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1 Introduction
The state sequence of discrete dynamic systems will be considered as time series,
with a deterministic rule to obtain the consecutive state variables. Many im-
portant classes of dynamic systems are examined frequently in the literature of
mathematical economics. Among the large variety of dynamic economic systems
the oligopoly models have a very special place, since the long-term behavior of
the state trajectories has many different possibilities including global asymp-
totic stability, limit cycles with increasing number of nodes and even chaos. In
this paper a special oligopoly model will be investigated and conditions will be
derived to avoid chaotic behavior. Following Cournot (1838) many researchers
worked on developing more realistic models and on examining their properties.
The existence and uniqueness of the equilibrium was the main focus in earlier
studies, and later the researchers turned their focus to the dynamic extensions of
these models. A comprehensive summary of earlier results is given in Okuguchi
(1976), and their multi-product extensions with different model variants are
discussed in Okuguchi and Szidarovszky (1999). Most studies considered con-
cave oligopolies with monotonic reaction functions, and only a little attention
was given to the isoelastic case, which can be derived by assuming a Cobb-
Douglas type utility function of the market. In this case the best response is
not monotonic anymore, making equilibrium and stability analysis more com-
plicated. Agiza (1999) has examined the two-dimensional Kopel map in which
the reaction functions are unimodal, derived stability conditions and studied
bifurcation and chaos by computing the maximum Lyapunov exponents. Ag-
iza and Elsadany (2003) have investigated discrete-time Cournot duopolies with
heterogeneous players. Richter and Stolk (2004) have introduced a new method
of controlling coexisting chaotic attractors in Cournot triopolies by means of
steering the systems dynamics from one attractor to another. See Puu and
Sushko (2002), Puu (2003) and Bischi et al. (2010) for comprehensive summary
of recent developments in the theory of nonlinear oligopolies.
This work is an extension and generalization of an earlier paper of Mat-

sumoto (2006), where chaos control for nonlinear duopolies was examined. In
line with the economic literature, controlled systems are dynamics with adap-
tive expectations and uncontrolled systems are those with naive expectations.
We will give detailed equilibrium analysis, show the complexity of the dynamics
of such models and further show that complex dynamics involving chaos could
be stabilized.
The paper develops as follows. In Section 2 the general model will be intro-

duced, the reaction functions and the Cournot equilibrium will be determined.
In Section 3 we will show that the local stability properties of systems with
adaptive expectations and with inertia control (i.e., adaptive adjustments) are
identical. In Section 4 two special cases, two and three groups of firms, will be
analyzed both theoretically and numerically in which the dynamics are two and
three dimensional, respectively. The stability regions, where chaos is controlled,
will be shown and their dependence on the number of firms will be illustrated.
Section 5 will conclude the paper.
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2 Nonlinear Oligopoly Models
It is assumed that a homogeneous market is supplied by N firms. For the sake
of mathematical simplicity only one product is considered. Let xi denote the
production output of firm i, then yi =

P
j 6=i xj is the output of the rest of

the industry and Q =
PN
i=1 xi is the total output of the industry. We assume

isoelastic price function p = 1/Q and linear cost functions Ci(xi) = cixi as in
the duopoly model of Puu (2003). Since the firms make decisions about their
production levels simultaneously, the firms do not know the output of the rivals
when their decisions are made. They can have only an expectation (prediction)
of the output of the rest of the industry, yei . So the expected profit of firm i can
be given as

Πei =
xi

xi + yei
− cixi, (i = 1, 2, ..., N).

Notice that this function is strictly concave in xi.

2.1 Reaction Functions

The strict concavity of Πei implies that with any given value of y
e
i the profit

maximizing output level of firm i can be computed as

xi = fi(y
e
i ) =

⎧⎪⎨⎪⎩
r
yei
ci
− yei if 0 < yei ≤

1

ci
,

0 if
1

ci
< yei .

(1)

This function is continuous, and strictly concave in the first segment.
Then the best response dynamic process is

xi(t+ 1) = fi(y
e
i (t+ 1)) for i = 1, 2, ...N.

Dynamic characteristics are sensitive to the expectation formation. In this study
we first consider naive expectation in which the firms assume that the output
of the rest of the industry remains the same:

yei (t+ 1) =
X
j 6=i

xj(t),

and call it an naive system. It is well known that the naive system is a special
case of the best reply dynamics with adaptive expectations. In the Appendix,
local stability conditions for dynamic systems with adaptive expectations are
derived. It is, as will be seen, useful to determine the stability of not only naive
systems but also that of the controlled systems.

2.2 Cournot Equilibrium

Without losing generality we may assume that at the equilibrium all firms have
positive outputs, otherwise we can ignore the firms with zero equilibrium output
values and decrease the value of N . Assuming a positive equilibrium, then, from
the definition of the naive expectation and the reaction function of firm i,

yei =
X
j 6=i

xj and xi =

r
yei
ci
− yei .
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By introducing the notation y = xi + yei , from the second equation we have

yei = ciy
2,

that is,
xi = y − ciy2.

Adding this equation for all values of i and denoting the sum of the marginal
costs by C =

PN
i=1 ci gives

y = Ny − Cy2.
Therefore there is a trivial equilibrium with y = x1 = ... = xN = 0, and a
nontrivial positive equilibrium with

yc =
N − 1
C

,

where the Cournot output of firm i becomes

xci =
(N − 1)(C − ci(N − 1))

C2
. (2)

The superscript ”c” is attached to variables to indicate that they are computed
at the Cournot equilibrium. Our concern is on the nontrivial point, (xci )i=1.2,...N ,
and thus no further considerations will be given to the trivial point. For non-
negative Cournot outputs, the following inequality has to be satisfied:

C − ci(N − 1) ≥ 0 or ci ≤
C

N − 1 . (3)

This always holds for N = 2, and necessarily holds for N > 2 if the marginal
costs, ci, are sufficiently close to each other. In the rest of this paper, we assume
that this condition is satisfied. Notice that under this condition

yei = ci (y
c)2 = ci

µ
N − 1
C

¶2
≤ ci

1

c2i
≤ 1

c1
,

So at the equilibrium the first case of (1) applies.
Adaptive expectations are generalizations of naive expectation where the

expected output of the rest of the industry is computed as

yei (t+ 1) = (1− αi)y
e
i (t) + αi

X
j 6=i

xj(t).

Notice that by selecting αi = 1 this formula reduces to naive expectation. In the
Appendix the local stability conditions for system with adaptive expectations
are derived. Combining inequalities (3) and (A-1) from the Appendix with
αi = 1 gives

C

4(N − 1) < ci ≤
C

N − 1 for i = 1.2, ...N,

and the eigenvalue equation (A-2) of the Appendix reduces to the following
equation:

NX
i=1

γi
γi + λ

= 1, where γi ≡
∂fi(y

e
i )

∂yei
at the equilibrium.
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It can be written as the quadratic and cubic equations,

λ2 − γ1γ2 = 0 for N = 2,

and
−λ3 + (γ1γ2 + γ1γ3 + γ2γ3)λ+ 2γ1γ2γ3 = 0 for N = 3.

3 General Stability Conditions
In this section, we first consider the dynamic process in which firms cautiously
adjust their outputs, that is, the output in the next period is a weighted average
of the current output and the naively-determined optimal output:

xi(t+ 1) = αifi(y
e
i (t+ 1)) + (1− αi)xi(t) for i = 1, 2, ...,N,

or, equivalently,

xi(t+ 1) = αi

⎛⎝sPj 6=i xj(t)

ci
−
X
j 6=i

xj(t)

⎞⎠+ (1− αi)xi(t). (4)

This is commonly known as the adaptive adjustment process. Here we assume
that firm i moves into the direction toward its profit maximizing output, and
reaches it only for αi = 1. Since this adjustment process describes the best
reply dynamics with inertia, we call it the inertia control system. Here αi is
the inertia or control parameter of firm i and assumed to be positive and not
greater than unity. It is easy to see that the fixed point of the inertia control
system is the same as that of the naive system. The Jacobian of the system has
the form

Hc =

⎛⎜⎜⎝
1− α1 γ1α1 · γ1α1
γ2α2 1− α2 · γ2α2
· · · ·

γNαN γNαN · 1− αN

⎞⎟⎟⎠ .
In the Appendix, we show that the nonzero eigenvalues of the Jacobian of

the system with adaptive expectations are the eigenvalues of matrix

H =

⎛⎜⎜⎝
1− α1 γ2α1 · γNα1
γ1α2 1− α2 · γNα2
· · · ·

γ1αN γ2αN · 1− αN

⎞⎟⎟⎠ .
Next we will prove that the characteristic polynomials of matrixes H and Hc

are identical, so as far as local stability is concerned, the asymptotic behavior
of the two systems is identical. Assume first that all γi 6= 0. Define

R = diag(γ1, γ2, ..., γN ).
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Then clearly

R−1HcR =

⎛⎜⎜⎜⎝
1
γ1

0 · 0

0 1
γ2

· 0

· · · ·
0 · 0 1

γN

⎞⎟⎟⎟⎠Hc

⎛⎜⎜⎝
γ1 0 · 0
0 γ2 · 0
· · · ·
0 · 0 γN

⎞⎟⎟⎠

=

⎛⎜⎜⎜⎝
1−α1
γ1

α1 · α1
α2

1−α2
γ2

· α2
· · · ·

αN αN · 1−αN
γN

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

γ1 0 · 0
0 γ2 · 0
· · · ·
0 · 0 γN

⎞⎟⎟⎠
= H.

SinceHc andH are similar, their characteristic polynomials are identical. If any
or more γi = 0, then the continuity of the characteristic polynomial coefficients
in the matrix elements implies the result. Hence the local stability conditions
of dynamics with adaptive expectations and with inertia control are identical.
So in the rest of this paper we will consider only inertia control.
In the case of concave oligopolies (see for example, Szidarovszky and Chiarella

(2001), Bischi et al. (2010)) it is proved that −1 < γi ≤ 0, all eigenvalues are
real and they are inside the unit circle if and only if for all i,

αi <
2

1 + γi

and
NP
i=1

αiγi
2− αi(1 + γi)

> −1.

These conditions are clearly satisfied if the speeds αi of adjustments are suffi-
ciently small. However in the case of isoelastic inverse demand functions there
is the possibility of complex eigenvalues, so no such simple general stability con-
ditions can be derived. In the next section two special cases will be examined
both theoretically and numerically.

4 Stability Conditions in Special Models
In this section we will focus on two cases: one case where the industry consists
of two groups of firms and the other case with three groups of firms. Our aim is
to see whether the unstable naive system can be stabilized by the inertia control
method.

4.1 Two Groups of Firms

Assume there are two groups of firms in a sense that firms of the same group
produce the same output with the same marginal cost and have the same speed
of adjustment. So the N firms are divided into two groups. Without loss of
generality, we can assume that the first Na firms are in the first group and the
remaining Nb firms in the second group, where Na + Nb = N and Na = 1

wN
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with w > 1. We denote the outputs produced by the firms of the two groups by
x and y, so

x1 = · · · = xNa = x and xNa+1 = · · · = xN = y,

the two kinds of marginal costs are denoted by a and b, so

c1 = · · · = cNa = a and cNa+1 = · · · = cN = b,

and the two types of speeds of adjustment by α and β, that is,

α1 = · · · = αNa = α and αNa+1 = · · · = αN = β.

We further assume, without any losses of generality, that the firms in the first
group are more efficient than the ones in the second in a sense that

a < b.

Accordingly, the marginal cost ratio of b over a, which we denote by h, is greater
than unity,

h =
b

a
> 1.

The sum of the marginal costs and the derivatives of the reaction functions
evaluated at the Cournot equilibrium are

C = Naa+Nbb

and

γa =
C

2a(N − 1) − 1 and γb =
C

2b(N − 1) − 1.

From (2), the equilibrium outputs of the firms are

xc =
(N − 1)(C − a(N − 1))

C2
,

yc =
(N − 1)(C − b(N − 1))

C2
,

where

C − a(N − 1) = a(Nb(h− 1) + 1) > 0,

C − b(N − 1) = a(Na − 1)
µ

N

N − w − h
¶
.

The first inequality is always true because h > 1, so xc is always positive. The
second equation indicates that yc is nonnegative if Na > 1 and the marginal
cost ratio is bounded from above:

h ≤ hN ≡
N

N − w. (5)

Notice that Na > 1 is equivalent to N > w implying the positive denominator in
the upper bound hN of the marginal cost ratio. It can be seen that hN decreases

7



in N and is approaching unity as N converges to infinity with fixed values of
w. Since the ratio h is assumed to be greater than unity, this implies that it
becomes more difficult to have a positive Cournot equilibrium as the number
of the firms in the industry increases. Similarly, condition (A-1) for each group
can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩

h <
4(N − 1)− αNa

αNb
for the first group,

h >
βNa

4(N − 1)− βNb
for the second group.

However neither inequality is effective, since for N ≥ 3 and 0 < (α,β) ≤ 1,

βNa
4(N − 1)− βNb

< 1 ≤ N

N − w <
4(N − 1)− αNa

αNb
,

which indicates that if h fulfills (5), then it also satisfies (A-1).
Notice that in this case, equation (A-2) assumes the form

1 +Na
αγa

1− α(1 + γa)− λ
+Nb

βγb
1− β(1 + γb)− λ

= 0.

Since Na and Nb firms have identical parameters, in which case αi = α, γi =
γa (1 ≤ i ≤ Na) and αi = β, γi = γb (Na+1 ≤ i ≤ Na+Nb). Notice that with
notation Ra = 1 + γa and Rb = 1 + γb, the above equation can be written as

(1− αRa − λ)(1− βRb − λ) +Naαγa(1− βRb − λ) +Nbβγb(1− αRa − λ) = 0.

This is a quadratic equation in λ,

λ2 + pλ+ q = 0 (6)

with coefficients

p = α(Ra(1−Na) +Na) + β(Rb(1−Nb) +Nb)− 2,

and

q = −α(Ra(1−Na) +Na)− β(Rb(1−Nb) +Nb) +
αβ(RaRb(1−N) +RaNb +RbNa) + 1.

It is well-known (see for example, Bischi et al. (2010)) that the roots of the
quadratic equation are inside the unit circle if and only if

q < 1,

q + p+ 1 > 0,

q − p+ 1 > 0.

The left hand side of the second condition can be rewritten as

q + p+ 1 =
(Na + hNb)

2 αβ

4h(N − 1) ,

8



which is always positive. This indicates that the characteristic equation (6) does
not have a root equal to unity. To simplify the other two stability conditions,
we make a specializing assumption that the speeds of adjustment are the same
for the two groups.

Assumption α = β.

Solving q − 1 = 0 for h yields the Hopf boundary

hH =
w2(N − 1) + (w − 1)(2− α)N +

√
DH

(w − 1)(2(N − w) + (w − 1)αN) (7)

with the discriminant

DH = w
2(N − 1)

©
(N − 1)w2 + 4(w − 1)((1− α)N − 1)

ª
.

On the Hopf boundary the eigenvalues are complex and their absolute values are
equal to unity. Thus this boundary is valid for p2 < 4q. It is rather difficult to
simplify this condition, however it can be checked numerically in all particular
situations. Notice that DH is linear in α. At α = 0,

DH = w
2(N − 1)2

©
w2 + 4(w − 1)

ª
> 0,

and at α = 1,

DH = w2(N − 1)
©
(N − 1)w2 − 4(w − 1)

ª
= w2(N − 1)

©
(N − 2)w2 + (w − 2)2

ª
≥ 0 for N ≥ 2.

Therefore DH ≥ 0 for all α ∈ (0, 1].
By gradually varying the parameter values α and h, our simulation study in-

dicates that if pair (α, h) crosses the Hopf boundary, then the Cournot point bi-
furcates to periodic cycles, quasi-periodic cycles and then to chaotic fluctuations.
The same phenomenon has been observed earlier by Puu (2003) in his nonlinear
duopoly model. As shown below, the Hopf bifurcation of the n-firm oligopoly,
however, occurs only in the infeasible region in which the non-negativity condi-
tion (4) is violated. In consequence we do not pay much attention to the Hopf
bifurcation.
Solving 1− p+ q = 0 for h yields the flip boundary

hF =
(4− α)(w − 1)αN2 + 2w2(N − 1)(Nα− 4) + 2

√
DF

(w − 1)(4(N − w) + (w − 1)αN)αN (8)

with

DF = w
2(N − 1)(αN − 4)

©
2(2− α)(w − 1)αN2 + w2(N − 1)(αN − 4)

ª
.

On the flip boundary, at least one of the eigenvalues is equal to −1. Crossing
this boundary the equilibrium point goes through a period doubling cascade to
chaos. Note that the sign of this discriminant depends on the particular value
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of α. It can be confirmed that DF = 0 has three real, positive roots:

αS =
−w2 +N(w2 + 4(w − 1))−

√
∆

4N(w − 1) ,

αL =
−w2 +N(w2 + 4(w − 1)) +

√
∆

4N(w − 1) ,

αM =
4

N
,

with∆ =
£
w2 −N

¡
w2 + 4(w − 1)

¢¤2−32(N−1)(w−1)w2, since it can be shown
that ∆ ≥ 0. Here S, L and M stand for "smaller", "larger" and "middle," as
αS < αM < αL holds. Therefore, DF > 0 for α < αS and αM < α < αL, and
DF ≤ 0 otherwise. The adaptive coefficient α is assumed to be positive and not
greater than unity, and the number of firms N must be greater than 2. Since
αL ≥ 2 for N ≥ 2, αL is outside the unit domain of α. When N ≥ 4,

DF ≥ 0 for either αM ≤ α ≤ 1 or 0 < α ≤ αS ,

and
DF < 0 for αS < α < αM .

When 2 ≤ N < 4, αM becomes greater than unity and thus it is outside the
domain. The sign of DF is positive or negative according to α is less or greater
than αS .
Judging from the above considerations, the stability domain for non-negative

Cournot equilibrium is surrounded by the non-negativity boundary hN , the Hopf
boundary hH , and the flip boundary hF .The last two boundaries, however, still
have complicated expressions. So, instead of analytic study we will consider an
important special case and perform numerical simulation. For further simpli-
fication, we set w = 2 (that is, the industry consists of two groups with equal
size) and increase the number of the firms by two from N = 4 to N = 10 to
see how the shape of the stability domain changes as the number of firms in
the industry increases. We note that the present model with N = 2 reduces to
the Puu (duopoly) model in which the Hopf bifurcation is shown to occurs for
3 + 2

√
2 < h ≤ 25/4.

The feasible region in terms of the adjustment speeds and the marginal cost
ratios for which the Cournot equilibrium is non-negative is

PN = {(α, h) | 0 < α ≤ 1 and 1 < h ≤ hN} for N = 4, 6, 8, 10,

where hN is the upper bound of the marginal cost ratio defined in (5). Since
the upper bound is determined by N and w, the feasible region is presented by
a rectangular, PN = (0, 1] × (1, hN ] which decreases inN (i.e., PN+1 ⊂ PN ).
Then the stability region is given as

SN = {(α, h) | 0 < α ≤ 1 and Max{1, hFN} < h ≤ hHN},

where hFN and hHN denote the flip boundary (7) and the Hopf boundary (6).
The feasible and stable region is the intersection of these two regions, PN ∩SN .
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Figure 1(A) illustrates these boundaries and the upper bound of the marginal
cost ratio, hN , for each value of N (= 4, 6, 8, 10). The Hopf boundary is negative-
sloping and shifts downward as N increases. In addition it is bounded from
below and its lower limit is defined by

lim
N→∞

hHN =
6− α+ 4

√
2− α

2 + α
.

It can be checked that the condition p2 < 4q holds if h > 2.19 for N = 4, h >
2.62 for N = 6, h > 2.94 for N = 8 and h > 3.17 for N = 10. It is also observed
in Figure 1(A) that the Hopf boundaries hHN

are located far above the h = hN
locus for each N. Thus the Hopf bifurcation does not occur in the feasible region
PN . The Flip boundary is bounded from above with its upper limit

lim
N→∞

hFN =
12− α+ 4

p
2(4− α)

4 + α
.

It is positive-sloping for the appropriate values of α and shifts leftward as N
increases. Although the speed of adjustment α is positive and not greater than
unity, it is measured to the right up to the point 1.2 on the horizontal line in
Figure 1(A) to confirm that the flip boundary with N = 4, the most inner flip
boundary, takes unity for α = 1. Thus P4 ∩ S4 = P4, so all positive Cournot
points are stable for N = 4. However, the flip boundary with N ≥ 6 divides
the corresponding feasible region PN into two sub regions, stability region with
hFN < h and instability region with hFN > h. Figure 1(B) enlarges the lower-
left part of Figure 1(A) and depicts three stability regions: the largest rectan-
gular with light-gray is the stability region with N = 6, the smallest rectangular
with dark-gray is the one with N = 10 and the remaining middle rectangular is
the one with N = 8. Since the h = hN locus and the flip boundary shift down-
ward and leftward, respectively, the feasible and stable region becomes smaller
as the number of N increases.

(A) Various boundaries (B) Enlargment of Figure 1(A)
Figure 1. Stability and feasible regions for N = 4, 6, 8, 10

Our extension from the two-firm (i.e., duopoly) model to the two-group
model reveals interesting features of the nonlinear oligopoly.1 To see them, we

1See Puu (2003) for the theoretical and numerical analyses of the two-firm (duopoly) and
the three-firm (triopoly) models.
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perform numerical simulations in two models and compare the results. To this
end, in the two-group model, we take the set of parameters N = 6, w = 2
and choose the two bifurcation parameters: one is the common adjustment
coefficient α = β and the other is the cost ratio h = b/a between the two groups
where a = 1 is assumed for simplicity. The dynamic system has now the from
(4)

x(t+ 1) = (1− α)x(t) + α

Ãr
2x(t) + 3y(t)

a
− (2x(t) + 3y(t))

!
,

y(t+ 1) = (1− α)y(t) + α

Ãr
3x(t) + 2y(t)

b
− (3x(t) + 2y(t))

!
.

On the other hand, in the two-firm model, replacing N = 6 with N = 2 reduces
the this dynamic system to

x(t+ 1) = (1− α)x(t) + α

Ãr
y(t)

a
− y(t)

!
,

y(t+ 1) = (1− α)y(t) + α

Ãr
x(t)

b
− x(t)

!
.

Changing α from 0.6 to 1.0 and h (actually b) from 1 to 1.5 generates the
two-parameter bifurcation diagram shown in Figure 2 (A) while changing α
from 0.9 to 1.0 and h from 3 + 2

√
2 to 6.5 yields the two-parameter bifurcation

diagram presented in Figure 2 (B). Different colors in the (α, h) plane indicate
different periods of the cycles up to 16. Periodic points with a period larger than
16 and aperiodic points are colored in gray. The solution becomes imaginary if
parameters are selected from the white region. The upward sloping black curve
in Figure 2(A) and the downward sloping black curve in Figure 2(B) are the flip
boundary of the two-group model and the Hopf boundary of the two-firm (i.e.,
duopoly) model, respectively. As the destabilizing scenario is concerned, the
comparison shows two issues. First the stationary state is destabilized through
a flip bifurcation in the two-group model and with Hopf bifurcation in the two-
firm model. Even though both models can generate complex dynamics involving
chaos, the way to chaos is different. Second, the loss of stability occurs for a
relatively lower production cost ratio in the two-group model and for a higher
ratio in the two-firm model. Furthermore, Figure 2(A) indicates that the value
of the adjustment speed seems to be a main source of the flip bifurcation scenario
since similar bifurcation takes place as α increases regardless of the value of h.
This implies that the adjustment speed can be an effective control variable in
the two-group model.
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(A) The two-group model (B) The two-firm model
Figure 2. Two-parameter bifurcation diagrams in the (α, h) plane

4.2 Three Groups of Firms

Assume that the industry is now divided into three groups with Na, Nb and Nc
firms where Na + Nb + Nc = N and Na = 1

wa
N and Nb = 1

wb
N with wa > 1

and wb > 1. The outputs of the three groups of firms are denoted by x, y and
z,

x1 = · · · = xNa = x, xNa+1 = · · · = xNa+Nb
= y and xNa+Nb+1 = · · · = xN = z,

the marginal costs are by a, b and c,

c1 = · · · = cNa = a, cNa+1 = · · · = cNa+Nb
= b and cNa+Nb+1 = · · · = cN = c,

and the speeds of adjustment are by α, β and γ,

α1 = ··· = αNa = α, αNa+1 = ··· = αNa+Nb
= β and αNa+Nb+1 = ··· = αN = γ.

As in the previous section, we assume that the firms in the first group are the
most efficient in a sense that their marginal cost is the smallest,

a < min {b, c} .

The marginal cost ratios are denoted by h and k,

h =
b

a
> 1 and k =

c

a
> 1.

The Cournot outputs are obtained from equation (2) as

xc =
N − 1
C2

(C − a(N − 1)),

yc =
N − 1
C2

(C − b(N − 1)),

zc =
N − 1
C2

(C − c(N − 1))
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with C = Naa + Nbb + Ncc. It can also be seen that in the nonnegativity
conditions (3),

C − a(N − 1) = a {Nb(h− 1) +Nc(k − 1) + 1} > 0,

C − b(N − 1) = a {Nck − (Na +Nc − 1)h+Na}
and

C − c(N − 1) = a {−(Na +Nb − 1)k +Nbh+Na} .
The first inequality is always true. In order to have positive values of ycand zc,
we have to assume that

k >
Nc +Na − 1

Nc
h− Na

Nc

and

k ≤ Nb
Na +Nb − 1

h+
Na

Na +Nb − 1
.

Let the right hand sides of the first and the second inequalities be denoted by
fb(h) and fc(h). There is no guarantee that fb(h) > 1, but fc(h) > 1 always for
h > 1. Therefore the set of the marginal cost ratios that generate non-negative
Cournot equilibrium can be defined by

NN = {(h, k) | max{1, fb(h)} ≤ k ≤ fc(h) and h > 1} .

The characteristic equation (A-2) can be written in the form

1 +Na
αγa

1−α(1+γa)−λ
+Nb

βγb
1−β(1+γb)−λ

+Nc
γγc

1−γ(1+γc)−λ
= 0.

Introducing the notation Ra = 1 + γa, Rb = 1 + γb and Rc = 1 + γc, it can be
reduced to a cubic equation,

−λ3 + pλ2 + qλ+ r = 0,

where the coefficients are

p = (−Na + (Na − 1)Ra)α+ (−Nb + (Nb − 1)Rb)β + (−Nc + (Nc − 1)Rc)γ + 3,

q = −2 {(−Na + (Na − 1)Ra)α+ (−Nb + (Nb − 1)Rb)β + (−Nc + (Nc − 1)Rc)γ}
+(−NbRa −NaRb + (Na +Nb − 1)RaRb)αβ
+(−NcRa −NaRc + (Na +Nc − 1)RaRc)αγ
+(−NcRb −NbRc + (Nb +Nc − 1)RbRc)βγ − 3

and

r = (−Na + (Na − 1)Ra)α+ (−Nb + (Nb − 1)Rb)β + (−Nc + (Nc − 1)Rc)γ
−(−NbRa −NaRb + (Na +Nb − 1)RaRb)αβ
−(−NcRa −NaRc + (Na +Nc − 1)RaRc)αγ
−(−NcRb −NbRc + (Nb +Nc − 1)RbRc)βγ
+(−NcRaRb −NbRaRc −NaRbRc − (Na +Nb +Nc − 1))αβγ.

14



The Cournot equilibrium is locally asymptotically stable if all eigenvalues are
less than unity in absolute value. Okuguchi and Irie (1990) have shown that
the most simplified form of the necessary and sufficient conditions for the cubic
equation to have roots only inside the unit circle is

1− p+ (−q)− r > 0,

1 + p+ (−q) + r > 0,

1 + q + pr − r2 > 0.

It is easy to show that

1− p+ (−q)− r = (n− 1)(Na + hNb + kNc)3αβγ
8hk(n− 1)3 > 0,

which implies that unity is not a root of the cubic equation.
It seems tedious to examine the remaining two conditions in general, instead

we numerically confirm the stability region in the special case with N = 6
and w1 = w2 = 3. The same qualitative conclusions can be obtained for any
N(> 4), w1 and w2. In this case we have three groups with two firms in each
of them. The region for the non-negative Cournot equilibrium is surrounded by
the k = fa(h) and k = fb(h) loci. Substituting Na = Nb = Nc = 2 into these
functions determines the non-negativity region

P6 =

½
(h, k) | 2

3
h+

2

3
≥ k ≥ 3

2
h− 1, h > 1 and k > 1

¾
.

The nonnegativity and stability regions under naive expectation (with α = 1)
and those under adaptive adjustment (with α = 0.7) are shown in Figures 3A
and 3B, in each of which the outer curve is the Hopf boundary, the inner curve is
the flip boundary and the two straight lines are the k = fa(h) and the k = fb(h)
loci. The light gray area is the nonnegativity region and the dark gray area
illustrates the stability region. Their intersection is the feasible and stability
region. It is seen in Figure 3A that the non-negativity region is completely
outside the stability region for naive expectation. This implies that the non-
negative Cournot equilibrium is always unstable under naive expectation.2 It
is, in turn, seen in Figure 3B that about half of the non-negativity region is
included in the stability region for adaptive adjustment, which implies that an
unstable Cournot equilibrium under naive expectations could be stabilized by
adaptive adjustments.

2This result reminds us the classical result of Theocaris (1960) that the a non-differentiated
Cournot equilibrium is stable only in the duopoly case if the expectatitions are naively formed
and the price and the cost functions are linear.
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(A) α = 1 (B) α = 0.7
Figure 3. Stability and feasible regions of the naive and adaptive systems

Figure 4 is an enlargement of the south-west corner of Figure 3B. It shows
how the flip boundary shifts if the value of α changes. In the current example,
solving 1+ p+(−q) + r = 0 for α yields 0.8, given k = h = 2. This implies that
the flip boundary with α = 0.8 passes through the point (2, 2), the vertex of the
triangular part of the stablility region. Thus if α ≥ 0.8, then the nonnegativity
region is completely outside the stability region for adaptive adjustment, so
no nonnegative equilibrium becomes stable. On the other hand, solving 1 +
p + (−q) + r = 0 for α yields 2

3 , given k = h = 1. This implies that the
flip boundary with α = 2

3 passes through the point (1, 1). If α ≤
2
3 , then the

nonnegativity region is entirely inside the stability region, in which case all
nonnegative equilibria become stable. If 23 < α < 0.8, then only a certain part
of the nonnegativity region belongs to the stability region, and this part becomes
larger if the value of α decreases. In particular, for α = 0.7, the stability region
is horizontally-striped and is the triangle with a base of the flip boundary with
α = 0.7, the most outer circular curve. In the remaining light-gray area of
the nonnegativity region, the Cournot output is locally unstable. When the
adaptive parameter α decreases, the flip boundary shifts inside accordingly. As
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a consequence, the stability region enlarges and the unstable region shrinks.

Figure 4. Dependency of the stability region on α

As the comparison of the three-group and the three-firm (triopoly) models,
we, again, perform numerical simulations for these two models. The dynamic
system in the three-group model is

x(t+ 1) = (1− α)x(t) + α

Ãr
x(t) + 2y(t) + 2z(t)

a
− (x(t) + 2y(t) + 2z(t))

!

y(t+ 1) = (1− β)y(t) + β

Ãr
2x(t) + y(t) + 2z(t)

b
− (2x(t) + y(t) + 2z(t))

!

z(t+ 1) = (1− γ)z(t) + γ

Ãr
2x(t) + 2y(t) + z(t)

c
− (2x(t) + 2y(t) + z(t))

!

where for simplicity, α = β = γ, h = k and a = 1 are selected implying b = c.
The dynamic system in the three-firm model (i.e., triopoly) can be constructed
similarly. Selecting α and h (in particular b) as the bifurcation parameters,
Figure 5 illustrates the bifurcation diagrams in the (α, h) plane. The numerical
investigations clearly reveal qualitatively the same issues as those we saw in
Figure 2. Namely, first of all, the destabilizing process goes to chaos through
a flip bifurcation with a lower production ratio in the three-group model and
through a Hopf bifurcation with a higher ratio in the three-firm model. Second,
the adjustment speed can be used to control unstable trajectories. Comparing
the bifurcation diagrams of the two-group and the three-group models shows the
similarity of the destabilizing process of these models in which period-doubling
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bifurcation takes place.

(A) The three-group model (B) The three-firm model
Figure 5. Two-parameter bifurcation diagrams in the (α, h = k) plane

In Figure 6, we present the bifurcation diagram in the (h, k) plane to draw
attention to the feasibility of the solutions of the three-group model. The value
α = 0.8 is fixed. As already explored in Figure 4, h and k range from 1 to 2 and
the stationary state is unstable for any combination of h and k from this region.
Color has the same meanings as before. The feasible region of the three-group
model is defined by two upward sloping curves, k = fb(h) and k = fc(h). Notice
that although the area outside the feasible region is colored in the same way as
the feasible region, the stationary point defined in that area becomes negative
and thus economically meaningless. Bifurcation makes sense only in the feasible
region from an economic point of view. Notice further that a trajectory that
oscillates around the stationary point periodically or aperiodically may take
negative values and thus becomes economically meaningless. One way is to
confine the parameter choice in such a way that the resultant dynamics does
not become infeasible. The other way is to reconstruct the dynamic system
by taking into account the non-negativity constraint explicitly. However, the
former has the difficulty of deriving the confinement conditions in our model as
many parameters are involved, and the latter makes the asymptotic behavior of
the dynamic system significantly different and more difficult to analyze. Since
our main concern is to control the unstable trajectories and our main conclusion
is that the adjustment speed is an effective control parameter, which is supposed
to hold in those models, we used the model without such modifications at the
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expense of some economic precision.

Figure 6. Two-parameter bifurcation diagram in the (h, k) plane

5 Conclusion
The asymptotic behavior of discrete dynamic systems is a fundamental research
issue. In this paper a special class of economic models was examined. For the
sake of mathematical simplicity we selected N -firm Cournot oligopolies with-
out product differentiation, and with isoelastic price function. The reaction
functions and the equilibrium were determined first, and then the asymptotic
behavior of the equilibrium was illustrated in two special cases with two or three
groups of identical firms. Stability conditions could be derived analytically in
the first case, and the dependence of the asymptotic properties of the equi-
librium on the number of firms was illustrated by computer simulation in the
second case. The results of the nonlinear duopoly and triopoly models show that
the Cournot equilibrium can be destabilized through a Hopf bifurcation. We
also found the following new dynamic phenomenon. In the multi-group models,
the stationary state is destabilized through the Feigenbaum period doubling se-
quence, and a Hopf bifurcation can occur only in the infeasible regions in which
the stationary state is negative. For N > 4, the multi-group models are unstable
if α is close to one and become stable if α is below a certain threshold, regardless
of the production cost ratios. This implies that the main source of instability
is the speed of adjustment and thus the stationary state could be stabilized by
selecting sufficiently small speed of adjustment. That is, the multi-group models
with N firms are unstable under naive expectations but are controllable with
the adaptive adjustment process in which the speed of adjustment is the control
parameter.
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Appendix

In this appendix, we derive the stability conditions of the adaptive system
in which the expectation is adaptively formulated,

yei (t+ 1) = (1− αi)y
e
i (t) + αi

X
j 6=i

xj(t).

Here αi ∈ (0, 1] is the speed of adjustment of firm i. The stability conditions
are also useful to determine the local dynamic behavior of the naive system as
well as that of the inertia system.
We consider the adjustment process with adaptive expectations first, since

the one with naive expectations can be obtained by selecting the speed of ad-
justment equal to unity (i.e., αi = 1). For i = 1, 2, ...,N,⎧⎪⎪⎪⎨⎪⎪⎪⎩
xi(t+ 1) =

s
αi
P

j 6=i xj(t) + (1− αi)y
e
i (t)

ci
−
³
αi
P
j 6=i xj(t) + (1− αi)y

e
i (t)

´
,

yei (t+ 1) = αi
P

j 6=i xj(t) + (1− αi)y
e
i (t).

The Jacobian at the equilibrium has the form

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γ1α1 · γ1α1 γ1(1− α1) 0 · 0
γ2α2 0 · γ2α2 0 γ2(1− α2) · 0
· · · · · · · ·

γNαN · γNαN 0 0 · 0 γN (1− αN )
0 α1 · α1 1− α1 0 · 0
α2 0 · α2 0 1− α2 · 0
· · · · · · · ·

αN · αN 0 0 · 0 1− αN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

γi ≡
∂fi(y

e
i )

∂yei
=

C

2ci(N − 1)
− 1.

Notice that condition (3) implies that γi ≥ −12 for all i.
The eigenvalue equation has the form

Jx =λx with x = (u1, ...uN , v1, ...vN )
T
,

or equivalently,⎧⎨⎩
γiαi

P
j 6=i uj + γi(1− αi)vi = λui, 1 ≤ i ≤ N,

αi
P
j 6=i uj + (1− αi)vi = λvi, 1 ≤ i ≤ N.

Subtracting the γi-multiple of the second equation from the first one gives

λ(ui − γivi) = 0.

The value λ = 0 cannot destroy stability, so we may assume λ 6= 0. Then
ui = γivi, and by substituting it into the second equation, we have

αi
X
j 6=i

γjvj + (1− αi)vi = λvi, 1 ≤ i ≤ N.
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This is the usual eigenvalue problem of the N ×N matrix

H =

⎛⎜⎜⎝
1− α1 γ2α1 · γNα1
γ1α2 1− α2 · γNα2
· · · ·

γ1αN γ2αN · 1− αN

⎞⎟⎟⎠ .
Notice that

H = D+ abT ,

with
aT = (α1,α2, ...,αN ), bT = (γ1, γ2, ..., γN ),

and
D = diag(1− α1(1 + γ1), 1− α2(1 + γ2), ..., 1− αN (1 + γN )).

The characteristic polynomial of H can be decomposed by using the simple fact
that if x,y ∈ RN , then

det
¡
I+ xyT

¢
= 1 + yTx,

where I is the N ×N identity matrix. So we have

det(H− λI) = det(D+ abT − λI)

= det(D− λI) det(I+ (D− λI)−1abT ).

The roots of the first factor are 1−αi(1 + γi) which are inside the unit circle if
and only if

−1 < 1− αi(1 + γi) < 1,

which occurs if and only if

ci >
αiC

4(N − 1) . (A-1)

The other eigenvalues are the roots of equation

1 +
NX
i=1

αiγi
1− αi(1 + γi)− λ

= 0. (A-2)

The Cournot equilibrium is locally asymptotically stable if all eigenvalues are
less than unity in absolute value and is unstable if at least one eigenvalue is
outside the unit circle. However, since parameters α1,α2, ..., aN can be selected
arbitrarily in interval (0, 1], there is a large flexibility in the location of the
eigenvalues.
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