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Abstract

In this paper we examine dynamics of a boundedly rational monopoly
with continuously distributed time delay. Constructing the gradient dy-
namic system where the output change is proportional to the expected
profit and the expected demand is formed based on past data with vari-
ous shapes of the weighting function, three main results are analytically as
well as numerically demonstrated: (1) the stability region depends on the
shape of the weighting function and converges to the stability region of
the fixed time delay when the shape parameter goes to infinity; (2) delay
has a threshold value below which stability is preserved and above which
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1 Introduction

In most traditional models, instantaneous and complete information has been
assumed. Recent research on the dynamic behavior of the economic agents,
however, emphasizes on their bounded rationality that arises when the agents
have only limited information in making their decisions. In this paper, we build a
dynamic monopoly model that accounts for delay information and then explore
analytically and numerically the delay effects upon local and global dynamic
behavior of a monopolist or monopolistic firm.

In real economies there is always a delay in obtaining information and im-
plementing decisions. In the existing literature two types of delay are usually
examined: fixed time delay and continuously distributed time delay (fixed delay
and continuous delay henceforth). The former is applicable in economic situ-
ations in which an institutionally or socially determined fixed period of time
delay is present for the agents involved. The latter is appropriate for economic
situations in which different lengths of delays are distributed over the different
agents. Uncertain delays can be modeled by continuous delays, and the same
types of models describe the situation when the firms want to react to average
past information instead of following sudden market change. So the choice of
the type of delays has situation-dependency and results in the use of different
analytical tools. In the cases of fixed delays the dynamic equations are delay
differential equations where the characteristic equation is a mixed polynomial-
exponential equation with infinitely many eigenvalues.1 The classical book by
Bellman and Cooke (1956) offers the theory of such dynamic models. Kuang
(1993) gives good theoreical foundation and comprehensive summary of appli-
cation in population dynamics. In economic dynamics, Howroyd and Russel
(1984) construct two linear continuous time dynamic oligopoly models and ex-
amine the effect of the delay on stability. Fixed delay dynamics has been in-
vestigated in various economic frameworks ranging from micoreconomics (i.e,
oligopoly dynamics) to macroeconomics (i.e., business cycle). In the cases of
continuous delays the dynamic equations are Volterra type integro-differential
equations. Cushing (1977) discusses the mathematical methodology dealing
with such dynamics. Invernizzi and Medio (1991) have introduced continuous
delays into mathematical economics, and this methodology is later used to ex-
amine dynamic oligopolies by Chiarella and Khomin (1996) and Chiarella and
Szidarovszky (2001, 2004). Recently Matsumoto (2009) re-examined the classi-
cal Goodwin’s accelerator business cycle by replacing fixed delay in the original
model with continuous delay. Dynamics generated by fixed delay and contin-
uous delay are compared in Matsumoto and Szidarovszky (2010) in which the
Goodwin (2D) model, the Kaldor-Kalecki (3D) model and the Cournot oligopoly
(4D) model are examined.

In our earlier paper, Matsumoto and Szidarovszky (2011), boundedly ratio-
nal monopoly is examined with one and two fixed delays. A complete stability
analysis is given and it is demonstrated that in the case of locally unstable

1A dynamic equation with fixed delays can be called a mixed difference-differential equa-
tion. However it is pointed out by Gandolfo (2009) that such terminology is somewhat dated.
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monopoly equilibrium only simple dynamics (i.e., limit cycle) can be born when
one fixed delay is involved while complex dynamics are reached through a period-
doubling bifurcation when two fixed delays are involved. In this paper the fixed
delay is replaced with continuous delay and in addition to complete stability
analysis, the asymptotic behavior of the equilibrium with fixed and continuous
delays will be compared.

This paper is organized as follows. In the next section, we construct a
gradient dynamic model of boundedly rational monopoly. Then in Section 3, we
analytically examine local dynamics and numerically show that the continuous
delay has a threshold value at which the monopoly equilibrium loses stability.
In Section 4 we introduce a cautious expectation formation and demonstrate
that stability switch occurs twice, one switch to instability from stability for a
small delay and the other switch to stability from instability for a large delay.
Concluding remarks are given in Section 5.

2 Delay Monopoly

In this section we construct a basic dynamic model of a boundedly rational
monopoly which produces output q with marginal cost c. The price function is
linear

f(q) = a− bq, a, b > 0.
However, the monopoly does not know the true price function due to incom-
plete information. There are several ways to deal with the behavior under such
circumstances. If the monopoly believes in a misspecified price function and
chooses its decision accordingly, then a self-confirming steady state may emerge
which is different from the stationary state with full information. Or if it does
not know certain parameters of the price function, although knowing that it is
linear, then the monopoly uses a local linear approximation of the price function
based on its past output data to update its estimate.2 In this study, assuming
that the monopoly knows only a finite points of the true price function, we con-
fine attention to a situation in which the monopoly is able to estimate the rate
of a profit change by using actual prices it received in the past. The estimated
rate at a value qe of output which is believed to be close to the actual output it
would select is given by

dπe

dqe
= a− c− 2bqe.

So the approximating gradient dynamics is

q̇ = α(q)
dπe

dqe
(1)

where α(q) is an adjustment function and the dot over a variable means a
time derivative. In constructing best response dynamics, global information

2See Chapter 5 of Bischi et al. (2010) for stability/instability of economic models with
misspecified and uncertain price functions.
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is required about the profit function, however, in applying gradient dynamics,
only local information is needed. We make the familiar assumption that the
adjustment function has linear dependency on output:

Assumption 1. α(q) = αq with α > 0.

The gradient dynamics under Assumption 1 with an expected demand qε is
presented by

q̇(t) = αq(t) [a− c− 2bqε(t)] (2)

where t denotes a point of continuous time. Since q(t) = qε(t) for all t holds at a
stationary point, equation (2) has two stationary points; a trivial point q(t) = 0
and a nontrivial point

qM =
a− c
2b

where a > c is assumed to ensure that the nontrivial point is positive. We call
qM a monopoly equilibrium. Dynamic behavior of (2) depends on the formation
of expectations. In a dynamic model with continuous time scales, time delays
can be modeled with fixed delays or continuously delays. Matsumoto and Szi-
darovszky (2011) examined dynamic monopoly with single and two fixed delays.
In this study we adopt a single continuous delay and consider the delay effects
on the dynamics.3 Before proceeding, we briefly summarize the results obtained
in the dynamic monopoly with one fixed delay.

We assume qe(t) = q(t− τ) where τ > 0 denotes a fixed delay. Substituting
qe(t) for q(t− τ) gives a nonlinear delay differential equation,

q̇(t) = αq(t) [a− c− 2bq(t− τ)] . (3)

Linearizing equation (3) and introducing the new variable, x(t) = q(t) − qM
yield the following linearized form,

ẋ(t) = −γx(t− τ) with γ = α(a− c) > 0.
Substituting the exponential solutions x(t) = x0e

λt into the linearized equation
gives the characteristic equation

λ+ γe−λτ = 0. (4)

The sufficient condition for local asymptotic stability is that the real parts of
the eigenvalues are negative. It is shown in Matsumoto and Szidarovszky (2011)
that the monopoly equilibrium is locally asymptotically stable for 0 < τ < τ∗,
locally unstable for τ > τ∗ and undergoes a Hopf bifurcation at τ = τ∗ where a
threshold value τ∗ of delay is defined by

τ∗ =
π

2α(a− c) .

This partition curve, which divides the parameter space into a stable and un-
stable regions, is downward sloping with respect to γ = α(a−c). The monopoly
equilibrium is locally stable below the partition curve, locally asymptotically
unstable above and bifurcates to a limit cycle when it crosses the curve.

3Monopoly dynamics with two continuous delays is considered in the subsequent paper.
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3 Single Time Delay I

As it was mentioned earlier, continuous delay is an alternative approach to deal
with delays. The gradient dynamics with a single continuous delay is given by
the following two equations:

q̇(t) = αq(t) [a− c− 2bqε(t)]

qε(t) =

t∫

0

W (t− s, τ ,m)q(s)ds
(5)

where α is the speed of adjustment and the weighting function is defined by

W (t− s, τ,m) =






1

τ
e−

t−s
τ if m = 0,

1

m!

(m
τ

)m+1
(t− s)me−m(t−s)

τ if m ≥ 1
(6)

where m is a nonnegative integer and τ is a positive real parameter, which is
associated with the length of the delay. The first equation of (5) implies that
the growth rate of output is proportional to the expected demand. The second
equation indicates that the expected output at time t is the weighted average
of the actual demand in the past. According to (6), the shape of the weighting
function is determined by the value of the shape parameter, m. For m = 0,
weights are exponentially declining with the most weight given to the most
current data. For m ≥ 1, zero weight is given to the most current data, rising
to maximum at s = t − τ and declining exponentially thereafter. The weights
take a bell-shaped form which becomes taller and thinner as m increases.

To consider local dynamics of this system in a neighborhood of the equi-
librium point, we need to construct a linearized version. If the deviations of
the actual and expected outputs from the equilibrium value are denoted by
xδ(t) = q(t) − qM and xεδ(t) = qε(t) − qM , then the linearized system with
continuous delay can be written as

ẋδ(t) = −γxεδ(t),

xεδ(t) =

∫ t

0

W (t− s, τ ,m)xδ(s)ds,
(7)

where γ = 2αbqM . To examine dynamics of system (7), we substitute the
second equation of (7) into the first to obtain the following Volterra-type integro-
differential equation:

ẋδ(t) + γ

∫ t

0

W (t− s, τ ,m)xδ(s)ds = 0.
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Looking for the solution in the usual exponential form xδ(t) = x0e
λt and sub-

stituting it into the above equation, we obtain

λ+ γ

∫ t

0

W (t− s, τ,m)e−λ(t−s)ds = 0.

Introducing the new variable z = t− s simplifies the integral as

∫ t

0

W (t− s, τ ,m)e−λ(t−s)ds =
∫ t

0

W (z, τ,m)e−λzdz.

By letting t→∞ and assuming that Re(λ) + m
τ
> 0, we have

∫ ∞

0

1

τ
e−

z

τ e−λzdz = (1 + λτ)−1 if m = 0

and

∫ ∞

0

1

m!

(m
τ

)m+1
zme−

mz

τ e−λzdz =

(
1 +

λτ

m

)−(m+1)
if m ≥ 1.

That is,
∫ ∞

0

W (z, τ ,m)e−λzdz =

(
1 +

λτ

m̄

)−(m+1)

with

m̄ =






1 if m = 0,

m if m ≥ 1.
Then the characteristic equation becomes

λ
(
1 +

τ

m̄
λ
)m+1

+ γ = 0. (8)

Expanding the characteristic equation presents the (m+2)-th order polynomial
equation

a0λ
m+2 + a1λ

m+1 + ...+ am+1λ+ am+2 = 0

where the coefficients ai are given as

ak =
( τ
m̄

)m+1−k ( m+ 1
k

)
for 0 ≤ k ≤ m,

am+1 = 1 and am+2 = γ.

In the case of the high order polynomial equation, the Routh-Hurwitz theorem4

provides the necessary and sufficient conditions for all the roots to have negative

4See, for example, Gandolfo (2009) for this theorem.
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real parts. Applying the theorem, we first need to construct the Routh-Hurwitz
determinant:

Dm+2 = det






a1 a0 0 0 · · · 0
a3 a2 a1 a0 · · · 0
a5 a4 a3 a2 · · · 0
a7 a6 a5 a4 · · · 0
· · · · · · · 0
0 0 0 0 0 am+2






.

Then the stability conditions are as follows:

(1) all coefficients are positive, ak > 0 for k = 0, 1, 2, ...,m+ 2,

(2) the principal minors of the Routh-Hurwitz determinant are all positive,

D2
m+2 > 0, D

3
m+2 > 0, ..., D

m+1
m+2 > 0

where Dk
m+2 is the k-th order leading principal minor of Dm+2. Notice

that Dm+1
m+2 > 0 always leads to Dm+2

m+2 > 0 since am+2 = γ > 0.

Since it is difficult to obtain a general solution of equation (8), we draw
attention to special cases with m = 0, 1, 2, 3 and m→∞ and examine stability
of the monopoly equilibrium analytically as well as numerically.

Case I-0. m = 0.

Substituting m = 0 reveals that the characteristic equation (8) is quadratic,
τλ2+λ+γ = 0 where all coefficients are positive. It does not have nonnegative
roots and the real parts of the complex roots are negative. Thus the monopoly
equilibrium is locally asymptotically stable for all τ > 0. Since the delay does
not affect asymptotic behavior of the monopoly equilibrium, such a delay is
called harmless.

Case I-1. m = 1.

The characteristic equation (8) withm = 1 becomes cubic and its coefficients
are all positive

a0 = τ
2 > 0, a1 = 2τ > 0, a2 = 1 > 0, a3 = γ > 0.

According to the Routh-Hurwitz criterion, the following leading minor of D3
needs to be positive for preserving stability of the equilibrium,

D2
3 =

∣∣∣∣
a1 a0
a3 a2

∣∣∣∣ .

To obtain D2
3 = τ(2 − τγ) > 0, the delay τ should be less than the threshold

value

τ∗1 =
2

γ
. (9)
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There is a possibility of the emergence of a limit cycle when loss of stability oc-
curs at τ = τ∗1. The Hopf bifurcation theorem comes in to provide the sufficient
conditions for it:

(H1) the characteristic equation of the dynamic system has a pair of pure
imaginary roots and has no other roots with zero real parts;

(H2) the real parts of these roots vary with a bifurcation parameter.

The D2
3 = 0 curve divides the parameter space into stable and unstable

parts. Substituting a3 = a1a2/a0 into the characteristic equation gives the
factored form

(a1 + a0λ)(a2 + a0λ
2) = 0.

We have therefore three characteristic roots, two purely imaginary roots and
one real and negative root,

λ1,2 = ±
√
−a2
a0
= ±i1

τ
and λ3 = −

a1
a0
= −2

τ
< 0.

The first condition (H1) of the Hopf theorem is satisfied.
Next we select the delay τ as the bifurcation parameter and consider the

roots of the characteristic equation as continuous functions of τ :

τ2λ(τ)3 + 2τλ(τ)2 + λ(τ) + γ = 0

Differentiating it with respect to τ gives

dλ

dτ
= − 2τλ3 + 2λ2

3τ2λ2 + 4τλ+ 1
.

Substituting λ = i/τ , rationalizing the right hand side and noticing that the
terms with λ and λ3 are imaginary while the constant and the term λ2 are real
yield the following form of the real part of the derivative of λ with respect to τ :

Re

[
dλ

dτ

∣∣∣∣
λ= i

τ

]

=
1

5τ2
> 0.

The last inequality indicates that the second condition (H2) is also satisfied. The
real parts of the complex roots change to positive from negative value resulting in
the loss of stability on the partition curve. Hence the Hopf bifurcation theorem
confirms the birth of a limit cycle when stability is lost.

We numerically examine the analytical result just obtained. The dynamic
system under the investigation is obtained by substituting m = 1 into (5),

q̇(t) = αq(t) [a− c− 2bqε(t)]

qε(t) =

t∫

0

(
1

τ

)2
(t− s)e− t−s

τ q(s)ds.

8



Differentiating the second equation with respect to t and introducing a new
variable

q0(t) =

∫ t

0

1

τ
e−

t−s
τ q(s)ds

transforms the dynamic system with continuous delay into a 3D system of or-
dinary differential equations

q̇(t) = αq(t) [a− c− 2bqε(t)] ,

q̇ε(t) =
1

τ
(q0(t)− qε(t)) ,

q̇0(t) =
1

τ
(q(t)− q0(t)) .

We specify the parameters’ values as a = 2, b = 1, c = 1, α = 1,5 and take
τ = 3 and the initial values of all variables to be qM − 0.1. Then simulating the
3D system exhibits the birth of a limit cycle as illustrated in Figure 1 where a
black trajectory starting at the black dot (i.e., positive initial point) converges
to a red cycle in the (q, qε, q0) space. We then summarize this result as follows:
the monopoly equilibrium point with m = 1 is destabilized through a Hopf
bifurcation and, as it is numerically confirmed, converges to a limit cycle when
the delay τ is larger than the critical value 2/γ.

qHtL

q
eHtL

q0HtL

Figure 1. Convergence to a limit cycle in the (q, qε, q0) plane

Case I-2. m = 2.

The characteristic equation (8) with m = 2 becomes quartic

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0

5This set of the parameters are repeatedly used in the following numerical examples. Notice
that γ = 1 under this set.
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and its coefficients are all positive,

a0 = τ
3 > 0, a1 = 6τ

2 > 0, a2 = 12τ > 0, a3 = 8 > 0, a4 = 8γ > 0.

The principal minors of the Routh-Hurwitz determinant are D2
4 = 64τ

3 > 0 and
D3
4 = 32τ3(16 − 9γτ). To obtain D2

3 > 0, the delay τ should be less than the
threshold value

τ∗2 =
16

9γ
≃ 1.78

γ
. (10)

Thus the equilibrium is locally asymptotically stable if τ < τ∗2 and locally
unstable if τ > τ∗2. In the same way as in Case I-1, we can show the existence
of a limit cycle at the critical value τ∗2. In particular, solving D3

4 = a1a2a3 −
(a0a

2
3 + a

2
1a4) = 0 for a4, substituting it into the characteristic equation and

factoring the resultant equation yield

(a3 + a1λ
2)(a1a2 − a0a3 + a21λ+ a0a1λ2) = 0.

The solutions of a3 + a1λ
2 = 0 are purely imaginary,

λ1,2 = ±i
2

τ
√
3
,

and the other two characteristic roots are the solutions of the quadratic equation
(a1a2 − a0a3) + a21λ+ a0a1λ2 = 0,

λ3,4 =
−9± i

√
15

3τ

whose real parts are negative. The first condition (H1) of the Hopf bifurcation
theorem is satisfied.

To confirm the second condition, we choose τ as the bifurcation parameter
again and differentiate the characteristic equation with respect to τ to have

dλ

dτ
= − 3τ2λ4 + 12τλ3 + 12λ2

4τ3λ3 + 18τ2λ2 + 24τλ+ 8
.

Substituting λ = i 2
τ
√
3

and taking the real part, we have

Re

[
dλ

dτ

∣∣∣∣
λ=i 2

τ
√
3

]

=
6

19τ2
≃ 0.316

τ2
> 0.

We thereby confirm that the monopoly equilibrium with m = 2 is destabilized
through a Hopf bifurcation when the delay τ crosses the critical value τ∗2.

Case I-3. m = 3.
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The characteristic equation (8) is qintic and its coefficients are all positive

a0 = τ
4 > 0, a1 = 12τ

3 > 0, a2 = 54τ
2 > 0, a3 = 108τ > 0, a4 = 81 > 0, a5 = 81γ > 0.

The first two principal minors of the Routh-Hurwitz determinant are positive

D2
5 = 540τ

5 > 0 and D3
5 = 972τ

6(48 + γτ) > 0.

The sign of the fourth order principal minor D4
5 = −6561τ6(γ2τ2+336γτ−576)

is ambiguous. To obtain D4
5 > 0, the delay τ should be less than the threshold

value

τ∗3 =
24(5

√
2− 7)
γ

≃ 1.71

γ
. (11)

Although we omit the detail, we can also show that the continuous delay system
(5) withm = 3 can generate a limit cycle through a Hopf bifurcation in the same
way as in the previous cases when the monopoly equilibrium loses stability.

The relations (9), (10) and (11) define the partition curves of (γ, τ) that
divide the (γ, τ) space into stable and unstable parts. The three partition curves
for m = 1, 2, 3 and the stability (yellow) region with fixed delay defined by
τγ < 2 are depicted in Figure 2. It can be seen that all curves are hyperbolic
and are approaching the red-colored boundary of the stability region from above.
In other words, the stable region with continuous delay becomes smaller as the
value of m increases and converges to the region defined by the fixed delay when
m tends to infinity. This result obtained are natural if we notice the properties
of the weighting function. The weighting function for m ≥ 1 is a bell-shaped
and becomes more peaked around t− s as m increases. Furthermore it tends to
the Dirac delta function if m→∞. In consequence, for sufficiently large m, the
weighting function may be regarded as very close to the Dirac delta function and
the dynamic behavior under the continuous delay is very similar to that under
the fixed delay. We can explain this phenomenon mathematically by noticing
that the characteristic equation (8) of the continuously distributed case can be
written as

λ+ γ

(
1 +

τλ

m

)−(m+1)(
1 +

τλ

m

)−1
= 0,

and as m→∞, the left hand side converges to

λ+ γe−λτ = 0.

This is the characteristic equation of the delay differential equation with a single
fixed delay and is identical with equation (4). In short, under continuous delay,
although we comprehensively use all delayed or past output data, the stability
domain is sensitive to the shape of the weighting function. Hence we obtain the
following two results:

Proposition 1 (1) The monopoly equilibrium of the continuously distributed
single delay model is always stable for any delays if m = 0 and is destabilized
through a Hopf bifurcation if m ≥ 1; (2) The stability region decreases as m
increases (i.e., τ∗ < τ∗3 < τ

∗
2 < τ

∗
1) and converges to the stability region obtained

under the fixed delay when m goes to infinity (i.e., τ∗m → τ∗ as m→∞).
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Figure 2. Three partiton curves and stability region

4 Single Time Delay II

In this section, we introduce a cautious expectation formation defined by

qε(t) = ωqe(t) + (1− ω)q(t)

qe(t) =

t∫

0

W (t− s, τ ,m)q(s)ds
(12)

with 0 < ω ≤ 1. The expectation is formed with two steps: the weighted average
of the past data is calculated at the first step and then the expected demand
is selected, at the second step, somewhere in between the current output level
and the weighted average level.6 If m ≥ 1, then zero weight is given to the
most current data in the weighting function, and so the second term in the first
equation of (12) gives a larger weight to it taking a certain learning procedure
based on past data at the second stage. We examine in some detail the dynamic
effects caused by a single delay with the cautious expectation formation. Fol-
lowing the method we take in the previous section, the characteristic equation
of the system (12) can be obtained as

λ

(
1 +

λτ

m̄

)m+1
+ γ

[

ω + (1− ω)
(
1 +

λτ

m̄

)m+1]

= 0 (13)

6Since the first equation of (12) can be rewritten as

qε(t)− q(t) = ω(qe(t)−−q(t)).

It can be mentioned that the expected demand is formed in such a way that the expectation
error is proportional to the difference between the weighted average level and the current level.
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which is reduced to equation (8) if ω = 1. To find how the shape of the weighting
function, W (t − s, τ ,m), affects the dynamics of qM , we sequentially increase
the value of m from zero to five and then to infinity.

Case II-0 m = 0

Substituting m = 0 in equation (13) presents the form

λ(1 + λτ) + γω + γ(1− ω)(1 + λτ) = 0

or
τλ2 + (1 + τγ(1− ω))λ+ γ = 0.

Since all coefficients are positive, there is no nonnegative root and the real parts
of the complex eigenvalues are negative,

Re(λ±) = −
1 + (1− ω)τγ

2τ
< 0,

implying that the equilibrium is locally asymptotically stable for all τ > 0. As
in Case I-0, the coninuous delay is again harmless when the weight exponentially
declines (i.e., m = 0).

For m ≥ 1, expanding the characteristic equation (13) yields the polynomial
equation of degree m+ 2

b0λ
m+2 + b1λ

m+1 + · · ·+ bmλ2 + bm+1λ+ bm+2 = 0 (14)

where the coefficients are defined by

b0 = a0,

bk = ak + γ(1− ω)ak−1 for 1 ≤ k ≤ m,

bm+1 = am+1 + γ(1− ω)am,

bm+2 = γ

with

ak =
( τ
m

)m+1−k ( m+ 1
k

)
for 0 ≤ k ≤ m+ 1. (15)

Case II-1 m = 1

13



Equation (13) with m = 1 becomes cubic:

b0λ
3 + b1λ

2 + b2λ+ b3 = 0 (16)

where the coefficients are defined by

b0 = τ
2, b1 = 2τ + γ(1− ω)τ2, b2 = 1 + 2τγ(1− ω) and b3 = γ.

All coefficients are positive, so the Routh-Hurwitz criterion implies that the
monopoly equilibrium is locally asymptotically stable if

D2
3 = det

(
b1 b0
b3 b2

)
> 0 (17)

where the determinant is written as

τ
(
2γ2(1− ω)2τ2 + (4γ − 5γω)τ + 2

)
.

Since τ > 0, this expression is positive if and only if

f(τγ) = 2(1− ω)2(τγ)2 + (4− 5ω)τγ + 2 > 0. (18)

f(τγ) is quadratic with respect to τγ and its discriminant has the form

D = ω(9ω − 8).

If ω < 8/9, then D < 0 so (18) always holds. If ω = 8/9, then the right hand
side of (18) simplifies as

f(τγ) = 2
(τγ
9
− 1
)2

so (18) holds if τγ �= 9. If ω > 8/9, then D > 0 and f(τγ) has two distinct real
roots:

τγA =
5ω − 4−

√
ω(9ω − 8)

4(1− ω)2 and τγB =
5ω − 4 +

√
ω(9ω − 8)

4(1− ω)2 .

f(0) > 0 and f ′(0) < 0 imply that both roots are positive. So the monopoly
equilibrium is locally asymptotically stable if ω > 8/9 and τγ < τγA or τγ >
τγB.

These analytical results are graphically visualized in Figure 3. The locus of
b1b2−b3b0 = 0 is depicted as the blue-red curve passing through points A,C and
B and partitions the nonnegative (ω, τγ) plane into a stable (white) region and
a unstable (orange) region. The monopoly equilibrium is locally asymptotically
stable regardless of the value of τγ if ω < 8/9. Stability-switch occurs twice if
8/9 < ω < 1. The vertical real line at ω = ω̄ > 8/9 crosses the partition curve
at two points A and B whose ordinates are τγA and τγB , respectively. The
monopoly equilibrium is locally stable for τ = 0, loses stability at point A and
gains stability at point B when τγ increases from zero along the vertical line at
ω = ω̄. For ω = 1, the stability condition (18) is reduced to

−τγ + 2 > 0.
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The monopoly equilibrium is locally stable if τγ < 2 and locally unstable if
τγ > 2, implying that the stability switch occurs only once at τγ = 2 for
ω = 1, which is the same as the result obtained in Case I-1. This coincidence is
reasonable since Case I-1 is identical with Case II-1 for ω = 1.

Figure 3. Stability region with m = 1

The local behavior of the equilibrium at points A and B has been analytically
examined. However, global dynamic behavior of the locally unstable equilibrium
between points A and B is still in question. To investigate such behavior, we will
show that at these critical values Hopf bifurcation occurs giving the possibility
of the birth of limit cycles even under the cautious expectation formation.

We start with the first condition, (H1). The cubic characteristic equation
(16) can be factored when b1b2 − b0b3 = 0,

(b1 + b0λ)(b2 + b0λ
2) = 0.

This factorization implies that there are a pair of purely imaginary roots and
one negative root. The two purely imaginary roots are given by

λ1,2 = ±
√
−b2
b0
= ±iβ

with

β =

√
1 + 2τγ(1−w)

τ

and the negative root by

λ3 = −
b1
b0
= −2 + (1−w)τγ

τ
.

The fulfilment of (H1) is confirmed.
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We turn to verification of (H2). Selecting τ as the bifurcation parameter we
might treat the eigenvalue as a continuous function of τ , λ = λ(τ). Differentiat-
ing the characteristic equation (16) implicitly with respect to τ and arranging
terms, we have

dλ

dτ
= − 2λ3τ + λ2(2 + 2τγ(1− ω)) + 2λγ(1− ω)

3λ2τ2 + 2λ(2τ + γ(1− ω)τ2) + (1 + 2τγ(1− ω))
. (19)

At λ = iβ,

dλ

dτ
=
(2τβ3 − 2βγ(1− ω))i+ β2(2 + 2τγ(1− ω))

−2β2τ2 + 2βi(2τ + γ(1− ω)τ2)

where the relation (βτ)2 = 1 + 2τγ(1− ω) is used to simplify the denominator
of the above equation. Then the real part becomes

Re

[
dλ

dτ

∣∣∣∣
λ=iβ

]

=
1− γ2τ2(1− ω)2

β2τ4 + (2τ + γ(1− ω)τ2)2

with the positive denominator. It is easy to see that

τγA <
1

1− ω < τγB,

so

Re

[
dλ

dτ

∣∣∣∣
λ=iβ

]

> 0 at point A and Re

[
dλ

dτ

∣∣∣∣
λ=iβ

]

< 0 at point B.

So at point A, the real part changes sign from negative to positive and at point
B, from positive to negative. This demonstrates that (H2) of the Hopf theorem
is satisfied. So Hopf bifurcation occurs at both points.

We next numerically examine the switching of stability and global behavior.
The dynamic system under the investigation (i.e. m = 1) is obtained as,

q̇(t) = αq(t) [a− c− 2b (ωqε(t) + (1− ω)q(t))]

qε(t) =

t∫

0

1

τ2
(t− s)e− t−s

τ q(s)ds.
(20)

Differentiating the second equation with respect to t and introducing a new
variable

q0(t) =

∫ t

0

1

τ
e−

t−s
τ q(s)ds
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transform the dynamic system with continuously distributed time delay into a
3D system of the ordinary differential equations

q̇(t) = αq(t) [a− c− 2b (ωqε(t) + (1− ω)q(t))] ,

q̇ε(t) =
1

τ
(q0(t)− qε(t)) ,

q̇0(t) =
1

τ
(q(t)− q0(t)) .

(21)

We use the same parameter set (i.e., a = 2, b = 1, c = 1, α = 1) and the
same initial values (i.e., q(0) = qε(0) = q0(t) = qM − 0.1) as in Case I-1.
Increasing the value of τγ from τγA to τγB along the vertical line ω̄ = 0.91 in
Figure 3, we obtain the bifurcation diagram illustrated in Figure 4 where the
local maximum and minimum are plotted against each value of τγ. It can be
seen that the monopoly equilibrium loses stability bifurcating to a limit cycle
when τγ increases to τγA and gains stability when τγ arrives at τγB. It is also
observed that the amplitude of the limit cycle first increases and then decreases
as τγ increases from τγA to τγB.

Figure 4. Bifurcation diagram along the ω = 0.91 line

We summarize the results obtained in Case II-1 as follows:

Proposition 2 Under the cautious expectation formation, dynamics of the monopoly
equilibrium qM with τ > 0, m = 1 and 0 < ω ≤ 1 takes one of the following
alternative behavior;

(I) qM is locally asymptotically stable if 0 < ω < 8/9 regardless of the values
of τγ (i.e., the delay is harmless);
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(II) qM bifurcates to a limit cycle at τγA(ω) and the limit cycle de-bifurcates
to the monopoly equilibrium at τγB(ω) if 8/9 < ω < 1 where τγA(ω) and
τγB(ω) are the bifurcation values depending on ω (i.e., stability switch
occurs twice);

(III) qM bifurcates to a limit cycle at τγ = 2 and never regains stability for
τγ > 2 if ω = 1 (i.e., stability switch occurs once).

Case II-2 m ≥ 2

As in the same way as in Case II-1, we can check the stability condition, the
birth of a limit cycle and stability switch in the case of m ≥ 2. For example, the
characteristic equation (13) with m = 2 is quartic,

b0λ
4 + b1λ

3 + b2λ
2 + b3λ+ b4 = 0

and the stability conditions are given by

D2
4 = det

(
b1 b0
b3 b2

)
> 0 and D3

4 =




b1 b0 0
b3 b2 b1
0 b4 b3



 > 0

where the coefficients are given by

b0 =
τ3

8
, b1 =

3τ2

4
+
τ3γ(1− ω)

8
,

b2 =
3τ

2
+
3τ2γ(1− ω)

4
, b3 = 1 +

3

2
τγ(1− ω), b4 = γ.

Since all coefficients are positive and D3
4 > 0 implies D2

4 > 0, it remains to check
whether D3

4 can be positive. Notice that

D3
4 = α0(τγ)

3 + α1(τλ)
2 + α2(τγ) + α3 (22)

where
α0 = (9ω − 8)(1− ω)2

α1 = −12(4− 9ω + 5ω2)

α2 = −12(8− 11ω)

α3 = −64

(23)

The discriminant of the cubic equation (22) has the form

∆ = 442368(1− ω)3ω2(5ω − 4)

18



which is obtained by substituting αi of (23) into the definition of the discrimi-
nant, −4α0α32+α21α22− 4α31α3+18α0α1α2α3− 27α20α23. If ω < 4/5, then ∆ < 0
implying D3

4 > 0 where (23) has a pair of conjugate complex roots and one nega-
tive real root. If ω = 4/5, then∆ = 0 implying thatD3

4 = (10−τγ)2(20+τγ) > 0
for τγ �= 10 where (23) has equal roots at the red point on the D3

4 = 0 lo-
cus. If ω > 4/5, then ∆ > 0 implying that D3

4 = 0 has three distinct real
roots. Since equation (22) is cubic, it is possible to derive explicit forms of the
real roots. However, to simplify the analysis, we numerically obtain the roots.
Taking ω0 = 0.815 in addition to the parametric set, we have two real roots,
τγA ≃ 5.42, τγB ≃ 23.75 and one negative root. As seen in Figure 5, D3

4 ≤ 0 for
τγ ∈ [τγA, τγB] which is an unstable interval and D3

4 > 0 for 0 ≤ τγ < τγA or
τγ > τγB. Stability switch occurs twice at τγ = τγA and τγ = τγB. Further
the cubic equation is reduced to a quadratic equation for ω = 8/9 implying that
the locus of D3

4 = 0 is defined only for ω < 8/9 and asymptotic to the vertical
line at ω = 8/9. If 8/9 < ω < 1, then the cubic equation (22) has one positive
root τγC for ω = ω1. It is confirmed that D3

4 > 0 for τγ < τγC and D3
4 ≤ 0

otherwise. The equilibrium point switches to be unstable at point C on the
D3
4 = 0 locus when the delay is increased along the vertical line at ω = ω1.

The dark gray region is the unstable region for m = 1 and adding the light gray
region to it gives the unstable region for m = 2.

We turn now to show that Hopf bifurcation can occur on the curve D3
4 = 0.

When D3
4 = 0 holds, the characteristic equation is factored as

(b3 + b1λ
2)(b1b2 − b0b3 + b21λ+ b0b1λ2) = 0.

It is clear that the characteristic equation has a pair of purely imaginary roots,

λ1,2 = ±
√
−b3
b1
= ±iβ

with

β =

√
4(2 + 3γ(1− ω)τ)
6τ2 + γ(1− ω)τ3

and the real parts of other two roots are not zero. So condition (H1) is satisfied.
Assuming that the characteristic root depends on τ and then differentiating

the characteristic equation with respect to τ , we obtain the derivative:

dλ

dτ
= −

3τ2

8 λ
4 +

(
3τ
2 +

3γ(1−ω)τ2
8

)
λ3 +

(
3
2 +

3γ(1−ω)τ
2

)
λ2 + 3γ(1−ω)

2 λ

τ3

2 λ
3 + 3

(
3τ2

4 + γ(1−ω)τ3
8

)
λ2 + 2

(
3τ
2 +

3γ(1−ω)τ2
4

)
λ+ 3γ(1−ω)

2 + 1
.

To determine stability switch, we evaluate the derivative at the purely imaginary
solution, λ = iβ. Thus

Re

(
dλ

dτ

∣∣∣∣
λ=iβ

)

=
3(2− (1− ω)τγ)

4 + τ2(16β2 + 9γ2(1− ω)2 + 12γ(1− ω)τ)
.
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We numerically confirm that the real part of the derivative is positive at point
τγA and negative at point τγB. So he second condition (H2) is also satisfied.
Therefore Hopf bifurcation occurs at both critical points.

Figure 5. The partition curves with m = 1 and m = 2

In the same way, it can be numerically confirmed that the stability condition
is given byDm+1

m+2 > 0 for 2 ≤m ≤ 5. In Figure 6, five partition curves Dm+1
m+2 = 0

for m = 1, 2, 3, 4, 5 are depicted. The right most curve is the locus of D2
3 = 0

(i.e., m = 1) and the left most curve is the locus of D6
7 = 0 (i.e., m = 5). The

partition curve shifts leftward with the increasing value of m. At the red dot on
each curve, equation Dm+1

m+2 = 0 has two real and equal roots.7 As is shown in
Case II-1, for any m ≥ 2, stability switch occurs twice for ω greater than the
abscissa of the red point while the delay becomes harmless for smaller values of
ω.

Case II-3 m→∞

As m increases, the weighting function becomes more peaked around t − s
and tends to the Dirac delta function. Notice that as m goes to infinity, the
first equation of (20) is reduced to a delay differential equation,

q̇(t) = αq(t) [a− c− 2b (ωq(t− τ) + (1− ω)q(t))] (24)

and the characteristic equation (13) converges to

λ+ γ(1− ω) + γωe−λτ = 0
7The curves look like steeply-shaped hypabolas. However, if we enlarge each curve in the

neighborhood of its red point, then it can be found that the curves take the distorted C-shaped
profiles as the curve in Figure 3 or Figure 5.
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which is the characteristic equation of the delay differential equation (24). To
verify the possibility of stability switch for which the characteristic equation
must have a pair of purely imaginary conjugate roots, we can assume without
loss of generality that λ = iυ, υ > 0. By the real and imaginary parts, the
characteristic equation is divided into two equations

γ(1− ω) + γω cos υτ = 0,

υ − γω sinυτ = 0.
(25)

By moving γ(1− ω) and υ to the right hand side of equations in (25), squaring
and adding them together, we obtain

υ2 = γ2(2ω − 1)

which is defined only for ω > 1/2, otherwise no stability switch occurs. We then
think of the roots as continuous functions in terms of τ and then differentiate
the characteristic equation with respect to τ to obtain

(
dλ

dτ

)−1
=
eτλ

γωλ
− τ

λ
and eτλ = − γω

λ+ γ(1− ω) .

Thus
d(Reλ)

dτ

∣∣∣∣
λ=iυ

= Re

(
dλ

dτ

∣∣∣∣
λ=iυ

)−1

=
1

υ2 + γ2(1− ω)2 > 0

The last inequality implies that all the roots that cross the imaginary axis at iυ
cross from left to right as τ increases.

From (25), we have

γω cos υτ = −γ(1− ω),

γω sinυτ = υ.
(26)

Hence there is a unique υτ , π/2 < υτ < π such that υτ makes both equations
in (26) hold. Using the first equation we derive the partition curve

γτ =

cos−1
(
−1− ω

ω

)

√
2ω − 1

which is defined for ω > 1/2. In Figure 6, in addition to the five partition curves,
the downward sloping hyperbolic red partition curve of the fixed delay case are
illustrated. The monopoly equilibrium with the fixed delay is locally asymptot-
ically stable in the yellow region. We can summarize three results obtained in
Cases II-2 and II-3:

21



Proposition 3 In the case with τ > 0 and m ≥ 1, (1) increasing m has a
destabilizing effect in the sense that it decreases the stability region; (2) the
stability region with continuously distributed time delay is larger than the one
with fixed time delay and the former converges to the latter as m goes to infinity;
(3) the stability switch, if possible, occurs twice, implying that the equilibrium
is locally stable for smaller or larger values of τγ while it bifurcates to a limit
cycle for medium values.

Figure 6. Stability region and five partition cuves

5 Concluding Remarks

In this paper a boundedly rational monopoly with a continuously distributed
time delay is examined. Constructing a gradient dynamic system where the rate
of the output change is proportional to the derivative of the expected profit,
three main results are analytically and numerically demonstrated. First, the
stability region depends on the shape parameter of the weighting function of
the past data: stability is preserved if the weights exponentially decline while
it can be lost if the weighting function takes a bell-shaped profile. Further note
that the stability region of the continuously distributed time delay converges
to the stability region of the fixed time delay when the shape parameter goes
to infinity (in other word, the weighting function converges to the Dirac delta
function). Second, the stability switches indicate that the delay has a desta-
bilizing effect. Specifically the stable equilibrium point becomes unstable and
never regains stability if the expected demand is formed based only on past data.
However, under the cautious expectation formation where the expected demand
is a weighted average of the realized output and the past data, switches to in-
stability from stability and then to stability from instability are both possible,
depending on the value of the delay. Finally the equilibrium point bifurcates to
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a limit cycle through Hopf bifurcation when it loses stability.
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