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1 Introduction

In the recent literature, several authors have demonstrated that nonlinear
oligopoly competition may be chaotic. Rand (1978) considers duopoly chaos
from the mathematical point of view, Puu (1991) and Kopel (1996) exam-
ine duopoly chaos from the economic point of view, Puu and Sushko (2002)
and Bischi, Chiarella, Kopel and Szidarovszky (2008) give a comprehensive
summary of recent developments in nonlinear oligopoly theory. These works
indicate that dynamic nonlinear oligopoly models may explain various com-
plex behavior observed in real economy. It has been well-known that ad-
vertisement is one of the most important activities in economy. Since the
publication of the seminal paper of Nerlove and Arrow (1962), many studies
have been devoted to determine optimal advertising expenditures over time
in the dynamic optimal control framework in which the goodwill of the firm
is the stock variable and the advertisement expenditure is the flow variable.
See Sethi (1977) and Feichtinger, Hartl and Sethi (1994) for comprehensive
survey of the literature on advertisement policy. In the existing literature,
the authors have ignored the advertisement effects on oligopoly competition.
The only exception is Ahmad, Agiza and Hassan (1999) (AAH, henceforth)
who have studied advertisement in Cournot duopoly models and consider
chaos control by applying OGY method. In spite of their efforts, it has
not yet been fully known how advertisement affects the nonlinear oligopoly
competition.
The main purpose of this paper is to provide a possible and positive

answer to this question. For this purpose, we use the dynamic model of
AAH and present a constructive method to derive stationary state outputs
in terms of model’s parameters. With this explicit form of the stationary
state, we can provide the explicit forms of local stability conditions and,
with this condition, we can proceed to global dynamics in the case of local
unstable stationary points. Another interesting finding of this paper is that
the dynamic system shows a half-pitchfork bifurcation on the way to chaos: at
the bifurcation points, only half of the periodic points gives birth of period-
doubling points.
This paper is organized as follows. Section 2 introduces the dynamic

model and determines its stationary state. Section 3 discusses the local
dynamics and derives the stability condition on which our main study is
based. Section 4 examines global dynamics under homogenous advertise-
ment strategy in which the two firms adopt the same strategy and under the
heterogeneous advertisement strategy in which the two firms adopt different
strategies. Section 5 makes concluding remarks.
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2 4D Model

We reconsider the nonlinear dynamic duopoly model with advertisement in-
troduced by AAH:

q1(t+ 1) = (1 + x1(t))

µr
q2(t)

c1
− q2(t)

¶
,

q2(t+ 1) = (1 + x2(t))

µr
q1(t)

c2
− q1(t)

¶
,

x1(t+ 1) = (1− r1)x1(t) + a1x1(t)(1− x1(t))− b1x1(t)x2(t),

x2(t+ 1) = (1− r2)x2(t) + a2x2(t)(1− x2(t))− b2x1(t)x2(t).

(1)

Here ri represents a positive depreciation rate which is assumed to be less
than unity, ai is a positive constant representing advertisement outlay, bi is a
positive constant showing the effect of the competition on the advertisement
of both firms, ci is a positive constant giving the marginal cost of production,
xi is the goodwill representing the effects of current and past advertising out-
lays and qi is the output produced. Dynamics is considered in discrete time
that is denoted by t. The whole model is divided into two submodels. The
first two equations construct a dynamic model of output with advertisement
xi, which is a variant of the nonlinear duopoly model studies earlier by Puu
(2003). The last two equations represent a dynamic model of the advertise-
ment, which is based on the nonlinear models for advertisement introduced
by Luhta and Virtanen (1996). It can be seen that the advertisement model
affects output dynamics via oscillations of xi but not vise versa.

2.1 Advertisement Model

The advertisement equations incorporate three different effects: the deprecia-
tion effect, denoted by ri, shows that the goodwill contributes less on demand
as time goes on; the nonlinear second term indicates that the advertising out-
lays increase the goodwill when its level is relatively small and decrease it
when the level becomes larger than the threshold; and the interdependency
effect is given by the third term. In this study, for the sake of simplicity, we
pay our attentions to the first two effects on output dynamics and defer the
discussion on the third effect by making the following assumption,1

Assumption 1 b1 = b2 = 0.
1A more general model with positive bi will be considered in a subsequent paper.
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As a consequence of this assumption, the advertisement model becomes
a system of two independent equations and thus its dynamics becomes un-
coupled. Furthermore, to simplify the exposition, let us denote the right
hand sides of the last two equations in (1) by ϕ1(x1) and ϕ2(x2). Then the
advertisement model can be rewritten as

x01 = ϕ1(x1),

x02 = ϕ2(x2),
(2)

where 0 denotes the unit-time advancement operator. Solving x0i = xi pro-
vides the fixed point, xei , of the advertisement model:

xe1 = 1−
r1
a1
and xe2 = 1−

r2
a2
.

To make these fixed points economically feasible, we assume

Assumption 2 ri < ai for i = 1, 2.

Under Assumption 1, the advertisement model becomes, the so called,
folded handkerchief map in which ϕi(xi) is a unimodal map being topolog-
ically conjugated to the logistic map. Dynamic characteristic of this map
is now well-known. It generates rich dynamics ranging from periodic cycles
to chaotic behavior. In order to guarantee the feasibility (i.e., nonnegativity
and boundness) of the trajectories generated by the advertisement model,
we need to introduce a confinement condition. The advertisement model is
subject to the non-negativity constraint if

0 ≤ xi ≤
1 + ai − ri

ai
.

Solving dϕi
dxi
= 0 gives the maximizer,

xmi =
1 + ai − ri

2ai
,

and the maximum value of xi:

ϕ(xmi ) =
(1 + ai − ri)2

4ai
.

Given ai and ri, a trajectory xi stays within this feasible region for all t if
the maximum value is transformed into the non-negative region:

(1 + ai − ri)2
4ai

≤ 1 + ai − ri
ai

,

which implies the following confinement condition for xi:
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Assumption 3 ai − ri ≤ 3 for i = 1, 2.

Due to Assumptions 2 and 3, the feasible set of (a1, a2) is defined as

A = {(a1, a2) | ri < ai ≤ 3 + ri for i, j = 1, 2.} .

2.2 Output model

Assuming that the inverse demand function is isoelastic and the production
costs are linear, Puu (2003) constructs nonlinear duopoly and triopoly mod-
els and shows that these models can be chaotic if nonlinearities involved
become stronger. In (1), advertisement effects are introduced into Puu’s
duopoly model in which two competitors, firm 1 and firm 2, produce non-
differentiated good of quantities q1 and q2 with linear production costs, where
the marginal costs are c1 and c2, respectively. Following the traditional spirit
of the classical Nerlove-Arrow optimal advertisement model, we assume that
each firm has its own goodwill and can sell more product if it has better good-
will. One simple way to incorporate the effects of the goodwill is to assume
the following form of the inverse demand function that firm i perceives,

pi =
1

qi
1 + xi

+ qj

in which xi ≥ 0 denotes the advertisement effect or the value of the goodwill.
xi = 0 implies no advertisement effects and thus the two goods becomes
identical. When xi > 0, firm i can sell larger quantity due to the positive
advertisement effects, taking the competitor’s output qj and market price
given. Thus the profit of firm i is given as

πi =
qi

qi
1 + xi

+ qj
− ciqi

which is maximized with respect to qi. Using the first-order condition, we
can solve for the reaction function,

qi = (1 + xi)

µr
qj
ci
− qj

¶
for i = 1, 2.

These considerations provide a microeconomic interpretation of the reaction
functions assumed in (1).
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To simplify the exposition, again, let us denote the right hand sides of
the first two equations of (1) by φ1(q2, x1) and φ2(q1, x2). Then the output
model can be rewritten as

q01 = φ1(q2, x1),

q02 = φ2(q1, x2).
(3)

For xi = 0, the output dynamic model is reduced to the nonlinear duopoly
model of Puu (2003) in which complex dynamics can be generated, depend-
ing on the production cost ratio. Indeed it has been shown that the sta-
tionary point of Puu’s model is asymptotically stable if and only if the cost
ratio belongs to the interval ( 1

3+2
√
2
, 3 + 2

√
2). It is unstable otherwise, but

goes through period-doubling bifurcation to chaos if the ratio decreases from
1

3+2
√
2
to 4

25
or increases from 3 + 2

√
2 to 25

4
. Furthermore, it is numerically

established that the dynamics is symmetric with respect to unit value of the
marginal cost ratio. Thus it is safe to assume that the ratio is greater than
unity:

Assumption 4 c2 ≥ c1.

In order to obtain the fixed points of q1 and q2 in (3), we set q0i = qi,
assume that the fixed point (xe1, x

e
2) of the advertisement dynamics is given

and then rewrite the output dynamics as

q1 + (1 + x
e
1)q2 = (1 + x

e
1)

r
q2
c1
,

q2 + (1 + x
e
2)q1 = (1 + x

e
2)

r
q1
c2
.

(4)

Squaring both sides of these equations, dividing the resulting first equation
by the second one and introducing the new variables

z =
q2
q1
, c =

c2
c1
, d1 = 1 + x

e
1 and d2 = 1 + x

e
2,

we obtain the following relation

cz =

µ
d2
d1

1 + d1z

d2 + z

¶2
. (5)

This is a cubic equation for unknown z. Although it is possible to derive
an explicit form of the real root of (5), the form has a very complicated
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expression which is not useful for the following analysis. Thus, instead of
solving the equation, we look for the intersection of the right and left hand
sides of (5) which determines the fixed point of the output ratio.
Let us denote the left hand side by f(z) and the right hand side by g(z):

f(z) = cz and g(z) =
µ
d2
d1

1 + d1z

d2 + z

¶2
.

It can be seen that g(z) has upper and lower bounds and is positive-sloping,

g(0) =
1

(d1)2
< 1,

lim
z→∞

g(z) = (d2)
2 > 1,

and

g0(z) = 2

µ
d2
d1

¶2
(1 + d1z)(d1d2 − 1)

(d2 + z)3
> 0.

Clearly, f(z) is strictly increasing, linear and f(0) = 0. An examination of the
solution formula of the cubic equations shows that there is a unique positive
intersection α of f(z) and g(z) if 1 < di < 2. It corresponds to the real root
of the cubic equation and determines the ratio of outputs at the intersection:

α = α(c, d1, d2) =
qe2
qe1
,

where qei is the stationary output of firm i.
Figure 1 gives the graphical representation of the stationary output ratio,

in which two graphs of f(z) with cA = 1.15 and cB = 1.5, two graphs of
g(z) with ( r1

a1
, r2
a2
) = (0.6, 0.2) denoted by gI(x) and with ( r1a1 ,

r2
a2
) = (0.2, 0.6)

denoted by gII(x) are shown. There are four intersections, A,B, a, b of these
functions as illustrated. This figure reveals two issues: first, the ratio of
outputs can be larger than unity even under Assumption 4 and second, the
effect on the output ratio caused by a change in c is negative. To check the
first issue, we consider g(z) at z = 1 which, after arranging terms, is given
by

g(1) =

⎧⎪⎨⎪⎩
(2− r2

a2
)(3− r1

a1
)

(2− r1
a1
)(3− r2

a2
)

⎫⎪⎬⎪⎭
2

.

It is obvious that the ratio α is less than unity if g(1) ≤ c because the
intersection of f(z) and g(z) surely occurs in the interval (0, 1) as shown
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by points B, a and b, and that it is greater than unity if g(1) > c as given
by point A.2 It is also shown that g(1) ≤ 1 if r1

a1
≤ r2

a2
and g(1) > 1 if

r1
a1
> r2

a2
in which case g(1) > c could be possible. The second issue is clear

as the intersection moves to B from A or to b from a, respectively, when the
marginal cost ratio increases from cA to cB, These results are summarized in
the following theorem:

Theorem 1 (1) If
r1
a1
≤ r2
a2
or if

r1
a1
>
r2
a2
and c ≥ g(1), then α ≤ 1; (2) If

r1
a1
>
r2
a2
and c < g(1), then α > 1, and (3)

dα

dc
< 0.

aAaBaaab 1
z

cAaA

cAaa

cBaB

cBab

cz

A

B

a
b

cBz cAz

gIHzL

gIIHzL

Figure 1. Determinations of the output ratio

Substituting qe1 = αqe2 into the first and second equations of (4) and
solving each equation for qi provides the stationary values of the outputs in
terms of parameters ai, ci and ri,

qe1 =
α

c1

µ
d1

1 + αd1

¶2
=
1

c2

µ
d2

α+ d2

¶2
,

qe2 =
1

c1

µ
αd1

1 + αd1

¶2
=

α

c2

µ
d2

α+ d2

¶2
.

(6)

2g(1) takes the maximum value,
¡
4
3

¢2
, when r1

a1
= 1 and r2

a2
= 0. Therefore, α < 1

always if the marginal cost ratio c is larger than this maximum value.

8



Since α is the real root of the cubic equation (5), it is difficult and complicated
to analytically derive the effects on the stationary outputs caused by changes
in parameter values but numerical investigations indicate that for firm 1,

∂qe1
∂( r1

a1
)
< 0,

∂qe1
∂( r2

a2
)
< 0,

∂qe1
∂c

< 0,

and for firm 2,
∂qe2
∂( r1

a1
)
> 0,

∂qe2
∂( r2

a2
)
< 0,

∂qe2
∂c

< 0.

Negative derivatives of qe1, q
e
2 and α with respect to c imply that the elasticity

of qe2 with respect to c is larger in absolute value than the elasticity of q
e
1,

∂α

∂c
=

α

c

½
c

qe2

∂qe2
∂c
− c

qe1

∂qe1
∂c

¾
< 0⇒

¯̄̄̄
c

qe2

∂qe2
∂c

¯̄̄̄
<

¯̄̄̄
c

qe1

∂qe1
∂c

¯̄̄̄
.

As in the case of the advertisement dynamics, in order to avoid negative
output values, we need a confinement condition for the output. To this end,
we first derive the domain of the output generating function φi(qj, xi) of firm
i

0 ≤ qj ≤
1

ci
,

and then look for the condition for which the output stays in this domain
for all t. It is seen that φi(qj, xi) has a mound-shaped curve and takes its
maximum value

qmaxi =
1 + xi
4ci

at qmj =
1
4ci
.The output trajectory stays within the feasible region if φ1(q

max
2 ) ≤

1
c2
and φ2(q

max
1 ) ≤ 1

c1
. After arranging the terms, these conditions can be

rewritten as

4(1 + x1)(1 + x2)
2

(4 + (1 + x1)(1 + x2))
2 ≤ c ≤

(4 + (1 + x1)(1 + x2))
2

4(1 + x1)2(1 + x2)
.

For 0 ≤ x1 < 3 and 0 ≤ x2 < 3, the left hand side becomes strictly less
than unity and the right hand side becomes strictly greater than unity. As
mentioned above, xi has its upper bound, 1+ai−riai

, below 3 if ai ≥ 0.5. The
confinement condition needs to be taken into account when the stationary
state is unstable. As it will be shown later, ai is larger than 2 + ri when the
stationary state is unstable. This observation and Assumption 4 (i.e., c ≥ 1)
imply that the lower bound confinement condition on c is redundant. Thus
we rewrite the confinement condition of the output as follows:

c ≤ ψ(x1, x2), (7)
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where

ψ(x1, x2) =
(4 + (1 + x1)(1 + x2))

2

4(1 + x1)2(1 + x2)
. (8)

3 Local Stability

We next consider the local stability of the 4D dynamic system (1). The
Jacobian of the system at the fixed point reads

J =

⎛⎜⎜⎝
0 J12 J13 0
J21 0 0 J41
0 0 J33 0
0 0 0 J44

⎞⎟⎟⎠ ,
where

J12 = d1

µ
1

2
√
c1qe2
− 1
¶
, J13 =

qe1
d1
,

J21 = d2

µ
1

2
√
c2qe1
− 1
¶
, J24 =

qe2
d2
,

J33 = 1− (a1 − r1), and J44 = 1− (a2 − r2).

Its characteristic equation has the factored form

(λ2 − J12J21)(λ− J33)(λ− J44) = 0.

Denote by λ1,2 the roots of the first factor and by λ3 and λ4 the roots of the
second and third factors, respectively. The four roots are

λ1 =

s
d1d2

µ
1

2
√
c1qe2
− 1
¶µ

1

2
√
c2qe1
− 1
¶
,

λ2 = −λ1,
λ3 = 1− (a1 − r1) < 1,
λ4 = 1− (a2 − r2) < 1.

The 4D dynamic system is locally asymptotically stable if all roots are inside
the unit circle of the complex plane.
Clearly λ3 and λ4 are the eigenvalues of the advertisement model and

they are less than unity due to Assumption 3, implying that the slope of
the corresponding advertisement function evaluated at the fixed point is less
than unity. Thus if the slope is greater than −1, then the advertisement
model is stable. It is obvious that |λi| < 1 if ai < 2 + ri and |λi| > 1 if
ai > 2 + ri. Consequently, we obtain the following result.
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Lemma 1 The advertisement fixed point (xe1, x
e
2) is locally asymptotically

stable if r1 < a1 < 2 + r1 and r2 < a2 < 2 + r2.

The flip boundary is ai = 2 + ri on which λi is equal to −1 and thus
a loss of stability just occurs. As the parameter ai crosses this boundary
and increases further, a solution of the advertisement dynamic system goes
through a period doubling cascade to chaos, the most common route to chaos.
We now turn our attentions to the stability of the output dynamics. From

(6), we have

c1q
e
2 =

µ
d2

α+ d2

¶2
and

c2q
e
1 =

µ
αd1

1 + αd1

¶2
,

both of which are substituted into the right hand side of λ1 to obtain

λ1(= −λ2) =
1

2

p
(α−1 − d1) (α− d2).

Denoting dm = min(d1, d2) and noticing that 0 < di < 2, the expression
under the square root is negative, since

(α−1 − d1) (α− d2) = d1d2 − (αd1 + α−1d2)

< d1d2 − (α+ α−1)dm

< d1d2 − 2dm < 0.

Thus λ1 and λ2 are pure imaginary roots. (α−1 − d1) (α− d2) = −4 is the
Hopf boundary on which the absolute values of the eigenvalues become unity.
Hence, we obtain the following result.

Lemma 2 The fixed point (qe1, q
e
2) of the output model is locally asymptoti-

cally stable if (α−1 − d1) (α− d2) > −4.

From Lemma 1 and 2, the stability conditions of the 4D dynamic system
are summarized in the following way.

Theorem 2 The 4D dynamic system (1) is locally asymptotically stable if
r1 < a1 < 2 + r1, r2 < a2 < 2 + r2 and (α−1 − d1) (α− d2) > −4 where
di = 2− ri

ai
and α is the real solution of the cubic equation,

cα =

µ
d2
d1

1 + d1α

d2 + α

¶2
.
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4 Global Behavior

If any one or more of the local stability conditions is violated, then a trajec-
tory soon or later moves away from the fixed point. However, nonlinearities of
the model prevent the trajectory from globally diverging. As a consequence,
the trajectory neither converges nor diverges but keeps oscillating around the
fixed point. Indeed, if the trajectory crosses either the flip boundary or the
Hopf boundary, it exhibits various dynamics ranging from simple periodic
behavior to complex dynamics involving chaos. We will study such global
dynamics in this section. We will assume first that the firms adopt the ho-
mogeneous advertisement strategy in which ri = r and ai = a as a bench
mark case in Section 4.1, and then we will proceed to the heterogeneous
advertisement case in Section 4.2 in which r1 6= r2 and/or a1 6= a2.

4.1 Homogeneous Advertisement

We consider now the homogeneous case in which each firm has the same
depreciation rate and the same advertisement outlay, r1 = r2 = r and a1 =
a2 = a. The advertisement equations become identical in the sense that time
evolutions of two firms’ advertisements behave identically over time if the
same initial conditions are chosen. By this simplifying assumption, we can
write ϕ1 = ϕ2 = ϕ and call ϕ the advertisement map. The 4D dynamic
system is now written as

q0i = φi(qj, xi),

x0i = ϕ(xi) for i, j = 1, 2 and i 6= j.
(9)

The analysis of the dynamic behavior of this system is further divided into
three parts. First, the basin structures of the advertisement model and their
effect on the output dynamics is studied. Second, we restrict (9) to the
diagonal of the (x1, x2) space and characterize the output dynamics here,
and finally, we study the half-pitchfork bifurcation structure of the restricted
system, which means that at a bifurcation point, only a half of the periodic
points divides into two periodic points with period-doubling and the other
half of the periodic points does not .

4.1.1 Homogenous 4D Model

The stationary point of (9) in the homogenous case is the following:

qe1 =
1

c2

µ
d

α+ d

¶2
, qe2 =

1

c1

µ
αd

1 + αd

¶2
and xe = 1− r

a
,
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where xe = xe1 = xe2, d = 1 + xe and α = α(c, d, d). The advertisement
dynamics is described by the double logistic map. It is well-known that
each logistic map ϕ(xi) goes to chaos through period-doubling cascade; the
stationary state is attracting for a < r + 2, the stationary state becomes
repelling and an attracting period-2 cycle appears for r + 2 < a < r +

√
6,

the period-2 cycle becomes repelling and an attracting period-4 cycle appears
for r+

√
6 < a < r+2.54409, and so on. Cycles with odd period can also be

found: the onset of the period-3 cycle is at a = r+2
√
2, the onset for period-5

is a = r + 2.73817, and so forth. Accordingly, one of the main features of
the double logistic map is the birth of complicated dynamics and the other
is the coexistence of periodic cycles. We investigate the basin structures to
capture the latter feature.
In the period-2 region with a = 3 and r = 0.6, each ϕ(xi) has two period-

2 points xAi and x
B
i such that x

A
i = ϕ(xBi ) and x

B
i = ϕ(xAi ). Thus the double

logistic map has four points of the (x1, x2) plane that form two period-2 cy-
cles; A = (xA1 , x

A
2 ) ↔ B = (xB1 , x

B
2 ) on the diagonal and a = (xA1 , x

B
2 ) ↔

b = (xB1 , x
A
2 ) on the off-diagonal.

3 To avoid the emergence of complicated
dynamics, we consider the case in which the output model is stable if the
goodwill (that is, xi) is constant. By doing so, we can see which kind of
dynamics is produced by the logistic map and how the advertisement dy-
namics affects the output dynamics. Since it has two periodic cycles, the
double logistic map has two basins of attractions as shown in Figure 2A in
which the red regions form the basin of the diagonal attractor and the light
blue regions represent the basin of the off-diagonal attractor. The advertise-
ment dynamics is path-dependent, so it depends on the choice of the initial
point which cycle it eventually converges to. Since the output dynamics de-
pends on the advertisement dynamics, it exhibits periodic oscillations with
period-2 if the advertisement dynamics gives rise to a period-2 cycle. In the
case when the advertisement dynamics starts at either point A or B of the
advertisement space in Figure 2A, the output trajectory converges to the
period-2 cycle moving between points A and B of the output space in Figure
2B. Similarly, if point a or b is selected as the initial point, then the output
trajectory converges to the other period-2 cycle oscillating between points a
and b shown in Figure 2B. Note that these output cycles do not coexist while
two advertisement cycles do. It depends on the initial point selection of the
advertisement map which cycle the output trajectory is periodic to.

3Since xi = 0 is also a fixed point of ϕi, we have two more period-2 cycles that peri-
odically visit points on the horizontal or vertical axis of the (x1, x2) plane as one of the
perodic points is zero. We do not consider this kind of cycles in the following analysis.
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Figure 2. Two basins of attractors with a = 3 and corresponding period-2 cycles

In the period-4 region with a = 3.14 and r = 0.6, each ϕ(xi) has four
period-4 points xki such that x

k
i = ϕ4(xki ) for i = 1, 2 and k = A,B,C,D thus

the double logistic map has the following coexisting four period-4 cycles:

(xA1 , x
A
2 )⇒ (xB1 , x

B
2 )⇒ (xC1 , x

C
2 )⇒ (xD1 , x

D
2 )⇒ (xA1 , x

A
2 ),

(xA1 , x
B
2 )⇒ (xB1 , x

C
2 )⇒ (xC1 , x

D
2 )⇒ (xD1 , x

A
2 )⇒ (xA1 , x

B
2 ),

(xA1 , x
C
2 )⇒ (xB1 , x

D
2 )⇒ (xC1 , x

A
2 )⇒ (xD1 , x

B
2 )⇒ (xA1 , x

C
2 ),

(xA1 , x
D
2 )⇒ (xB1 , x

A
2 )⇒ (xC1 , x

B
2 )⇒ (xD1 , x

C
2 )⇒ (xA1 , x

D
2 ),

in which the first cycle moves in the diagonal and the other three in the off-
diagonal. The basin of attractor in the period-4 regions is shown in Figure
3A. For the sake of simplicity, we do not depict periodic points in Figure 3A
and illustrate only a period-4 cycle that corresponds to the diagonal dynamics
of advertisement in Figure 3B.

Figure 3. Four basins of attractors with a = 3.12 and a period-4 cycle of output

As a increases further, we can have more complicated and exotic basins
of attractions. It can be checked that m period-m cycles coexist if ϕ(x)
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generates a period-m cycle. One cycle is in the diagonal and the remaining
(m−1) cycles are in the off-diagonal. It can be supposed that the rectangular
regions of the basin will be divided further. At the edge of chaos in which
a is at the accumulation point, Shin (2007) mathematically shows how the
patterns of those basin structures are composed.

4.1.2 Restricted Homogenous 4D Model

To characterize the dynamics, we restrict our attentions to the behavior in
the diagonal, since qualitative features of the off-diagonal dynamics is the
same as that of the diagonal dynamics. If the firms start with the symmetric
initial point, x1(0) = x2(0), then advertisements remain equal for all t ≥ 0,
i.e., x1(t) = x2(t). The double logistic map may be interpreted as a simple
logistic map, since the evolution of the advertisement reflects the common
behavior of the two firms. In this case, we can write x1 = x2 = x and then
the 4D dynamic system can be reduced to the 3D dynamic system,4

q01 = φ1(q2, x),

q02 = φ2(q1, x),

x0 = ϕ(x).

(10)

In order to determine the confinement condition of the output dynamics, we
will distinguish between two cases depending on whether the advertisement
dynamics is stable or not, .
If the advertisement model is stable, then its trajectory eventually con-

verges to the stationary point. Thus it is safe to assume that the adver-
tisement evolution starts at its stationary value and stays there afterward.
Consequently, the confinement boundary of the output can be obtained by
substituting xe into x1 and x2 of (7),

c =
(4 + (1 + xe)2)

2

4(1 + xe)3
. (11)

If the advertisement model is unstable, then the trajectory may oscillate
ranging from the maximum value xmax of ϕ(x) to the zero minimum value.
The most restrictive confinement constraint on the output dynamics is given
by substituting xmax into x1 and x2 of (7),

c =
(4 + (1 + xmax)2)

2

4(1 + xmax)3
with xmax =

(1 + a− r)2
4a

. (12)

4We denote the eigenvalue of ϕ by λ3 for convenience.
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For the time being we call this relation the confinement condition of the out-
put when the advertisement is unstable. It should be noted, however, that
the condition may be violated if an unstable trajectory of the advertisement
map takes its maximum value less than xmax. This could happen if the tra-
jectory is periodic and xmax is not a periodic point. In spite of this comment,
it can be used only as a rough estimate of the confinement condition.
The Hopf and flip boundaries divide the parameter region into stable and

unstable regions while the confinement boundaries divide it into feasible and
infeasible regions. The 3D system contains three parameters, r, a and c.
Taking r given, we characterize the stability of the stationary point for the
values of parameters c and a in the set,

D = {(c, a) | 1 ≤ c ≤ 25
4
, r ≤ a ≤ 3 + r},

in which, as will be seen soon, 25
4
is the maximum upper bound of the mar-

ginal cost ratio for feasible solutions.
Depending on the parametric configuration of (c, a) in D, the following

cases should be considered:

(1) a = r

This condition means the restriction of the 3D dynamic system to the
lower boundary of D and implies that xe = 0 so no advertisement takes
place. The 3D system is further reduced to a 2D system, namely, the output
model without advertisement, which is equivalent to Puu’s duopoly model.
Therefore, the time evolution of the outputs coincides with that of Puu’s
model. In fact, it can be checked that α = 1

c
when a = r. Thus solving

the Hopf bifurcation condition (c−1 − 1)(c− 1) = −4 for c gives the solution
cu = 3+2

√
2 as c ≥ 1 is assumed. The Hopf boundary crosses the horizontal

line a = r at (3 + 2
√
2, r). Therefore the stationary state is stable for c < cu

and becomes unstable for c ≥ cu. Substituting xe = 0 into the confinement
condition gives the upper bound of the marginal cost ratio, c̄ = 25

4
. The con-

finement boundary (11) crosses the horizontal line at (25
4
, r). As c increases

from cu, the stationary point loses its stability, bifurcates to periodic cycles
and then exhibits chaotic oscillations for sufficiently higher value of c. Note
that c cannot be greater than the critical value c̄, beyond which the model
becomes infeasible. These results are the same as those already shown in
Puu (2003).

(2) r < a < 2 + r
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This subset of D is further divided into two parts by the Hopf boundary,
(α−1 − d)(α − d) = −4. In the left side of the boundary in which (α−1 −
d)(α − d) > −4, |λi| < 1 for i = 1, 2, 3 so the output model as well as
the advertisement map are locally stable. In the right side in which (α−1 −
d)(α − d) < −4, |λi| > 1 for i = 1, 2 and |λ3| < 1. Thus the output model
becomes locally unstable but the advertisement map is still locally stable.
The unstable trajectories are bounded by the confinement boundary that is
defined by (11),

ψ(xe, xe) =
(4 + (1 + xe)2)

2

4(1 + xe)3
.

For dynamic considerations, we assume that advertisement is at its station-
ary value since the advertisement map is stable. The output model with
constant advertisement is linearly conjugate to the output model with zero
advertisement, which case is already discussed above.
Figure 4 presents two bifurcation diagrams with respect to c and a. The

3D system is iterated 5,000 times to eliminate transient behavior and the
last 50 iterated points are plotted. In Figure 4A, c ranges from 1 to 25

4
and

a from r to 2 + r where r = 0.6 is fixed. Figure 4B is an enlargement of a
part of Figure 4A, in which c ranges from 2.9 to 3.0 and a from 1.03 to 1.19.
Different colors indicate different periods of periodic cycles up to period 16.
Periodic points with a larger period than 16 or aperiodic points are colored in
grey. Trajectories are infeasible in the white region in which the confinement
condition is violated. Red regions in Figures 4A and 4B represent the region
where the 3D system is locally stable. The same color in the entire region
indicates that any trajectory converges to the stationary point, which, in
turn, imply global stability of the 3D system. For (c, a) crossing the Hopf
boundary but not reaching the confinement boundary, the stationary point
(qe1, q

e
2) of the output model becomes unstable and generates essentially the

same time evolutions as the ones obtained in case (1), which indicates that
the stationary point goes to chaos via Hopf bifurcation. In case (1), the
emergence of complex dynamics is associated with a highly asymmetric cost
structure (i.e., (3 + 2

√
2)c1 < c2 < 6.25c1). In contrast, the same bifurcation

scenario takes place in case (2) under more plausible cost structure if the

17



advertisement outlay is higher, as observed in Figure 4B.

Figure 4. Bifurcation diagram in the (c, a) space

(3) 2 + r ≤ a ≤ 3 + r

In this case |λ3| > 1 always, so the advertisement map is unstable. The
output model is unstable if (α−1 − d)(α − d) > −4 (that is, |λi| > 1 for
i = 1, 2). Moreover, since the advertisement map plays the dominant role for
characterizing the dynamics of the output, the output model becomes un-
stable even if (α−1 − d)(α− d) ≤ −4. Figure 5 depicts the two-dimensional
bifurcation diagram of (9) in the (c, a) plane in which c ranges from 1.8 to 2.3
and a from 2+r to 3+r. As in Figure 4, the regions of periodic and aperiodic
behavior are indicated with different colors and the solutions are infeasible
in the white region. The negative sloping real line is the Hopf boundary. It
can be observed that nothing particular changes if the parameter configura-
tion (c, a) crosses the Hopf boundary. The negative sloping dotted line is the
confinement boundary. Four interesting facts should be mentioned. First,
the confinement condition is satisfied for large values of a as chaos is born
for higher values and its trapping interval includes xmax. Second, this is not
the case for smaller values of a, since only periodic cycles are born and xmax

is not a periodic point. Third, there are some higher values of a for which
windows of chaos emerge with periodic points violating the confinement con-
dition. Finally, there are no differences in dynamics whether the parameter
configuration (c, a) is located in the left or right side of the Hopf boundary,
which shows sharp contrast to the result obtained in case (2).
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Figure 5. Bifurcation diagram in (c, a)

Parameters a (as well as r) and c can be thought as the sources of non-
linearities of the advertisement model and the output model, respectively.
The larger the parameter is, the stronger the nonlinearities of those mod-
els are. The effect caused by a change in a on output dynamics is however
qualitatively different from the effect caused by a change in c. To see the
differences, we first choose a as the bifurcation parameter and keep c fixed.
Since the advertisement map is qualitatively the same as the logistic map, it
exhibits the well-known period-doubling bifurcation after a crosses the flip
boundary (i.e., 2 + r) if we increase it to its upper bound, 3 + r. The time
evolution of the output is synchronized with that of the advertisement and
thus exhibits the period-doubling sequence of bifurcations with respect to a
as shown in Figure 6. Two simulations are performed with different values of
c there. In the first simulation, a is increased along the vertical segment AB
of Figure 5 while c = 1.85 and r = 0.6 are fixed. The resultant bifurcation
diagram against a is depicted in Figure 6A. In the second simulation, only c
is changed to 1.5 (which value is outside the range of Figure 6 so that it is
not illustrated there) and the resultant bifurcation diagram is presented in
Figure 6B. The similarity between these two diagrams is clear. Bifurcation
occurs for exactly the same values of a, namely, period-2 cycle bifurcates to
period-4 cycle for a = a4, which, in turn, bifurcates to period-8 cycle for
a = a8, further, the window opens for a = a3 and so on. Differences can also
be observed: the range of q1 as well as the diameter of one of the period-2
cycles become much smaller as c decreases with all other parameter values
kept unchanged.

19



Figure 6. Period-doubling bifurcation diagrams against a

Alternatively, if we choose c as the bifurcation parameter and fix a = 3
and r = 0.6, then we have a different type of bifurcation scenario as illustrated
in Figure 7 in which we increase c along the horizontal segment CD from 1.8
to 2.0935 as shown in Figure 5. Since a is unchanged along this segment, the
advertisement map keeps generating a two period cycle. As shown in Figure
7, a period-2 cycle of the output appears first, which is synchronized with the
advertisement evolution. For a larger value of c (i.e., larger than about 1.97),
a period-3 cycle is born because one of the two periodic points bifurcates to
a period-2 cycle. As c increases further, the periodic cycle goes to chaos after
repeating many period doubling bifurcations. At the first glance, the well-
known bifurcations scenario seems to occur. However, careful observations
reveal, as shown below, that the whole model undergoes different type of
period-adding bifurcations.

Figure 7. Period-adding bifurcation diagram against c
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4.1.3 Half-Pitchfork Bifurcation

We now consider the pitchfork bifurcation scenario of the restricted dynamic
system (10). To simplify the discussion, we specify the parameter values as
a = 3 and r = 0.6 and select the case in which the advertisement model ϕ(x)
generates a period-2 cycle, the lowest-order cycle.5 Let x1 and x2 be the peri-
odic points of the cycle, which are obtained by solving equation ϕ(ϕ(x)) = x:

x1 =
2 + a− r −

p
(a− r)2 − 4

2a
,

and

x2 =
2 + a− r +

p
(a− r)2 − 4

2a
.

Apparently these points are defined only for a > 2+r.We have x1 = 0.51225
and x2 = 0.95442. Let x2 be an initial point (t = 0) of the advertisement
map. Then x(t) oscillates between these two points: x1 = ϕ(x(t)) if t is odd
and x2 = ϕ(x(t)) if t is even. It is thus convenient to re-define the output
generating functions as follows: when t is odd and x1 is fixed,

f1(q2, x1) = (1 + x1)

µr
q2
c1
− q2

¶
,

f2(q1, x1) = (1 + x1)

µr
q1
c2
− q1

¶
,

and when t is even and x2 is fixed,

g1(q2, x2) = (1 + x2)

µr
q2
c1
− q2

¶
,

g2(q1, x2) = (1 + x2)

µr
q1
c2
− q1

¶
,

in which x1 and x2 are determined solely by a and r and thus they can be
treated as positive constants when we consider output dynamics. To find the
period-2 points of the output, we define the two-fold iterates as follows:

F 212(q1) = g1(f2(q1, x1), x2) and G
2
12(q2) = g2(f1(q2, x1), x2),

5We obtain qualitatively the same result even in cases when ϕ(x) generates higher order
cycles and another values of the parameters are specified.
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and
F 221(q1) = f1(g2(q1, x2), x1) and G

2
21(q2) = f2(g1(q2, x2), x1),

where the subscripts ”ij” mean that the time evolution of the advertisement
moves from xi to xj, and the superscript ”2” means that functions are twice
folded.
Let us select cA = 1.95 for which a period-2 cycle of output appears

as shown in Figure 7. The vertical dotted line at c = cA crosses the two
downward sloping curves. Two intersections are the q2-periodic points of the
period-2 cycle. Solving each of the four equations, F 212(q1) = q1, G

2
12(q2) = q2,

F 221(q1) = q1 and G221(q2) = q2, yields two periodic points of the output
dynamic system,

QA = (qA1 , q
A
2 ) and Q

B = (qB1 , q
B
2 ),

where

qA1 = 0.35439, q
A
2 = 0.08119, q

B
1 = 0.39821 and q

B
2 = 0.14056.

Differentiating each of the two-folded functions gives the following derivative
values at the corresponding periodic points:

F 2021(q
A
1 ) = G

20
12(q

B
2 ) = −0.39301 and G2021(qA2 ) = F 2012(qB1 ) = −0.96651.

All derivatives are less than unity in absolute value so this period-2 cycle is
stable and thus, any trajectory starting at any point of the feasible region is
asymptotically periodic to the period-2 cycle.
Next, fixing the values of a and r, we increase the value of c to cB =

1.97725. Since a and r remain unchanged, the advertisement map still gener-
ates the period-2 cycle, x1 and x2, while the change in c induces qualitative
changes in the output dynamics. The output model now seems to give rise to
a period-3 cycle according to the bifurcation diagram of Figure 7 in which the
vertical dotted line intersects three times with the curves depicted. However,
in fact, it generates a period-4 cycle as will be seen shortly. To show the
emergence of the period-4 cycle, it is convenient to introduce the following
four-fold iterates:

F 412(q1) = F
2
12(F

2
12(q1)) and G

4
12(q2) = G

2
12(G

2
12(q2)),

and
F 421(q1) = F

2
21(F

2
21(q1)) and G

4
21(q2) = G

2
21(G

2
21(q1)).

The same principle is used for defining the subscripts and superscripts of
these functions as before. The fixed points of these four-folded functions are
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composed of the periodic points of the period-4 cycle, which are denoted by
A,B,C and D in Figure 6. The fixed points are calculated as given below,
where the superscript indicates an element of the corresponding periodic
points:

F 421(q1) = q1 =⇒ qB1 = q
D
1 = 0.350469

G421(q2) = q2 =⇒ qB2 = 0.06613 and q
D
2 = 0.09524,

F 4I (q1) = q1 =⇒ qA1 = 0.41266 and q
C
1 = 0.37336,

and
G412(q2) = q2 =⇒ qA2 = q

C
2 = 0.13647.

Derivatives of these functions at the fixed points are also calculated as

F 4012 = G
40
21 = 0.99266 and F

40
21 = G

40
12 = 0.17544.

All of these values are less than unity in absolute value so the period-4
cycle is stable and any trajectory is asymptotically periodic to it. Fixing
the parameter values of the advertisement map and increasing the marginal
cost ratio of the output model result in a bifurcation of the period-2 cycle to
period-4 cycle. The question that we naturally raise is how such a bifurcation
developes.
To understand the birth of the period-4 cycle, consider, first, the two-

folded functions F 2ij and G
2
ij for i, j = 1, 2 and i 6= j with c = cB. Following

the same procedure we have done above, we can obtain a period-2 cycle whose
periodic points are depicted as two red points, a and b, in the first quadrant
of Figure 8. Two red points in the second and fourth quadrants correspond
to periodic points in the output-advertisement plane. However this period-2
cycle is unstable. To show this fact, we solve F 2ij(q1) = q1 and G

2
ij(q2) = q2 to

obtain the periodic points,

qa1 = 0.39462, q
a
2 = 0.13647 and q

b
1 = 0.35227, q

b
2 = 0.07881,

and then differentiate the functions at the fixed points to obtain the deriva-
tives

F 2012(q
a
1) = G

20
21(q

b
2) = −1.00183 and F 221(qb1) = G2012(qa2) = −0.41886.

These results lead to the following conclusion. At point a, qa1 is unstable
while qa2 is stable. On the other hand, at point b, q

b
1 is stable while q

b
2 is

unstable. The period-2 cycle with c = cB, therefore, becomes one half stable
and the other half unstable.
It is evident that these unstable fixed points of F 212(q1) and G

2
21(q2) are

also the fixed points of F 412(q1) and G
2
21(q2). Moreover since F 4012(q

a
1) =
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(F 2012(q
a
1))

2
> 1 and G4021(q

b
2) =

¡
G2021(q

b
2)
¢2
> 1, qa1 and q

b
2 are repelling. As

done above, equations F 412(q1) = q1 and G
4
21(q2) = q2 provide two additional

stable fixed points, which are illustrated in Figure 8 as the blue points. In
the fourth quadrant, which corresponds to the (q1, x) plane, there are two
blue dots and one red dot for x1; qA1 and q

C
1 are shown by the blue dots and

qa1 is shown by the red dot. This picture indicates that in the case when
the eigenvalue of F 212(q1) equals −1, the stability of the period-2 cycle is in
this case just lost and at the same time, two new fixed points of F 412(q1) are
born. This phenomenon, as well-known, is called the period doubling bifur-
cation. However, the fixed point of F 421(q1) does not bifurcate as far as the
advertisement map gives rise to the period-2 cycle. In the second quadrant,
which corresponds to the (x, q2) plane, there are also two blue dots and one
red dot. The same phenomenon is occurred in G221 and G

4
21 so at c, for which

G2021(q
b
2) = −1, G221 becomes unstable and G421 undertakes a period-doubling

bifurcation and two new fixed points of G221 are created.
We can summarize the above results as follows. The period-2 cycle is

attracting for c = cA but becomes repelling for c = cB. F 4I (q1) does not have
a period-4 cycle for c = cA but it has an attracting period-4 cycle of output
for c = cB. There is a critical value of c between these two values, at which
the eigenvalues of the two-fold iterate are equal to −1, and those of the four-
iterates equal 1.6 The bifurcation from period-2 cycle to period-4 cycle takes
place just at this critical value.

6We encountered difficulties when we tried to derive a general expression of this critical
value without specifiying the values of a and r, since, we needed to solve a cubic equation
whose solution may have very complicated expression in general.
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Figure 8. Birth of period-4 cycle from period-2 cycle.

As c increases further, additional bifurcation occurs and new fixed points
are created repeatedly in the same way as just described. A sequence of this
type of bifurcation leads to complicated dynamics. Notice however that even
if aperiodic cycle of the output emerges, the advertisement trajectory still
oscillates between two points x1 and x2 since it’s dynamics is independent of
the value of c. In Figure 9, two different attractors are illustrated: on the left
side, c = 2.093 and (a, r) = (3, 0.6) for which the advertisement map gives
rise to the period-2 cycle and on the right side, c = 1.9 and (a, r) = (3.5, 0.6)
for which the advertisement map gives rise to chaotic behavior, therefore the
output also behaves chaotically.
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Figure 9. Two attractors with different values of a

4.2 Heterogeneous Advertisement

In this section we remove the simplifying assumption of homogeneity and
return to the original 4D dynamic model (1) that is composed of the output
dynamic model, q0i = φi(qj, xi),and the advertisement dynamic model, x

0
i =

ϕi(xi) for i, j = 1, 2. As shown in Lemmas 1 and 2, there are three ways to
violate the local stability conditions: a set of parameters crosses one of the flip
boundaries a1 = 2+r1, a2 = 2+r2 or the Hopf boundary (α−1−d1)(α−d2) =
−4. Since the time-evolution of the stationary point depends on the values of
ri, ai and c, we consider dynamic characterization in the parametric region A
defined above by changing the value of c with fixed values of r1 and r2 at 0.6.7

Each of the two flip boundaries and the Hopf boundary divides A into two
subsets; the stable region in which the absolute value of the corresponding
eigenvalue is less than unity and the unstable region in which |λi| > 1.
Thus, set A can be divided into 23 parts because there are essentially three
eigenvalues and each of them can be greater or less than unity in absolute
value.8 The actual number of the division depends on the value of c, the
parameter controlling the nonlinearity of the output model. In the first case,
the division of A by the two flip boundaries is examined:

ASS = {(a1, a2) ∈ A | r1 ≤ a1 < 2 + r1 and r2 ≤ a2 < 2 + r2},
ASU = {(a1, a2) ∈ A | 2 + r1 ≤ a1 ≤ 3 + r1 and r2 ≤ a2 < 2 + r2},
AUS = {(a1, a2) ∈ A | r1 ≤ a1 < 2 + r1 and 2 + r2 ≤ a2 ≤ 3 + r2},
AUU = {(a1, a2) ∈ A | 2 + r1 ≤ a1 ≤ 3 + r1 and 2 + r2 ≤ a2 ≤ 3 + r2},
7Needless to say, a choice of the particular values of ri does not affect the qualitative

aspects of the results obtained below.
8Although there are actually four eigenvalues, it is sufficient to consider the division of

A by only three of them, since λ1 = −λ2 with idential absolute values.
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where the first (respectively, the second) subscript of A denotes S or U
according to whether the stationary point of firm 1’s (respectively, firm 2’s)
advertisement is stable or unstable. The first question we are concerned is
how the value of c further divides A.
To answer this question, let us begin our analysis by defining three critical

values of c for which the Hopf boundary just passes through the three points,
(3 + r1, 3 + r2), (2 + r1, 2 + r2), and (r1, r2), respectively. Let ai be equal to
k + ri for k = 0, 2, 3. Considering z as an unknown, we first solve the Hopf
boundary condition, −4 = (z−1 − d1)(z − d2) for z, where di = 2 − ri

ai
and

ai = k+ ri. Then we substitute the solution into equation (5) and then solve
it for c to obtain the critical value in terms of ri and k. Taking ri = 0.6 for
i = 1, 2 as given, we obtain the following critical values:

ck=3 = 2.05865, ck=2 = 2.15917 and ck=0 = 5.828...(= 3 + 2
√
2).

The value 3+ 2
√
2 is the marginal cost ratio for which Puu’s duopoly model

loses stability. Therefore ck=0 = 3+2
√
2 is intuitively clear because with ai =

ri, the model is reduced to Puu’s model as seen in case (1) of Section 4.1.2.
According to the three critical value of c, four cases have to be considered.

(1) c ≤ ck=3

If the marginal cost ratio is small enough, so strict inequality holds, then
there is no intercept of the Hopf boundary curve with any part of A. As a
result, (α−1 − d1)(α − d2) > −4 for all (a1, a2) ∈ A, so the output model
with constant advertisement is stable. Notice that the properties of the
advertisement dynamics depend on the choice of (a1, a2) fromA, and the time
evolution of the output is affected by the dynamics of the adjustment model.
Therefore, the properties of the output dynamics also depend on the choice of
(a1, a2) from A. In particular, for (a1, a2) ∈ ASS, the advertisement dynamics
is stable so is the output dynamics. On the other hand, for (a1, a2) ∈ A\ASS,
the complementary set of ASS, one or both of the advertisement maps is
unstable and so is the output model.
Let us examine the unstable cases in more detail. If (a1, a2) is chosen

from either ASU or AUS, one of the advertisement maps is unstable and the
other is stable. Thus we can limit our discussion to dynamics generated by
the output model and the unstable advertisement map, because the stable
advertisement map does not affect asymptotic behavior of the other variables.
To simplify the discussion, the 4D dynamic system can be reduced to a 3D
dynamic system whose dynamics is essentially the same as the one generated
by (10) where ϕ(x) is replaced with the unstable advertisement map ϕi(xi).
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For (a1, a2) ∈ AUU , both advertisement maps are unstable and produce
complex dynamics as ai is approaching its upper bound. It is easily expected
that the output model generates complex dynamics affected by the complex
behavior of the advertisement. It is repeatedly stated that the emergence of
complex dynamics is one feature of the output dynamics. It also follows from
the discussions of Section 4.1.1 that another feature of the output dynamics
is multistability, namely coexistence of stable periodic cycles. Here we turn
our attention to this issue and address the following important question: if
ϕ1(x) and ϕ2(x2) have a stable period-m cycle and a stable period-n cycle,
respectively, then how many cycles does the advertisement model generate.
We start with the simple case in which ϕ1(x) gives rise to a stable

period-2 cycle and ϕ2(x2) a stable period-3 cycle. Let X1 = {xA1 , xB1 }
be a set of two periodic points with the eigenvalue λ1 = ϕ01(x

A
1 )ϕ

0
1(x

B
1 )

and X2 = {xA2 , xB2 , xC2 } a set of three periodic points with the eigenvalue
λ2 = ϕ02(x

A
2 )ϕ

0
2(x

B
2 )ϕ

0
2(x

C
2 ). In considering the iteration of the advertisement

maps, we first redefine the advertisement dynamics as a two-dimensional map
Φ : R2 → R2 given by

Φ(x1, x2) = (ϕ1(x1),ϕ2(x2)),

and then focus on the 2 × 3 points of the (x1, x2) space obtained by the
Cartesian product X1×X2. It can be checked that a period-6 cycle is formed
by these six points because the least common multiple period of period-2 and
period-3 cycles is six,

{Φt(xA1 , xA2 ), t = 1, ..., 6}.

The stability of the period-6 cycle can be shown as follows. Denote the
iteration of the advertisement map by ϕti(xi) = ϕi(ϕ

t−1
i (xi)) and ϕ0i (xi) = xi.

Since xA1 is the fixed point of ϕ
2
1(x1) and x

A
2 is the fixed point of is ϕ

3
2(x2),

differentiating the two-dimensional map at the fixed points

(xA1 , x
A
1 ) = Φ6(xA1 , x

A
2 ) = (ϕ

2×3
1 (xA1 ),ϕ

3×2
2 (xA2 ))

yields the Jacobi matrix

J(xA1 , x
A
2 ) =

Ã ¡
ϕ01(x

A
1 )ϕ

0
1(x

A
1 )
¢3

0

0
¡
ϕ02(x

A
2 )ϕ

0
2(x

B
2 )ϕ

0
2(x

C
2 )
¢2
!
.

The eigenvalues of the period-6 cycle are λA1 = (λ1)
3 and λA2 = (λ2)

2 so the
period-6 cycle is stable if the original period-2 and the period-3 cycles are
stable, that is |λi| < 1 for i = 1, 2.
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We proceed to the next case in which ϕ1(x) gives rise to a period-2 cy-
cle with periodic points X1 = {xA1 , xB1 } and ϕ2(y) a period-4 cycle with
periodic points X2 = {xA2 , xB2 , xC2 , xD2 }. Eigenvalues of the two cycles are
λ1 = ϕ01(x

A
1 )ϕ

0
1(x

B
1 ) and λ2 = ϕ02(x

A
2 )ϕ

0
2(x

B
2 )ϕ

0
2(x

C
2 )ϕ

0
2(x

B
2 ), respectively. Set

X1 × X2 has eight points, and since the least common multiple period of
period-2 and period-4 cycles is 4, there are 8/4 = 2 period-4 cycles:

{Φt(xA1 , xA2 ), t = 1, ..., 4},

and
{Φt(xA1 , xB2 ), t = 1, ..., 4}.

Since the first period-4 cycle visits its periodic points in the order of (xA1 , x
A
2 )→

(xB1 , x
B
2 )→ (xA1 , x

C
2 )→ (xB1 , x

D
2 ), the Jacobi matrix is

J(xA1 , x
A
2 ) =

µ ¡
ϕ01(x

A
1 )ϕ

0
1(x

B
1 )
¢2

0
0 ϕ02(x

A
2 )ϕ

0
2(x

B
2 )ϕ

0
2(x

C
2 )ϕ

0
2(x

D
2 )

¶
,

and by the same way, since the second cycle is formed as (xA1 , x
B
2 )→ (xB1 , x

C
2 )→

(xA1 , x
D
2 )→ (xB1 , x

A
2 ), its Jacobi matrix is

J(xA1 , x
B
2 ) =

µ ¡
ϕ01(x

A
1 )ϕ

0
1(x

B
1 )
¢2

0
0 ϕ02(x

B
2 )ϕ

0
2(x

C
2 )ϕ

0
2(x

D
2 )ϕ

0
2(x

A
2 )

¶
.

The two period-4 cycles have the same eigenvalues, λ1 = (λ1)2 and λ2 = (λ2)1

so each period-4 cycle is stable if the original period-2 cycle and the period-4
cycle are stable.
Now we move to the general case in which ϕ1(x1) gives rise to a period-

m cycle with periodic points X1 = {x11, x21, ..., xm1 } and ϕ2(x2) a period-n
cycle with periodic points X2 = {x12, x22, ..., xn2}. The least common period
of period-m and period-n cycles is the least common multiple, q, of m and
n, and there are mn points in X1 × X2. Let k = mn/q, then this formula
implies that the mn points obtained by the Cartesian product X1 ×X2 can
be divided into k subsets, each of which consists of q points:

{Φt(x11, xα2 ) = (ϕt1(x11),ϕt2(xα2 )), t = 1, ..., q} for α = 1, ..., k,

so we have k period-q cycles. The stability of the period-q cycle is determined
by the eigenvalues of ϕti(xi), λ1 = Πqi=1ϕ

0
1(x

i
1) and λ2 = Πqi=1ϕ02(xi2). Then

any period-q cycle is stable if the original periodic cycles are stable. We
summarize these results as follows:
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Theorem 3 Suppose that ϕi(xi) has a period-m cycle, ϕj(xj) has a period-
n cycle and q is the least common multiple of m and n. Let k = mn/q.
Then the advertisement model generates k coexisting period-q cycles
and each period-q cycle is stable if both of the period-m cycle and the
period-n cycle are stable.

(2) ck=3 < c ≤ ck=2

If c > ck=3, then the Hopf boundary crosses some part of A so that A
is further divided. From an economic point of view, the output must be
non-negative and thus must satisfy the confinement conditions c ≤ ψ(x1, x2)
where ψ is defined in (8). In Figure 10A in which c = 2.075, three downward
sloping curves are depicted in AUU ∪ASU . The right most curve is the Hopf
boundary, the curve depicted in AUU is the confinement boundary to be
defined in the case where both advertisement stationary points, xe1 and x

e
2,

are unstable and the curve illustrated in ASU is the confinement boundary to
be defined in the case where xe1 is unstable but x

e
2 is stable. The confinement

boundary depicted in AUU is defined by c = ψ(xmax1 , xmax2 ) where

xmaxi =
(1 + ai − ri)2

4ai
for i = 1, 2.

For (a1, a2) ∈ AUU , ϕi(xi) may be chaotic so it may take its maximum
value, denoted by xmaxi along the chaotic trajectory. To prevent output from
becoming negative, we require the most strict confinement constraint when
ϕ(xi) is unstable. The confinement boundary depicted in AUS is defined by
c = ψ(xmax1 , xe2), since x

e
1 is unstable and x

e
2 is stable. In the same way,

c = ψ(xe1, x
max
2 ) can be defined as the confinement boundary in ASU in which

xe1 is stable but x
e
2 is unstable. It is not shown in Figure 10A, since this

confinement curve does not intersect with ASU so it is ineffective. One or
both confinement conditions are violated in the white region. The output
model is stable in the left side of the Hopf boundary and unstable in the
right side. The whole system is stable in ASS. Dynamics in ASU and in the
feasible (i.e., colored) region ofAUS is described by the 3D system obtained by
eliminating the stable advertisement map from the 4D system. The dynamics
in the feasible region of AUU is qualitatively the same as the one considered
in case (1) just above.

(3) ck=2 < c ≤ ck=0

We set c = 2.35 in Figure 10(B) where four downward sloping curves are
depicted. The most left curve is the Hopf boundary. Three other downward
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sloping curves give the confinement boundaries, c = ψ(xe1, x
max
2 ) in ASU ,

c = ψ(xe1, x
e
2) in ASS and c = ψ(xmax1 , xe2) in ASU , respectively. The white

region that includes the entire AUU is infeasible. It can be seen that an
increase in the value of c shifts the Hopf boundary and the confinement
boundaries leftward. Two further observations emerge by comparing Figure
10(A) with Figure 10(B): (1) the effect on the Hopf boundary is so strong
that it shifts the boundary from the right most line to the left most line and
(2) the c = ψ(xe1, x

max
2 ) curve divides AUS and thus the output trajectories

become infeasible (i.e., negative) for some configurations of (a1, a2).Dynamics
in the feasible regions is governed by a 3D or 2D system according to which
equation is stable or unstable.

Figure 10. 2-parameter bifurcation diagrams with different values of c

We now turn our attentions to the dynamics in ASS in order to consider
multistability due to nonlinearities of the output model. In ASS between the
Hopf boundary and the confinement boundary c = ψ(xe1, x

e
2), the advertise-

ment model is stable while the output model is unstable but may be feasible.
Thus in the following, we limit our analysis to the case in which the adver-
tisement adjustment is so rapid that the asymptotic output dynamics can be
considered to be governed by the iteration of the two-dimensional map

q
0
1 = φ1(q2, x

e
1),

q
0
2 = φ2(q1, x

e
2).

(3’)

This is the special case of the output model (3) in which the advertisement
takes its stationary value.9 It is the topological conjugate of Puu’s nonlinear

9The very special model with xe1 = x
e
2 has already been considered in case (2) of Section

4.1.2.
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duopoly model. Puu (2003) has already demonstrated that this model with
naive and adaptive expectations can give rise to not only rich dynamics rang-
ing from periodic behavior to chaotic dynamics but also to the coexistence
of attracting sets by applying the results of Bischi, Mammana and Gardini
(2001) and Agliar, Bischi and Gardini (2002). Therefore multistability can
be a characteristic property of the output model (3’). It should be noted
that output trajectories could be negative on the way to the attractor if the
convergence of the stable advertisement dynamics is supposed to be sluggish.
As will be suggestged later, we need to take the nonnegativity constraint into
account in the best response behavior in this case.

(4) ck=0 < c

In Figure 12, we set c = 3 + 2
√
2 for which the Hopf boundary curve

passes through the point (r1, r2). We have |λi| > 1 in A for i = 1, 2, but
the solutions for the output are feasible only inside of the triangular region
surrounded by the confinement boundary, c = ψ(xe1, x

e
2). It can be seen that

the periodic cycles double their periods as the pair (a1, a2) moves toward
the upper bound. In Puu’s model, the marginal cost ratio c is the source of
nonlinear dynamics. Introducing the advertisement into Puu’ s model shows
that advertisement outlays also can be the source.

Figure 11 2-parameter bifurcation diagaram with c = 3 + 2
√
2.

5 Conclusion

The present study considers local as well as global dynamics in nonlinear
duopoly models with advertisement, which consist of two submodels, the
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output dynamic model and the advertisement dynamic model. It first de-
termines the stationary state of the model which is the basis of the stability
analysis. We show that the model can be destabilized in two ways: one is
through destabilizing the advertisement model when the parameter config-
urations cross over the flip boundary where one of the eigenvalues is −1.
The other is through destabilizing the output model when the parameter
configurations cross over the Hopf boundary on which the eigenvalues are
pure imaginary and their common absolute value is unity. It demonstrates
that a half-pitchfork bifurcation of the output occurs when the advertisement
model gives rise to periodic cycle and the nonlinearity of the output model be-
comes stronger. The explicit treatment of the confinement conditions reveals
the appropriate parameter configurations which prevent unstable trajecto-
ries from becoming negative. We also demonstrated that the multistability -
coexistence of attracting sets - is the distinguished feature of the model.
The present model should be extended at least in two different directions.

One direction is to take away Assumption 1, the simplifying assumption on
the advertisement. Under the general condition, bi > 0, the advertisment
model also has the multistability and thus enhances output dynamics. The
other direction is to take the nonnegativity condtion into account. The fea-
sibility of the output trajectories can also be enforced by modifying the best
response mapping of the firm as follows:

q0i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if qj ≥

1

ci
,

(1 + xi)

µr
qj
ci
− qj

¶
otherwise.

In this case the best responses are defined as the profit maximizing outputs
under the nonnegativity condition. This new method results in different
dynamic properties than those discussed in this paper. We will return to
this modifed model with positive bi in a future paper.
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