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Abstract

A neoclassical growth model is examined with a special mound-shaped
production function. Continuous time scales are assumed and a complete
steady state and stability analysis is presented. Then fixed delay is as-
sumed and it is shown how the asymptotic stability of the steady state is
lost if the delay reaches a certain threshold, where Hopf bifurcation oc-
curs. In the case of continuously distriubuted delays, we show that with
small average delays stability is preserved, then lost at a threshold and is
regained if the aver;),ge delay becomes sufficiently large. The occurence of
Hopf bifurcation is shown at both critical values.
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1 Introduction

The examination of economic growth models is one of the most frequently dis-
cussed issues in mathematical economics. Day (1982, 1983) has investigated
a neoclassical growth, and a productivity and population growth model and
showed the emergence of complex behavior even under simple economic struc-
ture. His models were based on discrete time scales and a mound-shaped pro-
duction funetion that represented the negative effect of pollution resulting from
increasing capital. It was demonstrated by numerical computations that these
models could generate cyclic and even chaotic behavior. Following Day’s pio-
neering works, a lot of effort has been given to the understanding of complex
economic dynamics. Day (1994), Puu (2003) and Bischi et al. (2010) present the
earlier contributions of this field. A large number of studies assumed discrete
time scales. Li and Yorke (1975) have introduced the "period-three condition"
to detect chaos, which has many applications in first-order nonlinear difference
equations. The papers collected by Rosser (2004) offer many applications. Only
a few studies are devoted to the case of continuous time scales, since there is
no general criterion to detect chaos and the system must have at least three
dimensions.

In this paper we will examine an extension of the neoclassical aggregate
growth model, which can be traced back to the early works of Solow (1956) and
Swan (1956). It is a very interesting question to see the dynamic behavior of
the growth models with continuous time scales. Matsumoto and Szidarovszky
(2011) have introduced a neoclassical growth model with a mound-shaped pro-
duction function and investigated its dynamic behavior with both discrete and
continuous time scales. The production function was assumed to be a Cobb-
Douglas type function of the form F(x) = Az*(1—z)®, where z is the capital per
unit labor. This paper will consider another type of mound-shaped production
function and will examine the stability of the steady state with and without time
delays. Two kinds of delay will be discussed, fixed and continuously distributed
(continuous hereafter) delays.

This paper develops as follows. First the mathematical model is formulated
without time delays, and complete steady state and stability analysis is pre-
sented. Then models with fixed delays and then with continuous delays are
introduced and complete stability analysis is given. The last section concludes
the paper.

2 The Mathematical Model

Matsumoto and Szidarovszky (2011) has introduced a special growth model of

the form
z(t) = sF(z(t)) — az(t)

where z is the capital per labor, s and « are positive parameters where s € (0, 1)
is the average propensity to save and & = n + su with p being the depreciation



ratio of capital and n the growth rate of labor. Assume now the mound-shaped

production function
F(z) = exve%2,

so the modified mathematical model becomes
(t) = —az(t) + Ba(t)Ye @), (1)

where a, 7, § and B = se are positive parameters. The number of steady states
and their locations depend on the specific values of the model parameters. We
will consider three different cases: v < 1, ¥ =1 and 4 > 1. Let now f(z) denote
the right hand side of equation (1).!

Case I

Assume first that 4 < 1. The steady states are the solutions of f(z) = 0.
Notice that f(0) = 0, so zero is a steady state. f(z) converges to —co as z — oo.
Since

fl(x) = —a+ Byz" e %" — BoxYe ",

f'(z) converges to oo as = tends to zero with positive values. Hence f(z)
increases for small values of 2 > 0.The steady state equation f(z) = 0 can

be written as
z7(—ox! ™Y + Be %) = 0, (2)

so the positive steady state is the unique solution of equation
azl™Y = ge~%, (3)

The left hand side is zero at = 0 and strictly increasing, furthermore, converges
to co as z tends to infinity. The right hand side is 8 > 0 at = = 0, strictly
decreases and converges to zero as * — oo. Hence there is a unique solution
Z > 0of (3),and f(z) >0if z < Z and f(z) < 0 as z > Z. These relations
imply that if #(0) < Z, then z(t) increases and converges to Z, and if z(0) > Z,
then z(t) decreases and converges to Z. If z(0) = Z, then z(t) remains Z for all
z > 0. Thus Z is globally asymptotically stable.

Case 11
Assume next that ¥ = 1. Then the steady state equation has the form
z(—a+ fe~) =0, 4)

so0 zero is a steady state and there is a unique root of the second factor,

Z==In—. (5)

If z(0) = 0, then the identically zero function is a solution which case is not interesting
from the economic point of view and is eliminated from further considerations.



If B < «, then the value of f(x) is negative for all z > 0. Therefore z(t) is
decreasing and converges to zero with arbitrary z(0) > 0. If 8 > «, then T > 0,
furthermore f(z) > 0 as x < Z, and f(z) < 0 as z > Z. If z(0) < Z, then z(f)
increases and if 2(0) > Z, then z decreases and converges to Z, and if z(0) = %,
then z(t) remains Z for all £ > 0. Hence 7 is globally asymptotically stable.

Case II1

Consider finally the case of 4y > 1. The steady state equation has now the

form
z(—a+ Bz e™) =0, (6)

so zero is a steady state again, and any other steady state is the solution of

equation
g(x) = —a+ Bz e = 0. (N

Notice that
9(0) = lim g(z) = —a

T—00

and

g@ = Bly—1)2" %% — Bsz"e™""
= Bz 2e7%%(y —1—62).

Therefore g(z) has its global maximum at

L1

increases for x < £ and decreases for > £. Now we have three sub-cases.

(i) if g(&£) < 0, then there is no positive steady state and with arbitrary z(0) >
0, z(t) decreases and converges to zero.

(i) if g(£) = 0, then Z = £ is the unique positive steady state and f(z) < 0 for
all 0 < x # Z. If 2(0) < Z, then z(t) decreases and converges to 0, and if
x(0) > Z, then z(t) decreases again and now converges to Z. If z(0) = 7,
then z(t) = Z for all £ > 0.

(iii) If g(Z) > 0, then equation (7) has two positive solutions, Z; < £ and
Zg > £. Relation (6) implies that f(z) < 0 as z < Z; or £ > g, and
f(z) > 0if Z; < < Eo. Therefore if 2(0) < T1, then z(t) decreases and
converges to zero, if Z; < z(0) < Z2, then z(¢) increases and converges to
Zg, if 2(0) > T, then z(t) decreases and converges to Zz. That is, Z; is
locally unstable and Zs is locally asymptotically stable. If z(0) = Z; or
z(0) = T, then z(t) remains at that steady state level for all £ > 0.



3 Model with Fixed Delay

The fixed delay T' > 0 is assumed in the second term of the right hand side of
equation (1), so we have the following equation:

&(t) = —ax(t) + h(z(t —T)) (9)

where
h(z) = Bx"e %, (10)

The local asymptotic behavior of the trajectory can be examined by lineariza-
tion. Let Z be a positive steady state. Then the linearized equation has the

form
&5(t) = —aws(t) + B (T)2s(t — T),

where z5(t) is the deviation of z(t) from the steady state level. Looking for the
solution in the usual form z5(t) = eu, we have

ety = —aeru 4 b (2)er Ty,
which gives the characteristic equation
A a=h(F)e T

A+ a)e*T = 1 (7). (11)

Lemma 1 Assume that |h'(Z)| < a. Then T is locally asymptotically stable.

Proof. Assume that ReX > 0. Then

A+ ol >
and since
EAT _ eT(Re )\)eiT(Im A)
eT(Re}) (cos[T'(Im A)] + Zsin[T"(Im N)]),
clearly
'e/\T| 2 1.
Therefore

|(A+a)e*| > a and |B(Z)| <

implying that A cannot be an eigenvalue. m

Notice that
K (@) = fa" e (y - bz) (12)



and at the steady state
Bze™% = az

implying that
Bzl = a.

Therefore
h,(f) = a(y — 62),

so the characteristic equation (11) can be rewritten as
A+ a)e*T = a(y — 63).

We also mention that the condition of Lemma 1 can be rewritten as

|y —6z| < 1
or equivalently
=1 _ ~v+1
5 <z< 5
In the special case of v = 1, this condition has the form
1. 8 2
0<zln=< <
<5"a"3
which is equivalent to relation
a< f < ael

(13)

(14)

In order to give a complete stability analysis, we have to find the possible
stability switches. At any stability switch, A = iw with w > 0 and substituting

it into equation (11) yields
iw + o= b (%) (coswT —isinwT).
Separating the real and imaginary parts gives two equations,
R (Z)sinwT = —w

and
R'(Z) coswT = .

Adding the squares of these equations gives
h,(il_,‘)2 = a2 +w2

80
w=ay/(y—96z)2 -1

In order to have solution we have to assume now that

|7_6E| >1,

(15)

(16)

(17)

(18)

(19)



that is, (14) is violated with strict inequalities. From (16) we have that if
h'(Z) > 0, then T( = T with

1
T_E_n) == <27r —sin~! (ﬁ) + 2n7r) forn>0 (20)
and if if h'(Z) < 0, then T™ = T™ with

™ = ul} <7r +sin™! (%) + 2n7r) forn >0 (21)

and by (13) and (19),
|2 (Z)] > a

so h'(Z) cannot be zero. _
By selecting T' as the bifurcation parameter and implicitly differentiating
the characteristic equation with respect to T, we have

N =W (E)e T (=NT - ))

=—A+a)NT+ )
implying that
) —A(A + @)
T 14T+ a)’
If A = 4w, then
\ = w? — o
T (14 Ta)+iTw
with real part
2
Re) = v 0.

1+ Te)? + (Tw)? >

Therefore if a steady state is unstable with 7' = 0, then it remains unstable for
all T > 0, and if a steady state is asymptotically stable at T = 0, then this
stability is lost at T' = T'© and cannot be regained later.

Taking, « =1, § =25,y =1 and § = 1, we give a numerical example in
Figure 1. The critical value v — 0% is denoted by

zZ.=1—1In (é) ~ —2.22.
a

Introducing the notation z = vy — 6Z transforms the T curve to

(0) 1 . 1 22 -1
T’ ' = ———— |7 +sin
avz?—1 ( ( z




and then the corresponding critical value of the delay is

2 _
To=—L ' (rysin-t(¥%e=1)) ~ 103
(7 Zg—l Zc

In Figure 1(A), the steady state is locally asymptotically stable in the dark-gray
region with z > —1 due to Lemma 1. It is also locally asymptotically stable in
the light-gray region, which is under the critical curve T' = T and it is unstable
in the white region above the curve. Setting 2z = 2, and increasing T' along the
vertical dotted line in Figure 1(A), we can see that the steady state loses stability
at T'= T,. Further increasing T, as observed in Figure 1(B), generates complex
dynamics through a quasi period-doubling bifurcation in which T increases from
T.—0.05 to 8.5 with an increment of 0.01 and the local maximum and minimum
of the corresponding trajectory are plotted against each value of T

(B

2 -1 0
¥4

(A) Region division (B) Bifurcation diagram

Figure 1. Dynamics witha=1, 3=25, y=1and § =1

4 Model with Continuously Distributed Delay

Assuming continuously distributed delays in the second term of equation (1)
gives the following Volterra-type integro-differential equation:

(t) = —ax(t) + /w(t — 8, T,m)h(x(s))ds (22)
0



where T > 0 is a positive parameter, the average delay and m > 0 is an integer.
The kernel function has the form

—e~ T if m=0,
w(t—s,T,m) =

+1 m(t—a)
i' (%)m (t—8)™e~ 7 ifm>1.
m!

Linearizing equation (22), we have
¢
z5(t) = —azs(t) + b'(Z) /w(t —8,T,m)zs(s)ds
0

where 25(t) is the deviation of z(t) from the steady state level Z. We are looking
for the solution in the usual exponential form

z5(t) = e)‘tua

then simple substitution shows that
t
ety = —aeMu + b () /w(t — 5, T,m)e*uds.
0

Notice that by introducing the new variable S = ¢ — s in the integral, we see

that
t

’ ¢
/w(t —5,T,m)eds = /w(S, T,m)e~*5dSe*,
0 0

and by letting ¢ — co, we have the characteristic equation
AT "D
A+ a=h(z) <1+—>
q

with
1 ifm=0,
q:
m ifm>1.

This equation can be rewritten as

(m+1)

()\+a)(1+7

We then have the following stability result on the dynamic equation (22) with
continuously distributed delay which is similar to Lemma 1, the stability result
on the dynamic equation (9) with fixed delay:



Lemma 2 Assume that |h'(Z)| < . Then T is locally asymptotically stable.

Proof. Assume that Re A > 0. Then

A+ a| > a and

AT
1+—‘21,
q

therefore

>aand M (Z)| <«

A+0) (1 + %) "

implying that A cannot be a solution of equation (23). m

It has been known that the Routh-Hurwitz stability theorem provides nec-
essary and sufficient conditions for all the roots of the polynomial equation with
real coefficients to have negative real parts. It has been also known that it is
difficult to locate the eigenvalues with analytic methods in general. However
in some special cases as we examine below, analytic results are still possible to
obtain.

Casel. T=0

Assume first that T' = 0, which reduces equation (22) with delays to equation
(1) without delays. The asymptotic properties of this equation were already
discussed earlier.

CaseIl. T>0and m=0

Assume second that T > 0 and m = 0, with which the kernel function
becomes exponentially declining. Then characteristic equation (23) becomes

quadratic, .
A+ )1+ AT) = a(y — 6%)

or
NPT+ A1+ aT) + a1 — v+ 6%) =0. (24)

If y < 1, then all coefficients are positive with a positive steady state, so it is
locally asymptotically stable. Assume next that v > 1. If
v—1

TE
then the constant term is zero indicating that one eigenvalue is zero and the
other is negative. So Z is marginally stable in the linearized model, so no
conclusion can be drawn about its asymptotical behavior in the nonlinear model.
If Z < (y—1)/6, then Z is unstable and if > (y — 1)/8, then Z is locally
asymptotically stable.

10



Case III. T >0and m=1

Assume third that T' > 0 and m = 1, with which the shape of the kernel
function takes a bell-shaped form. Then we have a cubic characteristic polyno-
mial:

A+ )1+ AT)? = a(y — 6%)

or
NT? + X2(2T + oT?) + A(1 + 2aT) + (1 — v + 6F) = 0. (25)

If v < 1, then all coefficients are positive at a positive steady state. If v > 1,
then we can consider three cases. If

" then zero is an eigenvalue and the other two eigenvalues have negative real
parts implying that Z in the linearized system is marginally stable. Therefore
no conclusion can be drawn about the stability of Z in the nonlinear system.
If Z < (y — 1)/4, then the constant term is negative, so Z is unstable. If
Z > (v —1)/8, then all coefficient of (25) are positive. In this case the Routh-
Hurwitz criterion implies that the real parts of the eigenvalues are negative if
and only if

(2T + aT?)(1 + 2aT) > T?a(1 — v + 6%)

which can be reduced to a quadratic inequality in T":
20°T? + oT (4 +v — 6%) +2 > 0. (26)

For the sake of simplicity, we re-introduce the notation z = y—§6%. If z > 0, then
this inequality holds implying the asymptotical stability of the steady state. So
we can assume that z < 0. The discriminant of the left hand side of inequality
(26) is

D = z(z+38).

If z < —8, then D > 0, so the left hand side of (26) has two roots

T, —(A+2)+4/(4+2)2-16
12 = s

which are positive and T < Ty. Notice that T;7T3 = 1/a? and (26) holds if

and only if T < Ty or T > T3 when Z is locally asymptotically stable. If

Tf < T < Ty, then (26) is violated, so % is unstable. If 2 = —8, then D = 0

and there are equal roots

(27)

* 44z 1
H=h=—f =&

so0 if T' # 1/, then Z is locally asymptotically stable.
If -8 < z < 0, then D < 0, so (26) holds and % is asymptotically stable.
The instability region is shown in Figures 2(A) where z is the horizontal axis

11



and T is the vertical axis. If we start with a very small value of T' with any
given z < —8, then Z is asymptotically stable. If we gradually increase T, then
Z remains asymptotically stable until it reaches the critical value T}, when the
steady state becomes unstable. It remains unstable until T}y when stability is
regained, and Z remains asymptotically stable for all T > T3

We will next show that at the critical values T} and T, Hopf bifurcation
occurs giving the possibility of the birth of limit cycles. We select T as the
bifurcation parameter. At the critical values (26) is satisfied with equality, so

(2T + aT?)(1 + 2aT)
T2

a(l—v+6z) =

and the characteristic equation (25) can be rewritten as

(2T + oT2)(1 + 2aT)

NT? £ X2(2T + oT?) + A(1 + 2aT) + 72

- <,\ 42 +T°‘T) (A°T? + (1 + 2aT))

showing that there is a negative eigenvalue

_2+aT

A= T

and a pair of pure complex eigenvalues

- [14+2aT .
A2 = :I:”/T = tie.

Consider A as a function of the bifurcation parameter T' and differentiate im-
plicitly equation (25) to have

dd =237 — 232+ 2aT) — 2a)

dT ~ 3X\?T2 4+ 2X\(2T + aT?) + (1 + 2aT)’

By simple calculation we can see that at A = +ie,

dx +ie32T + £2(2 + 2aT) F 2aie
dT ~ —3e2T? + 2ie(2T + aT?) + (1 + 2a7)
214+ aT) +i(e3T — ae)
- —(1+42aT) £ie(2T + aT?)
with real part
d(Re)) e2(1 — a?T?)

dT'  (1+2aT)2 + (2T + oT2)%2’

Since Ty Ty = 1/a?, at T = Ty the value of d(Re \)/dT changes from negative to
positive showing the loss of stability, and if T' = T}, then d(Re))/dT changes

12



from positive to negative indicating that stability is regained. Since at both
critical values d(Re))/dT # 0, at both values Hopf bifurcation occurs giving
the possibility of the birth of limit cycles.

We perform numerical simulations to confirm the result obtained above. In
Figure 2(A), the steady state is locally asymptotically stable in the dark-gray
region with z > —1 due to Lemma 2. It is also locally asymptotically stable
in the light gray region and unstable in the white region when z < —1. The
appearance and disappearance of a limit cycle can be observed in Figure 2(B)
where we take &« =1, 8 =€!3, y =1 and 6§ = 1 implying z = —12,

Ty =2—+/3~0268 and T =2+ /3 ~ 3.732.

Under these specifications, the Volterra-type integro-differential equation (22)
can be written as a 3D system of differential equations,

&(t) = —az(t) + Bz (t)e~52"®)

59(8) = 7 (y(t) — (1)

§(0) = = (=) ~ 3(®)

() = j (%)2 (t — 8)e~ T z(s)ds
0

where

and
¢
y(t) = /%e_t%s:r(s)ds.
0

When T increases from T} —0.1 to Ty +0.3 with an increment of 0.01, the steady
state loses stability at point A and regains stability at point B. In Figure 2(B),
the local maximum and local minimum of a trajectory generated by the 3D
system are depicted against each value of T indicating the birth of a limit cycle

13



for TY < T < T5.
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Figure 2. Dynamics with T >0 and m =1

The cases of m > 2 result in fourth or larger degree polynomial equations, the
stability of the steady states can be examined similarly, but the mathematical
details become much more complicated. It can be mathematically confirmed
that as m — oo, equation (23) converges to the characteristic equation (11) of
the model with fixed delay. In particular, if m — oo, then expression

( ,\T)(m“) ( AT)"‘( AT)
1+ — =[1+= 1+ =
m m m

converges to e*T. For a larger value of m, dynamics generated by the differen-
tial equation with continuously distributed time delay is similar to dynamics
generated by the differential equation with fixed time delay.

5 Conclusions

In this paper, a special neoclassical growth model was introduced and exam-
ined. A mound-shaped production function for capital growth was assumed in
the dynamic equation. Zero is always a steady state, and depending on model
parameters there is either no positive steady state, or one, or two positive steady
states. A complete steady state analysis was followed by the derivation of sta-
bility conditions. By introducing fixed delay we demonstrated that stability
can be lost at a certain value of the delay and the equilibrium remains unstable
afterwards. In the case of continuously distributed delays it has been shown
how stability can be lost at a certain value of the average delay and by further
increasing the average delay it can be regained. At the critical values, Hopf bi-
furcation occurs giving the possibility of the birth of limit cycles. In our further

14



study more complex kernel function will be considered and their effect on the
asymptotic behavior of the steady state will be examined.
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