
Spatial Duopoly with Cost Subsidy∗

Ferenc Szidarovszky†and Akio Matsumoto‡

Abstract

The effects of government subsidies are examined in a spatial duopoly
with a conventional and an electronic retailer. The Nash equilibrium is
first determined and then the optimal cost subsidy rates are computed
that maximize social welfare. The stability of the equilibrium is also
investigated and it is shown that in the case of delayed information there
is the possibility of cyclic behavior.
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1 Introduction
The theory of oligopoly has a large literature. Both static and dynamic models
were discussed by many authors. A comprehensive summary of earlier studies
is given in Okuguchi and Szidarovszky (1999) and that of recent studies is in
Bischi et al. (2009). In this paper, we will consider a spatial duopoly model
between conventional and electronic retailers, which is a modified version of the
model earlier introduced and examined by Ahmad and Hegazi (2007). Instead of
investigating different taxation strategies, we will focus on the effects of cost sub-
sidies given by the government, when the two firms may have different subsidy
rates. Government subsidies are used to control markets as well as to increase
social welfare. Finding optimal subsidy rates is a fundamental component of
the policy of the government. We will first compute the Nash equilibrium as a
function of the government strategy, and then the optimal government policy
will be determined that maximizes the social welfare of the country. Dynamic
extensions will be then introduced and examined with both discrete and con-
tinuous time scales. In addition to finding conditions for the local asymptotic
stability of the equilibrium we will also investigate the effect of optimal policies
based on delayed information which might lead to cyclic behavior.
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2 The mathematical model
A spatial duopoly model is considered between conventional and electronic re-
tailers. The market is assumed to consist of a line of fixed length X with a fixed
population N distributed uniformally. For the sake of mathematical simplicity
we may select X = 1. The best, cost minimizing location of the retailer would
be the midpoint of the segment [0, 1].We place it however in the origin in order
to be consistent with earlier models and results, so a direct comparison of our
findings with the earlier results becomes much easier. We will investigate the
dependence of our results on the location of the conventional retailer in a future
study. The conventional retailer is placed in the origin, and faces a transporta-
tion cost t per unit distance. The electronic retailer pays a fixed delivery charge
F . Let furthermore mc and me denote the mill price for the conventional and
electronic retailers, respectively, and let cc and ce be their marginal costs. It
is also assumed that the government gives subsidies to the retailers, and let
sc and se denote the percentages of cost subsidies. The delivery price for the
conventional retailer is

Pc = mc + tx (1)

where x is its market share, and the delivery price for the electronic retailer is

Pe = me + F. (2)

Equating the two prices gives the market share for the conventional retailer

x =
me −mc + F

t
, (3)

so the sold quantities are

qc = Nx and qe = N(1− x). (4)

The profits of the retailers can be obtained as

Πc = (mc − cc(1− sc))Nx− fc (5)

and
Πe = (me − ce(1− se))N(1− x)− fe (6)

where fc and fe denote the fixed costs.
With fixed subsides sc and se, the Nash equilibrium can be obtained from the

first-order conditions by assuming interior equilibrium. Combining equations (5)
and (6) with (3),

Πc = (mc − cc(1− sc))N
me −mc + F

t
− fc (7)

and

Πe = (me − ce(1− se))N
t−me +mc − F

t
− fe. (8)
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Both profit functions are concave parabolas, so the first-order conditions are
sufficient and necessary for optimality. The first-order conditions are as follows:

∂Πc
∂mc

=
N

t
(me −mc + F −mc + cc(1− sc)) = 0

and
∂Πe
∂me

=
N

t
(t−me +mc − F −me + ce(1− se)) = 0.

The best response of the conventional retailer is given by

Rc(me) =
me + cc(1− sc) + F

2

which is always positive for me ≥ 0. Solving the first-order condition of the
electronic retailer yields

me =
mc + ce(1− se) + t− F

2

if the numerator is positive. The best response of the electronic retailer therefore
becomes piecewise linear:

Re(mc) =

⎧⎨⎩
mc+ce(1−se)+t−F

2 if mc + ce(1− se) + t− F > 0,

0 otherwise.

Assume first that both responses are positive. Then solving the linear equations

2mc −me = F + cc(1− sc) (9)

and
mc − 2me = F − t− ce(1− se) (10)

for the mill prices gives the solutions

mc(sc, se) =
1

3
(F + t+ 2cc(1− sc) + ce(1− se)) (11)

and
me(sc, se) =

1

3
(−F + 2t+ cc(1− sc) + 2ce(1− se)) . (12)

Both are positive if F < 2t+cc(1−sc)+2ce(1−se). Otherwise we have a corner
equilibrium

mc(sc, se) =
cc(1− sc) + F

2
and me(sc, se) = 0.

Notice that the value of mc(sc, se) strictly decreases if at least one cost subsidy
percentage increases. If F ≤ 2t, then the same holds for me(sc, se). Otherwise
it strictly decreases until reaching zero value, then it remains zero for all larger
values of sc and se. In Ahmed and Hegazi (2007) it is shown that any increase
in the taxation rate results in higher delivery prices for both retailers.
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3 Optimal government policy
The government wants to select subsidy rates that maximize social welfare,
which is the difference of the social benefits and the total amount of subsidies.
Social benefits can be calculated as the sum of the profits of the retailers and
the total savings of the consumers. The profit functions are given in (7) and
(8), and the consumers’ savings can be computed in the following way. Without
subsides (that is, with sc = se = 0) the mill prices (11) and (12) would be

mc(0, 0) =
1

3
(F + t+ 2cc + ce) and me(0, 0) =

1

3
(−F + 2t+ cc + 2ce)

so the delivery price would become

me(0, 0) + F =
1

3
(2F + 2t+ cc + 2ce) (13)

where we used equation (2). With subsidies the delivery price is

me(sc, se) + F =
1

3
(2F + 2t+ cc(1− sc) + 2ce(1− se)) . (14)

A decrease in the market price is a gain or saving of the consumers. Therefore
the total saving of the consumers is the following:

1

3
(ccsc + 2cese)N. (15)

The total government subsides are

ccscNx+ ceseN(1− x), (16)

so the social welfare has the following form:

W = (mc − cc)Nx− fc + (me − ce)N(1− x)− fe +
1

3
(ccsc + 2cese)N. (17)

Notice that from (3), (11) and (12),

x =
1

3t
(F + t− cc(1− sc) + ce(1− se)) , (18)

and
X − x = 1

3t
(2t− F + cc(1− sc)− ce(1− se)) , (19)

so the social welfare has the expression,

W =
N

9t
W ∗ (20)

with

W ∗ = (F + t− cc(1 + 2sc) + ce(1− se))(F + t− cc(1− sc) + ce(1− se))
+(−F + 2t+ cc(1− sc)− ce(1 + 2se))(2t− F + cc(1− sc)− ce(1− se))
+3t(ccsc+2cese).

(21)
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Maximizing W is the same as maximizing W ∗. By simple differentiation

∂W ∗

∂sc
= cc (F − 2t− cc − 2ccsc + ce + 2cese) (22)

and
∂W ∗

∂se
= ce (−F + 2t+ cc + 2ccsc − ce − 2cese) . (23)

Furthermore

∂2W ∗

∂s2c
= −2c2c ,

∂2W ∗

∂sc∂se
= 2ccce and

∂2W ∗

∂s2e
= −2c2e.

The Hessian is

H =

⎛⎝ −2c2c 2ccce

2ccce −2c2e

⎞⎠ (24)

with characteristic polynomial

ϕH(λ) = λ2 + 2λ(c2c + c
2
e) (25)

and eigenvalues
λ1 = −2(c2c + c2e) < 0 and λ2 = 0.

So the Hessian is negative semidefinite. Consequently, the first-order conditions
give maximal social welfare. Notice that

∂W ∗

∂sc
= −cc

ce

∂W ∗

∂se
. (26)

If we define a new continuous function by ϕ(sc, se) = 2ccsc − 2cese, then a
condition to have solutions between 0 and 1 are

ϕ(0, 1) ≤ F − 2t− cc + ce ≤ ϕ(1, 0)

where ϕ(0, 1) is the minimum of ϕ(sc, se) and ϕ(1, 0) is the maximum of ϕ(sc, se).
Therefore, if the above condition or 2t+cc−3ce ≤ F ≤ 2t+3cc−ce holds, then
all pairs (sc, se) which satisfy equation

2ccsc − 2cese = F − 2t− cc + ce (27)

give maximal social welfare. So there are infinitely many solutions. If the
conditions are not satisfied, then a constrained optimization problems has to be
solved with the constraints

0 ≤ sc ≤ 1 and 0 ≤ se ≤ 1.

Assume first that the government decides on the ratio of the subsidy rates
of the two types of firms, se = asc with given a. Then, from (27),

sc =
F − 2t− cc + ce
2(cc − ace)

(28)
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by assuming that cc 6= ace. To confirm 0 ≤ sc ≤ 1, we identify the following
three cases. In case I in which cc > ace, 2t+ cc− ce ≤ F ≤ 2t+3cc− (2a+1)ce
is the required condition. In case II in which cc < ace, 2t+ 3cc − (2a+ 1)ce ≤
F ≤ 2t+ cc − ce is the required condition. Lastly in case III in which cc = ace,
a solution exists if F − 2t− cc+ ce = 0. In this case any arbitrary value of sc in
the unit interval [0, 1] can be a solution. Accordingly, any se = asc in the unit
interval is also a solution. Thus there are infinitely many solutions in this case.
Assume next that the government decides to subsidize the firms and wants

to maximize social welfare with minimum subsidy. In this case, the optimal
government policy is the solution of the nonlinear programming problem,

minimize
³
ccscN

F+t−cc(1−sc)+ce(1−se)
3t + ceseN

−F+2t+cc(1−sc)−ce(1−se)
3t

´
subject to sc ≥ 0, se ≥ 0 and

2ccsc − 2cese = F − 2t− cc + ce,
(29)

where we used relations, (16), (18), (19) and (27). From the constraint we get

se =
cc
ce
sc −

F − 2t− cc + ce
2ce

(30)

and by substituting this relation into the objective function, a single-variable
problem is obtained. After dividing the objective function by N/3t, the resulting
objective function becomes

3tccsc +
3

4
(cc − (ce + F − 2t))2 . (31)

This is a linear function in sc with slope

3tcc (32)

which is always positive. So the smallest possible subsidy rates,

sc = 0 and se =
2t+ cc − F − ce

2ce
,

minimize the government cost. The value of se is in the interval [0, 1] if

2t+ cc − 3ce ≤ F ≤ 2t+ cc − ce.

Ahmed and Hegazi (2007) derive a simple formula for the tax revenue at the
Nash equilibrium, but no analysis of the social welfare is offered. The optimal
taxation rate which maximizes social welfare can be also determined along the
lines of our analysis presented above. Higher delivery prices to the consumers
have to be compared to the higher tax revenues of the government.
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4 Dynamic extensions
Assume first that the government subsidy rates are fixed, and the firms adjust
their mill prices in proportion to the gradients of their profits. This process is
known as gradient adjustment. Since

∂Πc
∂mc

=
N

t
(me − 2mc + F + cc(1− sc))

and
∂Πe
∂me

=
N

t
(mc − 2me + t− F + ce(1− se)) ,

the gradient adjustment model with continuous time scales is

ṁc = Kc (me − 2mc + F + cc(1− sc))
N

t
(33)

and

ṁe = Ke (mc − 2me + t− F + ce(1− se))
N

t
(34)

where Kc and Ke are the speeds of adjustment of the firms.
If discrete time scales are assumed, then the model becomes

m0
c = mc +Kc (me − 2mc + F + cc(1− sc))

N

t
(35)

and

m0
e = me +Ke (mc − 2me + t− F + ce(1− se))

N

t
(36)

where 0 indicates a unit-time advancement operator. Both systems are linear,
so local asymptotical stability implies global asymptotical stability.
In the case of the continuous system (33)-(34), the Jacobian has the special

form

JC =

⎛⎜⎜⎝
−2KcN

t

KcN

t

KeN

t
−2KeN

t

⎞⎟⎟⎠ (37)

with characteristic polynomial

ϕC(λ) = λ2 + λ
2N

t
(Kc +Ke) +

3KcKeN
2

t2
. (38)

Since the linear and constant coefficients are positive, the roots have negative
real parts, so the process is always asymptotically stable.
In the case of the discrete system (35)-(36), the Jacobian is

JD =

⎛⎜⎜⎝
1− 2KcN

t

KcN

t

KeN

t
1− 2KeN

t

⎞⎟⎟⎠ (39)
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with characteristic polynomial

ϕD(λ) = λ2 + λ

µ
−2 + 2N

t
(Kc +Ke)

¶
+

µ
1− 2N

t
(Kc +Ke) +

3KcKeN
2

t2

¶
.

(40)
The roots are inside the unit circle if and only if

1− 2N
t
(Kc +Ke) +

3KcKeN
2

t2
< 1 (41)

−2 + 2N
t
(Kc +Ke) + 1−

2N

t
(Kc +Ke) +

3KcKeN
2

t2
+ 1 > 0 (42)

2− 2N
t
(Kc +Ke) + 1−

2N

t
(Kc +Ke) +

3KcKeN
2

t2
+ 1 > 0. (43)

Relation (42) always holds. Introducing new variables

kc =
KcN

t
> 0 and ke =

KeN

t
> 0 (44)

reduces conditions (41) and (43) to

2(kc + ke)− 3kcke > 0 (45)

and
4− 4(kc + ke) + 3kcke > 0. (46)

The first condition clearly holds for all 0 < kc < 1 and 0 < ke < 1. The
domain Ω in the (kc, ke) plain satisfying the second stability condition is shown
in Figure 1. It is easy to see that

Ω =

½
(kc, ke) | 0 < kc < 1, 0 < ke < 1 and ke <

4− 4kc
4− 3kc

¾
. (47)

Both values of kc and ke have to be sufficiently small. By (44), it can be seen
that this is the case when the market is small enough, the adjustment speeds
are slow enough or the transportation cost is large enough.

Insert Figure 1 about here.

(caption, Stability region for system (35)-(36))

In Ahmad and Hegazi (2007), no analysis is offered for continuous models,
however it can be shown that the continuous version of their model is always
asymptotically stable. In the case of discrete time scale, they show that the
equilibrium is asymptocially stable if the speeds of adjustment in the gredient
adjustment process are sufficiently small. These results are in line with our
analysis as well as with the general stability analysis for dynamic oligopolies
(Bischi et al., 2009).
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Next we assume that the government also uses gradient adjustment with
respect to the social welfare under the assumption that the firms form Cournot
equilibrium at each time period. The firms also use gradient adjustment with
respect to their profit functions.
Assuming continuous time scales, this concept can be described by the fol-

lowing four-dimensional system, which is based on (22), (23), (33) and (34):

ṡc = Kgc
Ncc
9t

(F − 2t− cc − 2ccsc + ce + 2cese) (48)

ṡe = Kge
Nce
9t

(−F + 2t+ cc + 2ccsc − ce − 2cese) (49)

ṁc = Kc
N

t
(me − 2mc + F + cc(1− sc)) (50)

ṁe = Ke
N

t
(mc − 2me + t− F + ce(1− se)) . (51)

In the case of discrete time scales, the corresponding dynamic equations become

s
0

c = sc +Kgc
Ncc
9t

(F − 2t− cc − 2ccsc + ce + 2cese) (52)

s
0

e = se +Kge
Nce
9t

(−F + 2t+ cc + 2ccsc − ce − 2cese) (53)

m
0

c = mc +Kc
N

t
(me − 2mc + F + cc(1− sc)) (54)

m
0

e = me +Ke
N

t
(mc − 2me + t− F + ce(1− se)) . (55)

The Jacobian of the continuous system is

J∗C =

µ
Jgc 0
A JC

¶
(56)

where

Jgc =

⎛⎜⎜⎜⎝
−2Kgcc

2
cN

9t

2KgcccceN

9t

2KgeccceN

9t
−2Kgec

2
eN

9t

⎞⎟⎟⎟⎠ , A =

⎛⎜⎜⎝
−KcNcc

t
0

0 −KeNce
t

⎞⎟⎟⎠
and JC is given in (37). Clearly the eigenvalues of J∗C are the eigenvalues of Jgc
and JC . The characteristic polynomial of Jgc is

ϕgc(λ) = λ2 + λ
2N

9t

¡
Kgcc

2
c +Kgec

2
e

¢
(57)

with a negative and a zero eigenvalue. We have already seen that both eigen-
values of JC have negative real parts, so the system is marginally stable and
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the stability is not asymptotic. It means that starting close enough from the
steady state, the trajectory will remain close enough to the steady state for all
future times.
In the case of the discrete system (52)-(55), the Jacobian has the form

J∗D =

µ
I+ Jgc 0
A JD

¶
(58)

where I is the identity matrix, Jgc, A are as before and JD is given by (39).
The eigenvalues of I+ Jgc are

1 and 1− 2N
9t

¡
Kgcc

2
c +Kgec

2
e

¢
.

The second eigenvalue is inside the unit circle if

2N

9t

¡
Kgcc

2
c +Kgec

2
e

¢
< 2. (59)

Similarly to (44) we can introduce the new variables

kgc =
KgcN

t
and kge =

KgeN

t
,

then (59) holds if and only if (kgc, kge) belongs to the stability region

Ωg = {(kgc, kge) | 0 < kgc <
9

c2c
and kge <

9− kgcc2c
c2e

}, (60)

which is illustrated in Figure 2. Hence system (52)-(55) is marginally stable if

(kc, ke) ∈ Ω and (kgc, kge) ∈ Ωg.

Insert Figure 2 about here.

(caption, Stability region for government in system (48)-(51))

The continuous best reply dynamics with adaptive adjustments is

ṁc = K̄c(Rc(me)−mc)

and

ṁe = K̄e(Re(mc)−me).

The discrete best reply dynamics is

m0
c = mc + K̄c(Rc(me)−mc)
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and

m0
e = me + K̄e(Re(mc)−me).

Gradient dynamics is always linear, but best reply dynamics is nonlinear, since
Re(mc) is only piecewise linear.
In the neighborhood of the equilibrium,

Rc(me)−mc =
me − 2mc + F + cc(1− sc)

2

and

Re(mc)−me =
mc − 2me + t− F + ce(1− se)

2
.

So the above models are the same as dynamics with gradient adjustments by
selecting

K̄c =
2KcN

t

and

K̄e =
2KeN

t
.

Therefore the local stability of these models is also the same. Global stability
properties are however different, since far from the interior equilibrium, we might
have breakpoints and nonlinearities.

5 Delayed dynamics
In this section we assume that the firms react to delayed information since
collecting and implementing information in their decision process needs some
time. Similar situation occurs if they want to react to average information rather
than following sudden changes. Assuming continuously distributed time delays
the 2D dynamic system becomes

ṁc =
KcN

t
(m̄e − 2m̄c + F + cc(1− sc)) , (61)

and

ṁe =
KeN

t
(m̄c − 2m̄e + t− F + ce(1− se)) , (62)

where

m̄c =

Z τ

0

w(τ − s, T,m)mc(s)ds,

and

m̄e =

Z τ

0

w(τ − s, S, `)me(s)ds.
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Here we assume that the weighting function has the special form

w(τ − s, T,m) =

⎧⎪⎪⎨⎪⎪⎩
1

T
e−

τ−s
T if m = 0,

1

m!

³m
T

´m+1
(τ − s)me− (τ−s)m

T if m ≥ 1.

We look for solutions of the homogeneous equations in forms

mc = νce
λτ and me = νee

λτ .

Then

λνce
λτ =

KcN

t

µZ τ

0

w(τ − s, S, `)eλsdsνe − 2
Z τ

0

w(τ − s, T,m)eλsdsνc
¶
,

(63)
and

λνee
λτ =

KeN

t

µZ τ

0

w(τ − s, T,m)eλsdsνc − 2
Z τ

0

w(τ − s, S, `)eλsdsνe
¶
.

(64)
Introducing the new variable x = τ − s and noting thatZ τ

0

w(τ − s, T,m)eλsds =
Z τ

0

w(x, T,m)eλ(τ−x)dx,

we have

λνc =
KcN

t

µZ τ

0

w(x, S, `)e−λxdxνe − 2
Z τ

0

w(x, T,m)e−λxdxνc

¶
, (65)

and

λνe =
KeN

t

µZ τ

0

w(x, T,m)e−λxdxνc − 2
Z τ

0

w(x, S, `)e−λxdxνe

¶
. (66)

The introduction of the new variable

z =
³
λ+

m

T

´
x

shows that

τZ
0

w(x, T,m)e−λxdx ==
1

m!

µ
1 +

λT

m

¶−(m+1) τZ
0

zme−zdz.

So as τ →∞, the system becomes"
λ+ 2

KcN

t

µ
1 +

λT

q

¶−(m+1)#
νc −

KcN

t

µ
1 +

λS

r

¶−(`+1)
νe = 0 (67)
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and

−KeN

t

µ
1 +

λT

q

¶−(m+1)
νc +

"
λ+ 2

KeN

t

µ
1 +

λS

r

¶−(`+1)#
νe = 0, (68)

where

q =

⎧⎨⎩ 1 if m = 0

m if m ≥ 1
, and r =

⎧⎨⎩ 1 if ` = 0

` if ` ≥ 1.
Nonzero solution exits if and only if

det

⎛⎜⎜⎜⎜⎜⎝
λ+ 2

KcN

t

µ
1 +

λT

q

¶−(m+1)
−KcN

t

µ
1 +

λS

r

¶−(`+1)

−KeN

t

µ
1 +

λT

q

¶−(m+1)
λ+ 2

KeN

t

µ
1 +

λS

r

¶−(`+1)
⎞⎟⎟⎟⎟⎟⎠ = 0

or

λ+ 2
KcN

t
1 +

λT

q

−(m+1)
λ+ 2

KeN

t
1 +

λS

r

−(`+1)
-
KcKeN2

t2
1 +

λT

q

−(m+1)
1 +

λS

r

−(`+1)
= 0.

(69)
It is very hard to examine the locations of the roots of this equation in general.
Therefore we will consider some important special cases.
If no delay is assumed, then T = S = 0. In this case, this equation reduces

to (38), and there we have proved that the equilibrium is asymptotically stable.
Assume S = 0,m = 1 and T > 0 (Note that the symmetric case of T =

0, ` = 1 and S > 0 is similar). Equation (69) becomes∙
λ+ 2

KcN

t(1 + λT )

¸ ∙
λ+ 2

KeN

t

¸
-
KcKeN

2

t2(1 + λT )
= 0, (70)

which can be reduced to the cubic equation

a3λ
3 + a2λ

2 + a1λ+ a0 = 0

with
a3 = Tt

2,

a2 = 2KeNTt+ t
2,

a1 = 2KeNt+ 2KcNt

and
a0 = 3KcKeN

2.

All coefficients are positive, so the system is asymptotically stable if and only if
a1a2 > a0a3, that is,

a1a2 − a0a3 = 4K2
eNT + 2Ket+KcKeNT + 2tKc > 0
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which is always the case. So if at most one of the firms has delayed information,
then stability holds.
Assume next that m = ` = 0, S > 0 and T > 0. In this case equation (69)

is the following:∙
λ+ 2

KcN

t(1 + λT )

¸ ∙
λ+ 2

KeN

t(1 + λS)

¸
-

KcKeN
2

t2(1 + λT )(1 + λS)
= 0. (71)

This is equivalent to the following 4th order equation:

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0 (72)

where

a3 =
T + S

TS
,

a2 =
2KeNT + t+ 2KcNS

TSt
,

a1 =
2N(Kc +Ke)

TSt
,

and

a0 =
3KcKeN

2

TSt2
.

Since all coefficients are positive, the Routh-Hurwitz condition is reduced to
a3a2a1 > a

2
1 + a0a

2
3. In this case it can be written as

T + S

TS

2KeNT + t+ 2KcNS

TSt

2N(Kc +Ke)

TSt
>

µ
2N(Kc +Ke)

TSt

¶2
+
3KcKeN

2

TSt2

µ
T + S

TS

¶2
.

Simple calculation shows that this inequality always holds, therefore the system
remains asymptotically stable.
We will finally examine the case when S = 0, m = 1 and T > 0. In this case

equation (69) can be simplified asµ
λ+

2KcN

t(1 + λT )2

¶µ
λ+

2KeN

t

¶
− KcKeN

2

t2(1 + λT )2
= 0, (73)

which is again a fourth-order equation (72) with coefficients

a3 =
2(t+KeNT )

Tt

a2 =
t+ 4KeNT

T 2t

a1 =
2N(Kc +Ke)

T 2t

and

a0 =
3KcKeN

2

T 2t2
.
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Similarly to the previous case, the Routh-Hurwitz criterion shows that the sys-
tem is asymptotically stable if and only if

2(t+KeNT )

Tt

t+ 4KeNT

T 2t

2N(Kc +Ke)

T 2t
>

µ
2N(Kc +Ke)

T 2t

¶2
+
3KcKeN

2

T 2t2

µ
2(t+KeNT )

Tt

¶2
.

After simple calculation the condition can be rewritten as

K2
cT

t2

N2
+Kc

µ
2T 2K2

c

t

N
+ 3T 3K3

e −
t3

N3

¶
−
µ
Ke

t3

N3
+ 4K2

eT
2 t

N
+ 4K3

eT
2 t

N

¶
< 0.

(74)
The left hand side has two real roots, one is positive and the other is negative.
Let K∗c denote the positive root. The system is asymptotically stable if and
only if Kc < K

∗
c .

Let us select Kc as the bifurcation parameter. We will finally show the birth
of limit cycle at the critical value K∗c of Kc.
The existence of limit cycles is guaranteed if there is a pair of pure com-

plex eigenvalues, while all other eigenvalues have negative real parts and the
derivative of the common real part of this pair of eigenvalues with respect to
the bifurcation parameter is nonzero at the critical value. After dividing by the
leading coefficient, the characteristic equation becomes (72) with coefficients
given above.
Assume that λ = iα is a root, then λ2 = −α2, λ3 = −iα3 and λ4 = α4, so

α4 − iα3a3 − α2a2 + iαa1 + a0 = 0.

Assuming α 6= 0 and equating the imaginary part to zero gives

α2 =
a1
a3
,

which is substituted into the real part to obtainµ
a1
a3

¶2
− a1
a3
a2 + a0 = 0,

or
a1a2a3 − a21 − a0a23 = 0.

Solving the last equation for a0 yields

a0 =
a1a2a3 − a21

a23
.

The characteristic polynomial is therefore

λ4 + a3λ
3 + a2λ

2 + a1λ+
a1a2a3 − a21

a23
=

µ
λ2 +

a1
a3

¶µ
λ2 + a3λ+

a2a3 − a1
a3

¶
.
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So we have a pair of pure complex eigenvalues

λ1,2 = ±i
r
a1
a3
,

and the roots of the second factor have negative real parts since its coefficients
are all positive since a0 > 0.
Differentiating the characteristic equation with respect to the bifurcation

parameter Kc yields

λ̇(4λ3 + 3a3λ
2 + 2a2λ+ a1) + ȧ3λ

3 + ȧ2λ
2 + ȧ1λ+ ȧ0 = 0

where the dot over variables indicates derivative with respect toKc. Substituting
λ = iα and solving for λ̇ with noticing that ȧ0 = 3KeN2

t2T 2 , ȧ1 =
2N
tT2 , ȧ2 = ȧ3 = 0,

and α2 = a1/a3 give

λ̇ =
−ȧ1αi− ȧ0

−4iα3 − 3a3α2 + 2a2iα+ a1
.

Substituting a1, a2, a3, ȧ0 and ȧ1, arranging terms gives

sgn[Re λ̇] = sgn[12(KeNT )
3 + 8(KeNT )

2t+ 8(KcNT )t
2 − 4t3].

Simple calculation shows that at the positive root of equation (72), this expres-
sion is always positive:

Re λ̇ > 0,

which proves the birth of limit cycles at the critical value. Figure 3 illustrates
a limit cycle in the case of S = 0, m = 1 and T > 0.

Insert Figure 3 about here.

(caption, Birth of a limit cycle)

6 Concluding Remarks and Future Extension
This paper examines the effects of government subsidies in a spatial duopoly
with a conventional retailer and an electronic retailer. It constructs a static
Hoteling linear market model. Then it determines the Nash equilibrium and
computes the optimal government cost subsidy rates to maximize social wel-
fare. It also investigates the stability of the equilibrium and shows the possi-
bility of cyclic behavior when firms have delays in collecting and implementing
information in their decision process.
This paper can be extended in several directions. The delivery cost is con-

sidered in this paper to be the main difference between a conventional and an
electronic retailer. It is observed in e-commerce that psychic cost and informa-
tion gap also play important roles, so they have to be taken into account. A
conventional retailer can also introduce e-commerce into its business practice.
So it will be interesting to examine its effect and its profitability.
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Figure 1 Stability region for system (35)-(36)
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