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Abstract

Dynamic delay economic models are compared with fixed and contin-
uously distributed information lags. With small delays and exponentially
decreasing kernel functions, the two types of models generate identical
local asymptotic behavior. In the case of large delays the asymptotic
properties however become different. Three particular economic models
(the business cycle model of Goodwin, Kaldorian macro dynamic model
augumented with Kaleckian investment lag and the Cournot oligopoly
model) are used to illustrate these theoretical results and computer simu-
lation examples illustrate that with larger delays more complex dynamics
may emerge.

1 Introduction
The asymptotical behavior of dynamic economic systems has been the focus of a
large number of studies with both discrete and continuous time scales. They are
based on the qualitative theory of difference or ordinary differential equations
(Bellman (1969) and Goldberg (1958)). It has been shown by many authors
that the introduction of information delay into the dynamic models significantly
changes their asymptotical properties. There is a significant difference between
models with fixed time lags and models with continuously distributed delays. In
the first case there is an infinite spectrum, and in the second case with gamma-
function type kernel functions, the spectrum is finite. An important special case
of continuously distributed time lags is given by exponentially decreasing kernel
functions.
In this paper we compare dynamics generated by fixed time lags and con-

tinuously distributed delay with exponential kernel function. We will first show
that these two types of models generate the same local dynamics if the delay is
sufficiently small. This is, however, not true if the delay becomes large.
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The theoretical findings are illustrated by three well known economic models:
the Goodwin model, the Kaldor-Kalecki model and Cournot oligopoly.
This paper is organized as follows. Section 2 introduces the main mathemat-

ical results, and the particular models are discussed in Section 3. Conclusions
are drawn in Section 4.

2 Mathematical Result
Consider first the general linear differential-difference equation

nX
k=0

αky
(k)(t) +

nX
k=0

βky
(k)(t+ θ) = 0 (1)

with a single delay θ, where

y(k)(t) =
dk

dtk
y(t) and y(k)(t+ θ) =

dk

dtk
y(t+ θ).

Assuming small θ, linearization with respect to θ gives the approximationÃ
nX
k=0

αky
(k)(t) +

nX
k=0

βky
(k)(t)

!
+

Ã
nX
k=0

βky
(k+1)(t)

!
θ = 0.

This is a linear homogeneous equation. As usual, looking for the solution in an
exponential form, y(t) = veλt gives

nX
k=0

(αk + βk)λ
keλtv +

nX
k=0

βkλ
k+1eλtvθ = 0,

and after simplification the characteristic polynomial of the system becomes

nX
k=0

αkλ
k +

Ã
nX
k=0

βkλ
k

!
(1 + λθ) = 0, (2)

which is a polynomial of degree k + 1 in λ.
Consider next the equivalent delayed equation,

nX
k=0

αky
(k)(t− s) +

nX
k=0

βky
(k)(t) = 0. (3)

Assuming continuously distributed lag with exponential kernel function,

w(t− s) = 1

θ
e−

t−s
θ

and taking delay expectation, a Volterra-type integro-differential equation is
obtained: Z t

0

w(t− s)
nX
k=0

αky
(k)(s)ds+

nX
k=0

βky
(k)(t) = 0. (4)
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In the first factor we can introduce the new variable z = t− s to haveZ t

0

w(z)
nX
k=0

αky
(k)(t− z)dz +

nX
k=0

βky
(k)(t) = 0.

If we seek the solution in the usual exponential form, y(t) = veλt and substitute
it into the above equation, we getZ t

0

1

θ
e−

z
θ

nX
k=0

αkλ
keλ(t−z)vdz +

nX
k=0

βkλ
keλtv = 0.

By dividing both sides by eλtv and letting t→∞ we have a simplified expression
for the first term:Z ∞

0

1

θ
e−z(λ+

1
θ )dz

Pn
k=0 αkλ

k =
1

θ

e−z(λ+
1
θ )

−(λ+ 1
θ )

#∞
z=0

Pn
k=0 αkλ

k

=
1

λθ + 1

Pn
k=0 αkλ

k,

so the equation further simplifies as

1

λθ + 1

nX
k=0

αkλ
k +

nX
k=0

βkλ
k = 0, (5)

which is equivalent to equation (2). Therefore the local asymptotic behavior of
the two dynamics is identical. We summarize this result:

Theorem 1 Local dynamics generated by the general delay differential equation
with a single and small delay is the same as the dynamics by the general dif-
ferential equation with continuously distributed time lag with exponential kernel
function.

In the case of the general kernel function

w(t− s) = 1

n!

³n
θ

´n+1
(t− s)ne−

n(t−s)
θ ,

we know that as θ → ∞ or n → ∞, the function converges to the Dirac-delta
function centered at t − s = 0 and t − s = θ, respectively. Therefore, in this
limiting case the integro-differerntial equation (4) converges to the determinis-
tic case with fixed delay. It is very interesting that in the exponential kernel
function (n = 0) case, the two processes are even equivalent concerning the local
behavior of the equilibrium. This is not true however for larger values of n, as
it is demonstrated in Matsumoto and Szidarovszky (2009).
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3 Economic Examples
We confirm Theorem 1 by examining various delay economic models when the
time delay is small and invesigate the global dynamics of the delay models with
continuously distributed time delay when the time delay is large.

3.1 Goodwin Model with Investment Lag

Goodwin (1951) constructed a business cycle model with nonlinear acceleration
principle of investment and showed that the model gives rise to cyclic oscilla-
tions when its stationary state is locally unstable. Goodwin’s basic model is
summarized as a 1D nonlinear differential equation,

εẏ(t)− ϕ(ẏ(t)) + (1− α)y(t) = 0,

where a time variable y is national income, α the marginal propensity to con-
sume, which is a positive constant and less than unity, ε a positive adjustment
coefficient of y and ϕ(ẏ(t)) denotes the induced investment that is dependent
on the rate of change in national income. The dot stands for differentiation
with respect to time t. Goodwin’s model adopts the nonlinear acceleration prin-
ciple, according to which investment is proportional to the change in national
income in a neighborhood of the equilibrium income but becomes inflexible for
the extremely larger or smaller values of income.
"In order to come close to reality" (p.11 of Goodwin (1951)), the production

lag θ between decisions to invest and the corresponding outlays is introduced
into the above model and then the modified model becomes

εẏ(t)− ϕ(ẏ(t− θ)) + (1− α)y(t) = 0. (6)

This is a neutral delay nonlinear differential equation in which θ is the fixed
time lag. Since it is difficult to analytically solve this delay nonlinear model,
it is a natural way to use a tractable approximation of (6). In particular, to
investigate dynamics, we rewrite the equation as

εẏ(t+ θ)− ϕ(ẏ(t)) + (1− α)y(t+ θ) = 0,

and expands it with respect to θ around θ = 0 to obtain the following second-
order nonlinear differential equation:

εθÿ(t) + [ε+ (1− α)θ]ẏ(t)− ϕ(ẏ(t)) + (1− α)y(t) = 0.

Clearly, y(t) = 0 for all t is a stationary state of this equation. Its asymp-
totic behavior is determined by the eigenvalues, which are the solutions of the
characteristic equation,

εθλ2 + [ε+ (1− α)θ − υ]λ+ (1− α) = 0, (7)

where υ = ϕ
0
(0). The characteristic roots are

λ1,2 =
−k ±

p
k2 − 4εθ(1− α)

2εθ
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where k = ε + (1 − α)θ − υ. It follows that the product of the characteristic
roots is positive since 0 < α < 1 and both ε and θ are positive:

λ1λ2 =
1− α

εθ
> 0,

which excludes the possibility of saddle stationary point. It also follows that
the sum of the characteristic roots can be of either sign,

λ1 + λ2 = −
ε+ (1− α)θ − υ

εθ
R 0.

Given the values of α and ε, the indeterminacy of the sign of the last equation
means that the (υ, θ)-space is divided into two parts by the partition line

υ = ε+ (1− α)θ.

For all υ above this line, the sum of the characteristic roots is positive, hence
the stationary state is locally unstable. In the same way, the stationary state is
locally asymptotically stable for all υ below this line.
Continuously distributed time delay is an alternative approach to deal with

time delay in investment. If we adopt it and denote the expected change of
national income at time t by ẏe(t), then Goodwin’s delayed equation (6) can be
written as the system of Volterra-type integro-differential equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

εẏ(t)− ϕ(ẏe(t)) + (1− α)y(t) = 0,

ẏe(t) =

tZ
0

1

θ
e−

t−s
θ ẏ(s)ds,

(8)

where θ is a positive real parameter which is associated with the length of the
delay. The second equation of (8) shows that the weighting function of the past
changes in national income gives the most weight to the most recent income
change and the weight is exponentially declining afterwards. Before turning
to a closer examination of this model, we rewrite it as a system of ordinary
differential equations. The time-differentiation of the second equation of (8)
gives a simple equation for the new variable z = ẏe:

ż(t) =
1

θ
(ẏ(t)− z(t)) . (9)

Solving the first equation for ẏ, replacing ẏe with z, replacing ẏ in (9) with
the new expression of ẏ and then adding the new dynamic equation of z will
transform the system of the integro-differential equations to the following 2D
system of ordinary differential equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẏ(t) = −1− α

ε
y(t) +

1

ε
ϕ(z(t)),

ż(t) =
1

θ

µ
−1− α

ε
y(t) +

1

ε
ϕ(z(t))− z(t)

¶
.

(10)
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The Jacobian matrix of this system at y = z = 0 has the form

JG =

⎛⎜⎜⎝
−1− α

ε

ν

ε

−1− α

εθ

1

θ

³ν
ε
− 1
´
⎞⎟⎟⎠ . (11)

The corresponding characteristic equation is quadratic in λ:

λ2 +
ε+ (1− α)θ − ν

εθ
λ+

1− α

εθ
= 0.

Notice that this characteristic equation is equivalent to the characteristic equa-
tion (7). It follows that the local stability conditions are also identical. This
means that the two delay dynamic systems generate the same dynamics in the
neighborhood of θ = 0.
We now turn our attention to the dynamics of (8) when θ is large. It is

well-known that the Goodwin model generates a limit cycle when its stationary
point is locally unstable. Goodwin (1951) assumed a piecewise linear invest-
ment function in his simulations. We numerically confirm his result but for the
sake of analytical convenience, we assume a hyperbolic tangent type investment
function:

ϕ(ẏ) = δ (tanh(ẏ − a)− tanh(−a)) , δ > 0 and a = 1. (12)

We perform numerical simulations with the parameter values ε = 0.5 and
α = 0.6 as in Goodwin (1951). To make the stationary point locally unstable,
we take θ = 0.8 and δ = (1 + a2)(ε+ (1− α)θ) + 0.01. The numerical result is
illustrated in Figure 1 in which two trajectories, one continuous line starting at
point a and the other dotted line at point b, are seen to converge to the limit
cycle.

Figure 1. Existence of a stable limit cycle
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Recently, Matsumoto (2009) reexamined Goodwin’s model and showed the coex-
istence of multiple limit cycles, a stable cycle surrounding a unstable cycle when
the stationary state is locally stable. This is illustrated in Figure 2 in which there
are two limit cycles depicted as bold curves and the two trajectories starting at
points a and b converge to the outer limit cycle whereas a trajectory starting
at point c approaches the stable stationary point. A parametric difference be-
tween the first simulation and the second simulation is that only the value of δ
is changed to (1 + a2)(ε+ (1− α)θ)− 0.01 from (1 + a2)(ε+ (1− α)θ) + 0.01.

Figure 2. Co-existence of a stable and an unstable limit cycle

3.2 Kaldor-Kalecki Model with Investment Lag

Kaldor (1940) presented a business cycle model in which investment was posi-
tively related to the levels of income via a nonlinear relationship. Kalecki (1935)
added a lag between the investment decision and the installation of investment
goods. His model used a linear difference-differential equation to generate cyclic
dynamics. The Kaldor-Kalecki model is a combination of nonlinear investment
and a time lag in the capital accumulation. Let Y be the national income and
K the capital stock. Then the Kaldor-Kalecki model can be written as⎧⎨⎩ Ẏ (t) = α [I(Y (t),K(t))− S(Y (t))] ,

K̇(t) = I(Y (t− θ),K(t))− δK(t),

(13)

where I(Y,K) is an investment function and S(Y ) is the saving function. Invest-
ment depends positively on income and negatively on capital, so dI/dY = IY >
0 and dI/dK = IK < 0. Furthermore, it takes a S-shaped profile with respect to
Y indicating that investment becomes inflexible for low as well as high levels of
income. Savings depends on income in the usual way, i.e., 0 < dS/dY = SY < 1.
We assume also that IY − SY > 0 at the fixed point of (13), that is, investment
increases faster than savings as national income increase in a neighborhood of
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the fixed point, following Kaldor. In addition, α > 0 is the adjustment coeffi-
cient and δ > 0 is the depreciation rate of the capital. The first equation of (13)
states that income changes proportionally to the excess demand in the goods
market. The second equation is a standard capital accumulation equation but
includes a time lag θ.
Consider first the local stability of (13) without time delay (i.e., θ = 0),

which is equivalent to the original Kaldor model. The Jacobian matrix has the
form

JK =

µ
α(IY − SY ) αIK

IY IK − δ

¶
with the determinant

detJK = α(IY − SY )(IK − δ)− αIKIY

and the trace
trJK = α(IY − SY ) + (IK − δ).

Kaldor (1940) made two basic assumptions: detJK > 0 in order to exclude
the possibility that a stationary point is saddle and trJK < 0 to make the
stationary point unstable. As seen in Chang and Smyth (1971), the gist of
Kaldor’s argument can be translated to show an existence of an endogenously
persistent fluctuation by applying the Poincáre-Bendixson theorem. For this
end, the local instability of the stationary point is the first requirement. Figure
3 illustrates the birth of a Kaldorian limit cycle with the following configuration
of the model: The investment function is separable with respect to Y and K,

I(Y,K) = φ(Y ) + βK, β < 0,

where φ(Y ) is assumed to be a symmetric S-shaped function,

φ(Y ) =
A

1 + e−BY
− A
2
, A > 0 and B > 0,

and the parameters are specified asA = 4, B = 1, c = 0.6, α = 0.8, β = −0.2 and
δ = 0.05. It can be seen that the limit cycle attracts two different trajectories,
one starting at point a and the other starting at point b in the neighborhood of
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the stationary point.

Figure 3. Existence of a Kaldorian limit cycle

Although we numerically confirm the existence of the Kaldorian limit cycle when
the stationary point is locally unstable, we are interested in the destabilizing
effect caused by a delay in investment so that the stationary point becomes
asymptotically stable when trJK < 0. In Figure 4, two trajectories belonging
to the two different initial points a and b spiral toward the stationary point
when β = −0.4 and δ = 0.2 with the other parameters being unchanged.

Figure 4, A stable Kaldorian stationary point

Now we are back to the delay Kaldor-Kalecki model (13). We first rewrite
the capital accumulation equation as

K̇(t+ θ) = I(Y (t),K(t+ θ))− δK(t+ θ).
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If the time lag is small enough, then linearizing it with respect to θ around θ = 0
gives

K̇(t)− {I(Y (t),K(t))− δK(t)}+
n
K̈(t)− IKK̇(t) + δK̇(t)

o
θ = 0.

Introducing the new variable, Z(t) = K̇(t), the delayed Kaldor-Kalecki model
is reduced to a 3D system of ordinary differential equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ẏ (t) = α( I(Y (t),K(t))− S(Y (t)) )

K̇(t) = Z(t)

Ż(t) =
1

θ
{I(Y (t),K(t))− δK(t)}+ {(IK − δ)− 1

θ
}Z(t).

(14)

The Jacobian matrix is

JD =

⎛⎜⎝ α(IY − SY ) αIK 0
0 0 1
1

θ
IY

1

θ
(IK − δ) (IK − δ)− 1

θ

⎞⎟⎠
with the determinant,

detJD = −
detJK

θ
< 0

and the trace
trJD = trJK −

1

θ
< 0,

where the inequalities are due to the assumptions detJK > 0 and trJK < 0 in
the Kaldor model. The characteristic equation of JD is

λ3 + a1λ
2 + a2λ+ a3 = 0, (15)

where the coefficients are

a1 = −trJD > 0,

a2 = α(IY − SY )(IK − δ)− 1
θ
(α(IY − SY ) + (IK − δ)) ,

a3 = −detJD > 0.

If we assume continuously distributed time lag in the capital accumulation
process, then Y (t−θ) is replaced by the expected income Y e(t), which is defined
as the weighted average of the past realized incomes from zero to time t,

Y e(t) =

Z t

0

1

θ
e−

t−s
θ Y (s)ds.
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The delay 2D Kaldor-Kalecki model (13) can be reduced to a 3D system of
ordinary differential equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ẏ (t) = α [I(Y (t),K(t))− S(Y (t))] ,

K̇(t) = I(Y e(t),K(t))− δK(t),

Ẏ e(t) =
1

θ
(Y (t)− Y e(t)) ,

(16)

where the last equation is obtained by time differentiation of Y e(t). The Jaco-
bian matrix at the stationary point is

JC =

⎛⎜⎝ α(IY − SY ) αIK 0
0 IK − δ IY
1

θ
0 −1

θ

⎞⎟⎠ .
It can be easily checked that the Jacobian matrix JC has the same characteristic
equation as (15). Hence two different dynamic systems (14) and (16) generate
the same dynamics in a neighborhood of the stationary point if θ is sufficiently
small. According to the Routh-Hurwitz stability criterion, a necessary and
sufficient condition that all roots of the cubic characteristic equation (15) have
negative real parts is that a1 > 0, a2 > 0, a3 > 0 and a1a2 − a3 > 0. Notice
that a1 > 0 and a3 > 0 are already shown to be positive due to Kaldor’s
assumptions. For sufficiently small θ, a2 could be positive because its second
term −trJK/θ > 0 is positive and can dominate the first term. By the same
token a1a2−a3 can be positive for a small θ. Hence it is safe to presume that the
delay Kaldor-Kalecki system is stable when the investment delay is sufficiently
small. Since a small θmeans a small lag effect, this result is reasonable under the
assumption that the original Kaldor model is stable as shown in Figure 4. The
next question which we raise is whether or not the stability of the stationary
state changes as the lengths of delays increase. We consider this question in
model (16) only, since (14) is inappropriate for a large θ.
Now we turn our attention to the dynamic behavior of the delay Kaldor-

Kalecki model with a large θ. As seen above, the coefficients a1 and a3 of the
characteristic equation are positive. However, the sign of a2 is not determined.
Solving a2 = 0 for θ yields the critical value of θ,

θ2 =
α(IY − SY ) + (IK − δ)

α(IY − SY )(IK − δ)
> 0

implying that a2 is positive for θ < θ2. By the definitions of the coefficients of
(15), we have

a1a2 − a3 =
−Aθ2 +Bθ − C

θ2
,
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where

A = α(IY − SY )(IK − δ) [α (IY − SY ) + (IK − δ)] > 0,

B = [α(IY − SY ) + (IK − δ)]
2
+ αIKIY R 0,

C = α(IY − SY ) + (IK − δ) < 0.

Let us denote the numerator of the last equation by f(θ). Since f(θ) is a concave
quadratic polynomial, f(0) = −C > 0 implies that f(θ) = 0 has one positive
root, θ∗,

θ∗ =
B +

√
B2 − 4AC
2A

.

Since f(θ∗) = 0, f(θ) < 0 for θ > θ∗. Furthermore f(θ2) = (θ2)
2(−a3) < 0

and θ∗ < θ2 imply that a2 > 0 at θ = θ∗. To emphasize the dependency of
the coefficients on θ, we denote ai(θ) for i = 1, 2, 3. For θ = θ∗, a1(θ

∗)a2(θ
∗)−

a3(θ
∗) = 0 By replacing a3(θ

∗) of the characteristic equation with a1(θ
∗)a2(θ

∗),
we are able to factor the characteristic equation,

(λ+ a1(θ
∗))(λ2 + a2(θ

∗)) = 0

that can be explicitly solved for λ. One of the three roots is real and negative
whereas the other two are pure imaginary,

λ1 = −a1(θ∗) < 0 and λ2,3 = ±i
q
a2(θ

∗) = ±iξ.

In order to apply the Hopf bifurcation theorem, we have to show that the
real parts of the complex roots are sensitive to a change in the bifurcation
parameter, θ. Suppose that λ is a function of θ. By implicitly differentiating
the characteristic equation with respect to θ we have

dλ(θ∗)

dθ
=

1

θ
∗2

λ(θ∗)2 − trJKλ(θ∗) + detJK
3λ(θ∗)2 + 2a1(θ

∗)λ(θ∗) + a2(θ
∗)
.

Substituting λ = ±iξ and arranging terms yield

Re

µ
dλ(θ∗)

dθ

¶
=

1

θ
∗2

ξ2 − detJK − a1(θ∗)trJK
2(ξ2 + a1(θ

∗)2)
,

where the denominator is positive. We can show that the numerator is never
zero. Substituting

a1(θ
∗) = −trJK +

1

θ∗

and
ξ2 = a2(θ

∗) = detJK + αIKIY −
1

θ
trJK

into the numerator and assuming that the resultant expression is zero yield

(trJK)
2 + αIKIY −

2

θ
trJK = 0.
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However a2(θ
∗)a1(θ

∗) = a3(θ
∗) means thatµ

1

θ∗

¶µ
detJK + αIKIY −

1

θ∗
trJK

¶
=
1

θ∗
detJK

which can be rewritten as

trJK

∙
1

θ∗2
− α (IY − SY ) (Ik − δ)

¸
= 0,

where the equality is impossible, since trJK < 0, IY − SY > 0, Ik − δ < 0 and
θ∗ > 0. Therefore we have

Re

µ
dλ(θ∗)

dθ

¶
6= 0.

This implies that the real parts of the complex roots change signs as θ − θ∗

changes from negative to positive values. That is, it guarantees the existence of
Hopf bifurcation.

Theorem 2 The Kaldor-Kalecki model with continuously distributed lags hav-
ing an exponential kernel function is locally asymptotic stable for 0 ≤ θ < θ∗

while it loses the stability at θ = θ∗ via a Hopf bifurcation.

It is uncertain whether the limit cycle is subcritical or supercritical. In Figure
5, simulation results are shown with θ = 0.7 and parameter values c = 0.6,
α = 0.8, β = −0.4 and δ = 0.2 , which are the same as in the simulation study
presented in Figure 4. The critical value is θ∗ ' 0.37. The delay Kaldor-Kalecki
model generates a supercritical limit cycle due to the destabilizing effect of the
investment lag.

Figure 5. Existence of a limit cycle in the delay Kaldor-Kalecki model
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3.3 Delay Nonlinear Cournot Model

We will examine a dynamic Cournot duopoly game when a firm has an informa-
tion lag in the receipt of information about its competitor’s output. We assume
that each firm adaptively adjusts its output to the desired level of output:⎧⎨⎩ ẋ1(t) = k1 {R1(x2(t− θ1))− x1(t)} ,

ẋ2(t) = k2 {R2(x1(t− θ2))− x2(t)} ,
(17)

where xi, ki, θi and Ri(xj) are output, a positive adjustment coefficient, a time
lag and the best reply function of firm i for i, j = 1, 2 and i 6= j. Special duopoly
models such as the classical Cournot model with a linear price function and a
nonlinear Cournot model with a unit-elastic price function will be considered
later to specify the best reply functions.
To consider a linearization of the system, we suppose that the information

lags are sufficiently small and an advance θ1 time in the first equation of (17)
and an advance θ2 time in the second one:

ẋ1(t+ θ1) = k1 {R1(x2(t))− x1(t+ θ1)} ,

ẋ2(t+ θ2) = k2 {R2(x1(t))− x2(t+ θ2)} .

Define the difference between the left-hand side and the right-hand side by

F1(θ1) = ẋ1(t+ θ1)− k1 {R1(x2(t))− x1(t+ θ1)}

and
F2(θ2) = ẋ2(t+ θ2)− k2 {R2(x1(t))− x2(t+ θ1)} .

Differentiating each function with its lag at θi = 0 and arranging terms yield

θ1ẍ1(t) = −k1θ1ẋ1(t)− ẋ1(t) + k1 {R1(x2(t))− x1(t)}

and
θ2ẍ2(t) = −k2θ2ẋ2(t)− ẋ2(t) + k2 {R2(x1(t))− x2(t)} .

Introducing the new variables y1(t) = ẋ1(t) and y2(t) = ẋ2(t), we can transform
the 2D delay differential equation system (17) into the following 4D system of
ordinary differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = y1(t),

ẋ2(t) = y2(t),

ẏ1(t) =
k1
θ1
{R1(x2(t))− x1(t)}−

µ
k1 +

1

θ1

¶
y1(t),

ẏ2(t) =
k2
θ2
{R2(x1(t))− x2(t)}−

µ
k2 +

1

θ2

¶
y2(t).

(18)
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The Jacobian matrix is

JL =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 0
0 0 0 1

−k1
θ1

k1
θ1
γ1 −

µ
k1 +

1

θ1

¶
0

k2
θ2
γ2 −k2

θ2
0 −

µ
k2 +

1

θ2

¶

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where γi is the derivative of Ri(xj) evaluated at the stationary point. The
characteristic equation of JL can be written as

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0, (19)

where
a0 = θ1θ2,

a1 = θ1 + θ2 + (k1 + k2)θ1θ2,

a2 = 1 + k1k2θ1θ2 + (k1 + k2)(θ1 + θ2),

a3 = k1 + k2 + k1k2(θ1 + θ2),

a4 = k1k2(1− γ1γ2).

(20)

The above procedure is suitable for a situation in which the information lag
is fixed and sufficiently small. If the lags are uncertain, we can model time lags
in a continuously distributed manner. If firm 1’s expectation of the competitor’s
output is denoted by xe2(t) and firm 2’s expectation of the competitor’s output
is denoted by xe1(t) and both expectations are based on the entire history of the
outputs from zero up to t with exponentially decreasing weights, then the delay
differential equation system (17) can be written as the 2D system of integro-
differential equations:⎧⎨⎩ ẋ1(t) = k1 {R1(xe2(t))− x1(t)} ,

ẋ2(t) = k2 {R2(xe1(t))− x2(t)} ,
(21)

with

xe1(t) =

tZ
0

1

θ1
e−

t−s
θ1 x1(s)ds

xe2(t) =

tZ
0

1

θ2
e−

t−s
θ2 x2(s)ds.
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This system is equivalent to the following 4D system of ordinary differential
equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = k1 {R1(xe2(t))− x1(t)} ,

ẋ2(t) = k2 {R2(xe1(t))− x2(t)} ,

ẋe1(t) =
1

θ1
(x1(t)− xe1(t)),

ẋe2(t) =
1

θ2
(x2(t)− xe2(t)).

The Jacobian of this system can be written as⎛⎜⎜⎜⎜⎜⎝
−k1 0 0 k1γ1
0 −k2 k2γ2 0
1

θ1
0 − 1

θ1
0

0
1

θ2
0 − 1

θ2

⎞⎟⎟⎟⎟⎟⎠ .

Simple calculation shows that the characteristic equation of this matrix can be
written as a quartic equation in λ:

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0

with the same coefficients as defined in (20). The identical characteristic equa-
tion means that (17) and (18) exhibit the same dynamics in a neighborhood of
the stationary point as Theorem 1 claims.
If γ1γ2 < 1, then all coefficients of the characteristic equation are positive,

and the Routh-Hurwitz theorem implies that the roots have negative real parts
if and only if ¯̄̄̄

a1 a0
a3 a2

¯̄̄̄
> 0 and

¯̄̄̄
¯̄ a1 a0 0
a3 a2 a1
0 a4 a3

¯̄̄̄
¯̄ > 0.

The first condition is satisfied because the second-order determinant is always
positive,

(k1 + k2)(1 + k1θ2)(1 + k2θ2)θ
2
1 + θ2(1 + (k1 + k2)θ1) + θ1(1 + (k1 + k2)θ2) > 0.

The second condition depends on the value of γ1γ2. Expanding the third-order
determinant, and solving the inequality gives a lower bound for γ1γ2, and by
combining it with the upper bound γ1γ2 < 1, we get the following condition for
the local asymptotic stability of the stationary state:

1 > γ1γ2 > −
(k1 + k2)(1 + k1θ1)(1 + k2θ1)(θ1 + θ2)(1 + k1θ2)(1 + k2θ2)

k1k2(θ1 + θ2 + θ1θ2(k1 + k2))2
.

(22)
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In the case of the linear Cournot model, the price function is given by

p = a− b(x1 + x2)

and so the profit function of firm i is defined as

πi = (a− b(x1 + x2))xi − cixi,

where ci is the constant marginal cost. The best reply function and its derivative
are

Ri(xj) =
a− ci − bxj

2b
and γi = −

1

2
.

Since 1 > γ1γ2 = 1/4 > 0, (22) is satisfied. Hence the delay linear Cournot
model is always stable for any values of information lags, θi.
In the case of the unit-elastic demand, the price function is given by

p =
1

x1 + x2

and the profit function of firm i is defined as

πi =
xi

x1 + x2
− cixi.

Assuming an interior solution, the profit maximization yields a bell-shaped best
reply function,

Ri(xj) =

r
xj
ci
− xj .

Cournot outputs are determined by an intersection of the best reply curves,

xC1 =
c2

(c1 + c2)2
and xC2 =

c1
(c1 + c2)2

.

The derivatives of the best response functions evaluated at the Cournot point
are derived as

γ1 = −
c1 − c2
2c1

and γ2 =
c1 − c2
2c2

.

If there are no time lags, the dynamic system is represented by (17) with θi = 0.
The asymptotic properties of the trajectories x1(t) and x2(t) depend on the
location of the eigenvalues of the Jacobian matrix of the system. The eigenvalues
are obtained by solving the associated characteristic equation,

λ2 + (k1 + k2)λ+ k1k2(1− γ1γ2) = 0.

Here k1 + k2 > 0 by the definition of the adjustment coefficient and γ1γ2 < 1,
since

γ1γ2 = −
(1− c)2
4c

with c =
c2
c1
.
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The roots of the characteristic equation have negative real parts. Hence the
nonlinear Cournot model with no information lags is always asymptotically sta-
ble.1

Now we examine the asymptotic behavior of the delay nonlinear Cournot
model. The value of γ1γ2 can be any negative number between −∞ and zero
by the appropriate choice of the cost ratio c. Notice that the stability condition
(22) is violated if γ1γ2 is negative with large absolute value. In particular,
Figure 6 illustrates the dynamic behavior of the trajectories when the stability
condition is violated, in which the parameters are specified as k1 = k2 = 0.8,
θ1 = θ2 = 2, c1 = 1 and c2 = 0.045.2 It can be seen that a trajectory starting at
the dot point converges to a limit cycle surrounding a locally unstable Cournot
point.

Figure 6. The birth of a Cournot cycle

4 Concluding Remarks
Delay models with fixed lags and models with continuously distributed delays
were compared in this paper. By selecting exponential kernel function, we first
proved that with small delays the two types of dynamics generate identical local
asymptotic properties. However with large delays this interesting equivalence
was not true anymore.
Three particular economic models (Goodwin’s business cycle model, Kaldo-

rian business cycle model with Kaleckian investment lag and the Cournot oligopoly

1The discrete-time version of the nonlinear Cournot model has been extensively studied,
and it is demonstrated that simple nonlinear best reply functions can generate a very rich
dynamics involving chaos and multistability (Puu (2003), Puu and Sushuko (2002) and Bischi,
et al. (2009)). The delay differential Cournot model with product differentiation is considered
in Matsumoto and Szidarovszky (2007).

2A trajectory seems to cross itself as dynamics generated in a 4D space is projected to a
2D space.
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model) illustrated the theoretical results, and computer simulations showed the
emerge of more complex dynamics if a large value of time delay was selected.
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