, then
Rk(s

∗
k) = {Kk;Lk},

Rk(sk) =






Kk for sk > s
∗
k

Lk for sk < s
∗
k
.

If s∗
k
= 0, then

Rk(sk) = Kk for all positive sk values in interval (13),

Rk(0) = {Kk;Lk}.

If s∗
k
< 0, then

Rk(sk) = Kk for all sk from interval (13).

The possible shapes of Rk(sk) are shown in Figure 2, where 2(a) represents
the case when neither s∗

k
nor s−

k
is feasible, part 2(b) shows the case, when

only s−
k

is feasible and 2(c) the case when only s∗
k

is feasible which includes the
extreme case of

s∗k = s
−
k
=
A− ck − βk

B
− 2Lk.
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(a)

(b)

(c)
Figure 2. Possible shapes of best responses

In case (a) the best response function is continuous, however in cases (b) and
(c), it is discontinuous by having jump at sk = s

−
k

and sk = s
∗
k
, respectively.

We can also rewrite the best responses as functions of the total industry
output s. In case 1, R̄k(s) = 0 with

s ≥
A− ck − αk

B
. (16)

In case 2, from (5) we have

s = sk + xk =
A− ck − αk

2B
+
sk

2

therefore the range of s is

A− ck − αk
B

−Kk ≤ s <
A− ck − αk

B
(17)
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and the best response satisfies equation

xk =
A− ck − αk

2B
−
s− xk
2

which implies that

xk =
A− ck − αk

B
− s. (18)

In case 3(a), R̄k(s) = Kk and since sk satisfies (6) and (7),

A− ck − βk
B

−Kk ≤ s <
A− ck − αk

B
−Kk. (19)

In case 3(b) we have two subcases. If s−
k

is not feasible, then R̄k(s) = Kk and
from (9),

A− ck − βk
B

− 2Lk +Kk < s <
A− ck − βk

B
−Kk.

If s−
k

is feasible, then in the case of sk > s
−
k
, R̄k(s) = Kk with the domain

s−
k
+Kk < s <

A− ck − βk
B

−Kk. (20)

If sk < s
−
k
, then R̄k(s) = x

∗
k
, so from (10),

s = x∗k + sk =
A− ck − βk

2B
+
sk

2

with domain
A− ck − βk

B
− Lk < s <

A− ck − βk
2B

+
s−
k

2
(21)

and the best response is obtained from equation

s =
A− ck − βk

2B
+
s− xk
2

so

R̄k(s) =
A− ck − βk

B
− s. (22)

In case 3(c) we also have two subcases. Assume first that s∗
k

is not feasible, then
Rk(sk) = Kk if s−

k
is not feasible as well, or Rk(sk) = Lk if s−

k
is feasible. In

the first case,

Kk ≤ s ≤
A− ck − βk

B
− 2Lk +Kk, R̄k(s) = Kk (23)

and in the second case

Lk ≤ s ≤
A− ck − βk

B
− Lk, R̄k(s) = Lk. (24)
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If s∗
k

is feasible, then R̄k(s∗k) = {Kk;Lk}, Rk(sk) = Kk for sk > s∗k andRk(sk) =
Lk for sk < s∗k. The last two cases are as follows:

s∗k +Kk ≤ s ≤
A− ck − βk

B
− 2Lk +Kk, R̄k(s) = Kk (25)

and
Lk ≤ s ≤ s

∗
k + Lk, R̄k(s) = Lk. (26)

Figure 3 shows the possible shapes of R̄k(s), where part (a) gives the case
when neither s−

k
nor s∗

k
is feasible, part (b) shows the graph when only s−

k
is

feasible and part (c) is the case when only s∗
k

is feasible or the border line case
of

s−
k
= s∗k =

A− ck − βk
B

− 2Lk.

In particular cases one or more segments for smaller or larger values of s might
be missing.

(A)

(B)

(C)
Figure 3. Possible shapes of R̄k(s)
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In Figure 3(b)

s̄k = s
−
k
+Kk and s̃k =

A− ck − βk
2B

+
s−
k

2
.

Notice that from (9),

s̃k =
A− ck − βk

2B
+
s−
k

2
≤
A− ck − βk

2B
+
A− ck − βk

2B
−Kk =

A− ck − βk
B

−Kk

and

s̃k ≥
A− ck − βk

2B
+
A− ck − βk

2B
− Lk =

A− ck − βk
B

− Lk.

In addition,

s̃k =
A− ck − βk

2B
+
s−
k

2
> s−

k
+Kk = s̄k

since it can be written as

s−
k
<
A− ck − βk

B
− 2Kk,

which is true by (11).
Notice that the jumps in Figures 3(b) and 3(c) have 45◦ slopes, since in

Figure 3(b), by (10),

x∗k(s̃k)−Kk =

(
A− ck − βk

B
− s̃k

)
−Kk =

A− ck − βk
2B

−
s−
k

2
−Kk

and

s̃k − s̄k =

(
A− ck − βk

2B
+
s−
k

2

)
−
(
s−
k
+Kk

)

are equal. Furthermore in Figure 3(c),

s̄k = s
∗
k +Kk and s̃k = s

∗
k + Lk,

and
s̃k − s̄k = (s

∗
k + Lk)− (s

∗
k +Kk) = Lk −Kk.

3 Equilibrium Analysis

The equilibrium is the solution of equation

N∑

k=1

R̄k(s) = s. (27)

Consider the left hand side, which can be denoted by H(s). With any value

s > 0 an R̄k(s) exists if s ≥ Rk(0). So

[
Rk(0),

∑N

ℓ=1
Lℓ

]
is the interval for
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s such that R̄k(s) is defined. So all R̄k(s) values exist if s is greater than or
equal to the largest value of the left end points of these intervals. Clearly, at the
minimal s value H(s) ≥ s, since for at least one k, that minimal value equals s.

At s =
∑N

ℓ=1
Lℓ, the value of H(s) is below s, since for all k, R̄k(s) ≤ Lk. The

only way of having no equilibrium is when the 45 degree line skips through a
jump created by at least one function R̄k(s).

We will next show that
∑N

k=1
R̄k(s) cannot have jumps with more than 45◦

slope. The simple structure of the best response function implies the following
simple fact. Let sA and sB be two points of the domain of H(s) such that
sA < sB, and let R̄B be the value of R̄(sB) or one of the values. Then there is
a value R̄A of R̄(sA) such that R̄A ≥ R̄B. Clearly the same holds if we add up
some or all of the R̄k(s) functions. Let now g1(s) be sum of some R̄k(s) functions
and g2(s) the sum of all others. We will show that the slopes of the jumps in
g1(s) (g2(s)) cannot increase by adding g2(s) (g1(s)) , that is, the slopes of the
jumps of H(s) cannot acceed 45◦. Consider now a jump of g1(s) with points,
(A, RA) and (B,RB) such that A < B and RA < RB. Let R′

B
be a value of g2(s)

at s = B, so the corresponding point of g1(s)+g2(s) is (B, RB+R′B). However
there is a point (A,R′

A
) on g2(s) such that R′

A
≥ R′

B
, and the corresponding

point on g1(s) + g2(s) is (A, RA+R
′
A
), so the hight of the jump between these

points becomes
(RB +R

′
B)− (RA +R

′
A) ≤ RB −RA,

so the height of this new jump cannot be larger than that of the jump of g1(s) in
[A,B] , so its slope cannot be larger either. Therefore adding the best responses
R̄k(s) the slope of their jumps cannot increase, so the 45◦ line must cross the
curve of H(s) implying the existence of at least one equilibrium.

If all firms can be described by Figure 3(a), then there is a unique equilib-
rium. The next two examples show cases of a unique equilibrium and multiple
equilibria.

Example 1. Assume N = 2, A = 12, B = 2, ak = 1, ck = 3, αk = 1, βk =
7, Kk = 0.5 and Lk = 2 for both firms. In this case

∑2

k=1
Lk = 4,

A− ck − αk
B

= 4,
A− ck − αk

B
− 2Kk = 3,

A− ck − βk
B

− 2Kk = 0,
A− ck − βk

B
− 2Lk = −3.

The two best response functions are shown in Figure 4, from which it is
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clear that x1 = x2 = 0.5 is the unique equilibrium.

Figure 4. Equilibrium in Example 1

Example 2. Assume again N = 2, A = 14, B = 2, ak = αk = ck = 1, Kk =
1, βk = Lk = 2. Then

A− ck − αk
B

= 6,
A− ck − αk

B
− 2Kk = 4,

A− ck − βk
B

− 2Kk = 3.5,
A− ck − βk

B
− 2Lk = 1.5,

and
s−
k
= s∗k = 1.5.

So

Rk(sk) =






2 if 0 ≤ sk < 1.5,

{1; 2} if sk = 1.5,

1 if sk > 1.5.

Consider next the duopoly when both firms have the same parameters as
given above. Their best responses are show in Figure 5, where notice that∑
ℓ�=k Lℓ = 2 for both firms. It is clear that x1 = 1, x2 = 2 and x1 = 2,
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x2 = 1 are the two equilibria.

Figure 5. Equilibria in Example 2

Example 3. We can redo the previous examples by using the best responses
as functions of the total industry output.

(a) In the case of Example 1,

A− ck − αk
B

= 4,
A− ck − αk

B
−Kk = 3.5,

A− ck − βk
B

−Kk = 0.5,
A− ck − βk

B
−Lk < 0.

Function R̄k(s) is shown in Figure 6. In a duopoly with the identical firms
with the above parameters,

2∑

k=1

R̄k(s) = 2R̄k(s),

and it is also shown with broken lines. It has a unique intersection with
the 45◦ line at s = 1 and since R̄k(1) = 0.5, the unique equilibrium is
x1 = x2 = 0.5.

Figure 6. Equilibrium of Part (a) of Example 3
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(b) In the case of Example 2, the best response R̄k(s) is shown in Figure 7.

Figure 7. Best response R̄k(s) in Part (b) of Example 3

If the same kind of firms form a duopoly, then

R̄1(s) + R̄2(s) =






4 if 2 ≤ s < 2.5,

{2, 3, 4} if 2.5 ≤ s ≤ 3.5,

2 if s > 3.5.

Since R̄k(s) is either 1 or 2 in the second case, the possible combinations
for R̄1(s)+ R̄2(s) are 1+1, 1+2, 2+1 and 2+2. H(s) = R̄1(s)+ R̄2(s) is
shown in Figure 8, from which it is clear that s = 3 is the unique solution.
Notice that at s = 3, both R̄k(3) = 1 and R̄2(3) = 2 are feasible, so both
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x1 = 1, x2 = 2 and x1 = 2, x2 = 1 are equilibria.

Figure 8. Equilibrium of Part (b) of Example 3

4 Conclusions

A modified N -firm single-product oligopoly without product differentiation was
examined in which the payoff functions of the firms were discontinuous. The best
responses of the firms were determined as functions of the outputs of the rest
of the industry and then they were modified as functions of the total industry
output. Based on these modified best responses the existence of at least one
equilibrium was proved, and numerical examples showed the possibility of a
unique as well as of multiple equilibria. The more general cases with nonlinear
price and cost functions will be the subjects of our next research project.
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