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ABSTRACT. A continuously distributed time lag is considered in a mo-
nopoly where the time window of past data is bounded from below and
its length is fixed. The dynamic behavior of the resulting system is de-
scribed by a special delayed differential equation with infinite spectrum.
The location of the stability switches are determined and a simple rule
is developed to determine which ones lead to the loss of stability or
the regaining of stability. A simple computer example illustrates the
theoretical findings. The dynamic model and the stability conditions
are different from what is known from earlier studies on continuously

distributed delays.
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1. INTRODUCTION

Dynamic economic models are one of the most frequently studied problem
areas in the literature on mathematical economics. Dynamic monopolies
and oligopolies as special models have been examined by many authors.
The earlier developments up to the mid 70s are summarized in Okuguchi
(1976), and their multi-product extensions with special model variants are
discussed in Okuguchi & Szidarovszky (1999). Most of the models ex-
amined earlier are linear, where local asymptotic stability implies global
stability. In recent decades increasing attention has been given to nonlin-
ear dynamics. Bischi et al. (2010) give a comprehensive summary of the
recent developments in nonlinear oligopolies. Most models discussed ear-
lier in the literature assume complete and instantaneous information about
the market and the behavior of the competitors. In real economies this
assumption is unrealistic. The effect of misspecified demand functions on
the oligopoly equilibria and on the dynamic properties of the associated
dynamic models are discussed in Bischi et al. (2010) and in the references
cited there. Repeated observations on the market and on the behavior
of the competitors can also lead to different learning schemes. The data
obtained about the market and the competitors are usually delayed, and
obtaining and implementing decisions also need some time. Information
lags can be modeled either by fixed or by continuously distributed delays.
Fixed delays are described by difference-differential equations, the char-
acteristic equations of which are mixed polynomial-exponential equations
with infinite spectra. The classical book of Bellman & Cooke (1956) gives
an excellent introduction to this area. If the delay is uncertain, or the
firms want to react to average past information instead of following sudden

changes, continuously distributed lags are used. With special weighting
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functions the resulting Volterra-type integro-differential equation is equiv-
alent to a system of ordinary differential equations with a finite spectrum.
Cushing (1977) offers the mathematical developments and applications to
population dynamics. This methodology is introduced into economic mod-
eling by Invernizzi & Medio (1991), and its applications to oligopolies are
presented in Chiarella & Khomin (1996) and Chiarella & Szidarovszky
(2002). The expected demand is a weighted average of all past demand
observations from zero to the current time period, that is, the length of
the considered time interval is increasing and converges to infinity when
t — 00. A more realistic assumption is the consideration of a given time
window, when the firms use observations only in the interval [t — A, t] with
fixed value of A. In this case the firms do not go back very far in time with
observed information. This idea is introduced in Chiarella & Szidarovszky
(2003) and the asymptotic behavior of the dynamic model is investigated
in simple special cases. A comparison of fixed and continuously distributed
delays is presented in Cooke & Grossman (1982).

The first step in analyzing dynamic oligopolies is the examination of mo-
nopolies, where the models and the mathematical methodology are sim-
pler. Recently Matsumoto & Szidarovszky (2012a,b,c) examined dynamic
monopolies with discrete and continuously distributed lags. Stability con-
ditions were derived and compared as well as global dynamics were shown
by computer studies. The dynamics of the output can be described by
using best responses or marginal profits. The best response dynamics has
the advantage that the steady states are the same as the static equilibria,
however global information is needed to determine the reaction functions.

In applying gradient dynamics only local information is needed, however
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only interior equilibria can be obtained as steady states of the dynamic
model.

In this paper the dynamic monopoly model of Matsumoto & Szidarovszky
(2012c) is revisited, and the continuously distributed delay is modified to a
bounded continuously distributed delay. After the mathematical model is
introduced, a complete stability analysis is given, which is then illustrated
with numerical examples. Conclusions and future research directions are

outlined at the end of this paper.

2. THE MATHEMATICAL MODEL

Consider a monopoly with price function p(z) = A — Bz and cost function
C(z) = Cx + D. It is assumed that these functions are not exactly known
by the firm, and that it observes profit information with an uncertain delay.

The profit of the firm is given as
II(z) = (A — Bz) — (Cz + D) (1)
and its marginal profit is
II'(z) = A— C — 2Bz.

In order to have positive maximizer we assume that A > C, so the profit
maximizing output is T = %, which is also unknown by the firm. Based
on past profit information it is able to estimate the marginal profit, for ex-
ample by using a numerical differentiation scheme. The obtained marginal

profit is a delayed value, when we omit the error of numerical differentia-

tion. So the gradient adjustment process can be given as

Z(t)=K(A—-C—2Bz(t—1))
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where K is the speed of adjustment and 7 is the uncertain delay. By
assuming a bounded exponential distribution of 7 in interval [t — A,¢]
and taking expectation of the delayed term we have the integro-differential

equation

i) = K ( _¢c-2B %e-%’x(s)ds) @)

Y Ji-A

Al .
gy = e Tdu=1-—¢€"
) A T

Introduce the new variable

with

S>>

then
(1) = (a(t) — 2(t)) — e~ Pa(t - A) 3)
and from (2),
() = K(4 - 0 = 22(0). @

From this equation,

1

2(t) = ocg KA — KCy —7i(1)),

and so

A(t) = —2;,355(1:).

Combining this equation with (3) yields

a

2KB

30 = 1 (200 - gAY~ KO =13(0)) - 7~ a(6 - 2)

which can be simplified as

Ti(t)+z (t)+¥ (t) — 2KB

“Tp(t—A)+ K(C—A)=0. (5
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By introducing the notation

_2KB
v

a and b= K(A-C)

this equation can be rewritten as
Ti(t) + (t) + az(t) — ae"Ta(t — A)-b=0. (6)

The steady state of this system is given by

b  KA-C) A-C

mza(l—e-%) _%E(l—e-%) - 2B

which is the maximizer of the profit function II(z).

3. STABILITY ANALYSIS

In order to analyze the asymptotic behavior of system (6) we need to find
the possible stability switches, where A = fw with w > 0. This assumption
does not restrict generality, since if A is an eigenvalue, then its complex

conjugate is also on eigenvalue. The characteristic equation of (6) is
TX + A+a—ae T8 =, (7)
If X = iw, then!
~Tw? +iw+a— ae_%(cosAw —isinAw) =0
and by separating the real and imaginary parts, we have

ae™T cos Aw = a — T’ (8)

INote that 7 is the /—1.



ae” T sin Aw = —w. 9)
By adding the squares of these equations we have

a’e” T = (@ — Tw?)? +w?. (10)
From (10), inequality

a® > (a — Tw?)? + w?
should be satisfied, which can be rewritten as

20T — 1

o (1)

w2<

and in order to have feasible solution for w we also need to satisfy relation

1

Notice that (11) is a quadratic inequality in T,
T?w? —2aT+1<0

which is satisfied if and only if

_1/2_ 2 1/2_ 2
s ve muwr az @ <T< atve —w a2 v ; (13)
w w

The expression under the square root is positive by (10).
First we show that pure complex roots of the characteristic equation are

single. Otherwise A = iw has to solve both the equations
TN+ A+a—ae T2 =0

and

2T\ + 1+ Age~ T2 =,
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By adding the A - multiple of the first equation to the other we get
ATN + (A+2T)A+Aa+1=0

that is,
(—ATw? + Aa + 1) + tw(A + 2T) = 0.

The imaginary part is zero when w = 0, in which case the real part is
positive. This is a contradiction.

From equation (10) we have
T*w* — 2aw?T + d® (1 - e_%) +uw?=0.

The discriminant is
24
D = 4u* (aze— T — wz) ,

A
T

so a solution exists only if w £ ae~T, in which case

2A
+ Va2e~T — w?

w?

a
7,15 = (Tl < Tg) (14)

Clearly both roots are positive and satisfy (13). At w = 0, both T} and T}
converge to infinity, and at w = ae~7 there holds T} (w) = To(w) = %e%.
These functions are shown in Figure 1, where Tj(w) is shown with blue

color and T5(w) in red.

It is also clear, that T3 strictly decreases in w. By differentiation,

o} 1 -1 [ _a )
- =— — (—2w)w? — 2w (a — Va2 F —w2)
ow w* | 94/ a2e—% — w2

which has the same sign as

w?—2a\/ a?e™F — w?+2 (aQe_% - wz) = —20\/a?e T — w4+ (—w2 + 2a2e‘%> :




FIGURE 1. The graph of functions 73 (w) and Ts(w)

The second term is clearly positive. This expression is positive, if

2A _24
20\/a%e” T —w? < 2a%e~T — w?

that is if,

_z2a _aa _3a
da*e™T — 4a’w? < dale” T + w? — da’e T w?

or
w? + 402w? (1 — 6_%) — 4a4e_% (1 - 6_%) > 0.

The left hand side is a quadratic polynomial in w?, one root is negative,
the other is positive. Therefore there are two complex roots, furthermore

one root is negative and the other is positive, which is

w*=a\/2( 1—e % - (1—6—%)) (15)
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and 77 increases if w > w* and decreases if w < w*. It is easy to see that
. _a

w* < ae"T.

Notice that

n_ 1+Vl—eT
T(w') = = (16)
20e” T '
which satisfies (12). From (9),
sin Aw = —%e%. (17

We consider a := % fixed, and in this case we take T" and w as variables.

From (17),

sin(aTw) = —Ee“,
a

which can be rewritten as

T = i (— sin~! (%e“) + 2n71') (nz1) (18)

7w = L (sin-l (Ee“) + (2 + 1)71') (k = 0) (19)

aw a

if a — T{Pw? < 0. Figure 2 shows the graphs of T\ (w) and Ty (w) for
n=1,2,3,4,5and k =0,1,2,3,4. The graphs of Tl(") (w) are shown in blue
color and the graphs of T{*)(w) are given in red. It is clear that T (w)

and Tl(kH) (w) have the same endpoint at w = ae™®.

(2n—3)mw

The graph of T\™ clearly strictly decreases in w, T™ (ae~*) = m;,,— and

limyy0 7™ (w) = oo for all n = 1. Similarly,
2k + %) T

— (k o
T2( )(ae )= ( oae™®

and also

lim 7 (w) = oo.
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FIGURE 2. Shapes of T (w) and T\® (w) for 1 £ n < 5 and
0<k<4

By simple differentiation,

oTd 1 1 iw_(mﬁwgf)+@k+nﬂ

ow  ow? / w?_on @ a
1-— ;2‘62 (20)

=Ciﬂ<vT§E§—mn4@)-@k+1ﬁ)

with = €2 < 1. For all k& 2 0 there is a unique value wy, of w such that

a

this derivative is zero, wy < w; < wy < ... and Ték) decreases as w < wy
and increases when w > wy. This fact is a consequence of the observation
that the expression inside the parenthesis is strictly increases with negative
value at z = 0 and infinite limit at z = 1.

It is also clear that 7™ (w) > T (w) for n = k+ 1 in interval [0,ae™®),

and T (w) < T8 (w) for n < k.



12 AKIO MATSUMOTO, CARL CHIARELLA AND FERENC SZIDAROVSZKY

4. STABILITY SWITCHING

The possible (w,T) stability switchings are obtained by the intercepts of
Ty (w) and T™ (w) and the intercepts of Ty(w) and T (w). It is also clear
that with small values of w, both 77 and T, are larger than T’l(”) and Ték) ,
furthermore at w = ae™%, Tl("’) and Tz(k) are larger than both 77 and T3 if
n and k are sufficiently large. Therefore there are infinitelv many solutions
(w,T).

Next we check the directions of stability switching. Let o be fixed again,
and let T' be the bifurcation parameter. Implicitly differentiating (7) and

using the fact that A = aT', we have
AL 2TAA+ A — ae e 2T (—AaT — Aa) =0,

implying that
L A2 4+ gale @ el
T 2TA+1+aaTe 2 HT’

By using equation (7) again, we obtain

A2 + ao A TX4Ata A2+ aMTA2 + A+ a)

TOTA+ 1+ aoTT¥EMs —  9TA+1+oT(TA2+ A+a)

When A\ = tw, we find that

5 aTw? + w?(1 + a) — aawi _ w3 (1 + ) +i(aTw® — acw)
- —w?2(aT?) +iwT +oT) + (1 + aT)  (—w?T?a+ 1+ aaT) +w(2T + oT)’
(21)

The sign of Re ) is the same as the sign of its numerator after multiplying
both numerator and denominator by the complex conjugate of the denom-

inator, so that the numerator becomes

w?(1+ o)(—w?T?a + 1+ aaT) + w(2T + oT)(aTw® — aaw)
(22)
= w?(aT?*w® — aaT + o + 1).



Therefore stability is lost if

aal —a—1
’UJ2>TZ=Q(T)

and maybe regained if w? < g(T"). From (10),

, 2aT—1++vD
w- =
272

with
D = 4a*T?e™2* + 1 — 4qT.

13

(23)

(24)

The larger solution is the entire T5(w) and T;(w) between w* and ae~?,

the smaller solution is 73 (w) between 0 and w*.

We will next show that the larger solution of (24) is greater than g(7"), that

is, stability is lost at the critical values located there.

We need to show that

2aT—1+\/5>aaT—a—1

272 aT?

which can be rewritten as

200T — a + oV D > 20aT — 20 — 2

or

a+2+a\/5>0

which is clearly true.

The smaller root is also above g(7") when

2aT—1—\/1_)>aaT—a—l

272 aT?

or

a+2>a\/5
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which can be rewritten as
0> a%0T?e 2 — 00T — 0 — 1.

The right hand side has two roots for T', the only positive one being

_ ao® +y/a?a® + 4(a + 1)a2a?e2 o Lo

T*
2a202e—2a a

and stability is lost if 7" < T* and stability might be regained for T > T*.
Delay is harmless if T' < 14’2;@ since in this region there is no possible
stability switching by (16). Potential points of stability switching are the
intercepts of Ty (w) and 7™ (w) and those of Ty(w) and T (w).

If T > T* at the intercept of T3(w) and T\ (w), then stability might be
regained, if only one eigenvalue had positive real part before. If T' < T*,
then stability is lost, which is the case at the intercepts of T5(w) and Tz(k) (w)
for all k. Since at each intercept the sign of the real part of only one
eigenvalue changes sign, we have to order the intercepts in increasing order
in 7', and have to divide them into two classes. In class 1, stability is lost,
and in class 2, stability might be regained. Since at T = 0 the system
is stable, the smallest intercept has to be in class 1. At each value of T,
we have to count the number N;(T) of class 1 intercepts below T, and
the number Ny(T') of class 2 intercepts below T'. If Ny(T) £ No(T'), then
the system is asymptotically stable at T, otherwise it is unstable. The

locations of the intercepts depend on the actual parameter values, which

can be examined by computer studies.

5. EXAMPLES

The parameter value a = 4 was selected in our computer study. Three

cases were considered, « = 1, @ = 2 and o = 1. In the first case T = A,
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FIGURE 5. The case of a = 2

N

when the data with average delay are at the left endpoint of the interval
(t — A,t). In the second case it is in the middle of the interval and in
the third case it is below the endpoint. Figures 3, 4 and 5 show these
cases. The thick red line is T5(w), the thick blue line shows T;(w). The
horizontal dotted line is at 7' = T*. The intercepts of T3 (w) and T™ (w)
are the blue dots and the intercepts of Th(w) and T{* (w) are the red dots.
At each red dot stability is lost, since one eigenvalue changes the sign of its
real part from negative to positive. This is the case with blue dots under
the horizontal dotted line. How_ever at the blue dots above the horizontal
dotted line stability might be regained, since one eigenvalue changes the
sign of its real part from positive to negative.

In each figure we have to consider the red and blue dots in increasing order
with respect to T". If @ = 1, then stability is lost at the first red dot which is

then regained, but it is lost twice afterwards. The next dot is blue, where
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only one eigenvalue changes the sign of its real part. However stability
is not regained, since there is another eigenvalue with positive real part
already. If o = 2, then stability is regained three times, and if o = %, then
the first two dots are red, so there are two eigenvalues with positive real
parts afterwards, so the next blue dot does not lead to a regain of stability.
With a fixed value of @« = A/T, the increase of the bifurcation parameter
T implies an increase of the length A of the time window. Therefore large

values of T' do not have much practical importance.

6. CONCLUSIONS

A monopoly with continuously distributed delay has been examined when
the time window of past data was bounded from below and had a fixed
length. The characteristic polynomial of the resulting dynamic system is a
mixture of a quadratic polynomial and an exponential term. The potential
points of stability switching were then determined and a simple rule was
developed to check if stability is lost or regained at these points, which are
the intercepts of irrational and inverse trigonometric functions. A computer
example illustrated the theoretical findings. Both the dynamic model and
the stability conditions are different from those reported in earlier studies
on continuously distributed lags. In our case several points of stability
switching are possible, while in the earlier studies the number of points of
stability switching were at most two.

In future research we will extend this methodology to duopolies and n-f
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