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Analysis of derivation of the transportation and production cost minimum place 

 

                             Toshiharu Ishikawa 

 

1.Introduction 

The spatial range of an economic activity has spread from the late 20th century, and the influence of 

the spread has expanded all over the world and has entered people life deeply. This economic 

expansion is caused by not only a drastic decrease in transportation costs and but also by the decline 

in office processing costs that is generated by various kinds of innovations. Indeed, technological 

innovation in transportation reduced shipping costs, decreased its economic influence, and increased 

the effects of other economic factors relatively. It should be noted, however, that the decline in 

transportation costs does not mean that the essential function of transportation costs is eliminated in 

economic world. While the manner of impact of transportation costs on economic activity is different 

from before globalization economy. The expenses for the movement of goods and services play a 

decisive role in not only location of economic activities but also behavior style of economic agents 

even as economic activity becomes globalized.  Therefore, when individual companies strategically 

plan the location of a factory, naturally they first investigate the level of transportation cost, labour 

cost and infrastructure in the location candidates.  

  When an individual firm decides the location of a factory, the firm selects a place that maximizes 

its profit. If there is little relation between revenue and factory location, the place where production 

cost is minimized is selected by the firm. Furthermore, when the production cost of goods has little 

influence on the factory location, the location of the factory is determined at the place where 

transportation costs are minimized. First, this chapter takes up the transportation cost which has been 

played an important role in determining the location of the factory. The two methods of derivation of 

the place of minimum transportation cost of a factory are explained and the place is derived by the 

methods. Secondly, this paper offers the concept of the area of minimum production costs; the analysis 

is enlarged by incorporating the factory’s production function to search the area of minimum 

production costs including transportation cost, and the analysis explains the meaning the area has in 

determination of factory’s location. Eventually, there are two purposes in the paper: One is to find out 

the place of the minimum transportation cost of a factory. Another is to determine the area of minimum 

production cost of a factory 

  This paper is organized as follow. Numerous methods for deriving the place that minimizes factory’s 

transportation cost have been made so far. The scholars who systematically considered this method 

for the first time are Launhardt (1882) and Weber (1909). they devised a geometric method to obtain 

the place of minimum transportation cost for a factory. Thus, the section 2 explains their traditional 

geometric method. The section 3 clarifies this geometric method by analytical approach: The validity 
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of the geometric method developed by Launhardt and Weber is clearly verified by the analytical 

approach. The section 4 explains the concept of the area of minimum production costs including 

transportation cost. The section 5 summarizes the results derived in the paper.    

 

2. Derivation of minimum transportation cost place by geometric method 

According to the framework of Launhardt (1882) and Weber (1909), this section explains the method 

of deriving the place that minimizes factory’s transportation cost by using the Weight triangle. 

 

2.1. Assumptions 

The method of deriving the minimum transportation cost by Weight triangle is explained based on the 

following assumptions. 

1) A factory uses the two kinds of raw materials M1 and M2 to manufacture the final product M3. 

2) The raw materials M1 and M2 are produced at the points of A1 and A2, respectively, and are 

transported to the factory. The final product a3 is transported from the factory to the market place 

A3.  

3) The weights of raw materials M1 and M2 are fixed and are given by m1 and m2, respectively. The 

weight of the product M3 is fixed as m3. 

4) The freight rates of the raw materials a1 and a2 and the product a3 are constant and they are all set 

to 1. Therefore, the transportation cost borne by the factory is proportional to the weight of these 

raw materials and products and their transport distances.  

5) The factory should be located at the place that minimizes the transportation cost borne by the 

factory.   

 

2.2. Explanation of method of weight triangle 

Now, suppose that the sites of the raw material sites M1 and M2 and the market place M3 are specified 

by Figure 1. A figure which is formed by connecting the three sites of the market place and the raw 

materials is named as location figure. The figure shown in Figure 1 is also called a location triangle. 

In Figure 1 r1, r2, and r3 note the apex angles at A1, A2 and A3. In such location triangle, the derivation 

of point minimizing factory shipping costs is one of the important tasks in traditional location theory. 

The traditional theory uses the method of the weight triangle to find a point where factory’s 

transportation cost is minimized. This method is explained as follows. As explained in above 

assumptions, the two raw materials M1 and M2 used by the factory are produced at points A1 andA2, 

respectively, and their weights are m1 and m2. And then, the product M3 is sold at the point A3 and its 

weight is m3.  According to the weights m1, m2, m3, let us give the force attracting the factory, the 

traction force, to the points A1, A2, A3 shown in Figure1. 
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Figure 1. Location figure 

 

   The site that the factory’s transportation cost is minimized is determined as point P where these 

three traction forces are balanced.  The situation of point P is explained by using Figure 2: Three 

vectors, V1, V2, and V3 are assumed so as to be in proportion to weight m1, m2, m3, which imply the 

traction forces of three points. Then, each vector is set from the point P toward each of points A1, A2, 

A3 as shown in Figure 2. 
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       A1                                             A2  

Figure 2 Balance of traction powers 
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The three vectors V1, V2, and V3 are balanced at point P that the factory’s transportation cost is 

minimized. The fact that these vectors are balanced at the point P means the following state: A 

parallelogram having two sides of vectors V1 and V2 shown in Figure 2 is created with the point P as 

a starting point. The length from point P to its diagonal is given by the sum of the above two vectors, 

V1 and V2. This new vector V4 is the same in length as that of vector V3 and its direction is opposite. 

That is, the sum of this new vector V4 and vector V3 is zero. In Figure 2, the angle formed by the 

vectors V1 and V2 around the point P is noted as a3, the angle formed by the Vectors V2 and V3 is noted 

as a1, and the angle made by the Vectors V1 and V3 is noted as a2, respectively. 

Now, from the arrangement of the three vectors under the location triangle as shown in Figure 2, it 

is possible to form a so-called weight triangle by the three vectors. Figure 3 shows this weight triangle. 

 

 

                     𝐚𝐚P

*1           V2 

 

   

               V3                                   a*3 

 

 

                                 V1 

                 a*2 

 

Figure 3 Weight triangle 

 

The length of the three Vectors of this weight triangle follows the ratio of weight m1, m2, m3. From 

the weight triangle the diagonal of each side V1, V2, V3 is derived as a*1, a*2, a*3. Each angle is 

supplementary angle for each of angles, a1, a2, a3 formed around point P in Figure 2. Hence, if the 

angles at vertexes of the weight triangle formed by the three vectors V1, V2, V3 are known as shown in 

Figure3, the angles a1, a2, a3 around point P in Figure 2 can be obtained. Eventually it is concluded that 

point P minimizing the transport cost of the factory is a place at which the straight lines connecting 

each of points A1, A2, A3 and point P forms three angles a1, a2, a3, which are derived from the 

supplementary angles a*1, a*2, a*3 in the weight triangle. 

  

2.3. Derivation of minimum transportation cost place by location circles 

Let us geometrically derive the place of minimum transportation cost based on the location triangle 

and the weight triangle revealed in the above subsection. When drawing a circle passing through points 

A1 and A2 in Figure 2 and having a central angle twice the angle a3 which is the circumferential angle 
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formed on the circle, this circle passes through point P. This circle is appropriate to be named as 

location circle. In a similar way, when drawing a circle passing through points A1 and A3 and having 

a central angle twice as large as the angle a2 which is the circumferential angle, this circle passes 

through point P. This circle also is the location circle. Therefore, point where such two location circles 

intersect indicates the place that minimizes the factory’s transportation cost.  

  Now, suppose that the coordinates of points A1 and A2 are specifically (0, 0), (5, 0), and let the 

coordinates (X0, Y0) of point A3 be (2.5, 5): And the weights m1 and m2 of the raw materials M1 and 

M2 handled by points A1 and A2 are assumed to be 1.5 tons and 1 ton, respectively: The weight m3 of 

the product M3 is 1 ton. In this situation, by using the location triangle and the weight triangle, two 
location circles, C1 and C2, are drawn in Figure 4. The two location circles intersect at point P which 

is shown by the mark,  .  Point P indicates the place that factory’s transportation cost is minimized.   

                      A3 

 
A1                        A2 

Figure 4 Two location circles and the place of minimum transportation cost 

 

3. Analytical explanation of the weight triangle 

3.1. Derivation of minimum transportation cost place by analytical geometrics 

This section analyzes the method which depicts two location circles to find out the place of minimum 

transportation cost. It is assumed based on the assumptions in the previous section that the location 

figure is given by the triangle like Figure 4, and the weight assigned to each point A1, A2, and A3 is 

given as m1, m2, m3. Factory’s transportation cost T is shown by equation (1). Thus, the task in this 

section is the analytical geometric derivation of the point P that minimizes this transportation cost T.  

 

     T= m1(x2+y2)0.5  +  m2((x - c)2+y2)0.5    +   m3((x -X0)2+(y-Y0)2)0.5 .              (1) 

 

Since each weight m1, m2, m3 is given, transportation cost T is a function of the factory’s coordination, 

P 

C2 

C１ 
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x and y. The place P that minimizes transportation cost must the following two necessary conditions, 

 

      ∂T/∂x = 0,                                     (2)    

 

      ∂T/∂y = 0.                                     (3)    

 

And point P must satisfy the sufficient condition, Z, as indicated by the following equation (4), 

 

               ∂2T/∂x2      ∂2T/∂x ∂y    

      Z =                 〉   0.         (4)     

 ∂2T/∂x ∂y     ∂2T/∂y2      

                                                    

 

These equations (2), (3), and (4) are developed and shown as following equations (2a), (3a), and (4a), 

 

 ∂T/∂x = m1x / (x2+y2)0.5 + m2(x - c) / ((x - c)2+y2)0.5 + m3( x -X0) / ((x -X0)2+(y-Y0)2)0.5 =0  (2a)  

 

∂T/∂y = m1y / (x2+y2)0.5 + m2y / ((x - c)2+y2)0.5 + m3( x -Y0) / ((x -X0)2+(y-Y0)2)0.5     =0  (3a)  

 

 Z = m12 m22(xy - (x - c)y )2 / ((x2+y2)1.5((x - c)2+y2)1.5) 

    + m12 m32(x(y-Y0) - (x – X0)y )2 / ((x2+y2)1.5((x – X0)2+(y-Y0)2)1.5) 

      + m22 m32((x-c)(y-Y0) - (x – X0)y )2 / (((x-c)2+y2)1.5((x – X0)2+(y-Y0)2)1.5)  〉 0       (4a) 

 

Since equation (4a) is positive, solving the simultaneous equations of equations (2a) and (3a) for x and 

y gives the coordinates of point that minimizes transportation cost of the factory1.  This section 

obtains point that minimizes transportation cost by developing equation (2a) and (3a) as follows. First, 

by transferring the third term of equations (2a) and (3a) to the right side, the following equations (5) 

and (6) are derived,. 

 

 m1x / (x2+y2)0.5 + m2(x - c) / ((x - c)2+y2)0.5 = - m3( x -X0) / ((x -X0)2+(y-Y0)2)0.5        (5) 

 

 m1y / (x2+y2)0.5 + m2y / ((x - c)2+y2)0.5 = - m3( x -Y0) / ((x -X0)2+(y-Y0)2)0.5.         (6) 

 

By squaring both sides of equations (5) and (6), and adding these two equations, and further 

                                                   
1 Point of minimum transportation cost can be directly derived by numerical calculation method. 

For example, the method is introduced by Kuhn and Kunne (1962).  
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transforming, equation (7) is derived, 

 

  2m1 m2(x(x - c)+y2) / ((x2+y2)0.5((x - c)2+y2)0.5) = m32 - m12 - m22 .                         (7)      

 

By squaring equation (7), and then transforming it, equation (8) is obtained, 

 

4 (m1 m2)2(x(x - c)2+y2)2 = (x2+y2)( (x - c)2+y2) (m32 - m12 - m22 )2 .                   (8) 

 

Equation (8) can be transformed to equation (8a), 

 

 4 (m1 m2)2 / ((m32 - m12 - m22 )2) (x(x - c)2+y2)2 = (x2+y2)( (x - c)2+y2) .                (8a) 

 

Considering the following relationship shown by equation (9), equation (8a) can be transformed as 

equation (10), 

 

((x2+y2)(x - c)2+y2)- (x(x - c)2+y2)2 = (x-(x - c)2)2y2 = c2y2,                (9) 
                         

  (4 (m1 m2)2 / (m32 - m12 - m22 )2 – 1) (x (x - c)2+y2)2 = c2y2.                        (10) 

 

Equation (10) can be transformed to equation (11), 

 

x(x - c)2+y2 = ∓ c/(K2-1)0.5y,                                (11) 

 

where K= 2m1 m2 / (m32 - m12 - m22 ). And from equations (2a) and (3a), it is known that x and y are 

positive. And the sign of (x (x - c)+y2) of the left side of equation (11) depends on (m32 - m12 - m22 ) 

in the right side of equation (7). Thus, sign “∓” is added in the right hand side of equation (11). Then, 

equation (11) is transformed to equation (12), 

 

          (x – c/2)2 + ( y ∓ c/(2(K2-1)0.5))2 = (cK/((2(K2-1)0.5))2 .                (12)               

 

Equation (12) indicates that the place of minimum transportation cost is located on the circle, which 

is called the location circle and is described as follows2: This location circle has its center on the 

perpendicular bisector of the line connecting the points A1 and A2 and passes through points A1 and 

A2.     

                                                   
2 As can be seen from the structure of equation (10), equation (12) is not defined in the following 
two cases: (1) 4 (m1 m2)2 = (m32 - m12 - m22 )2, (2) (m32 - m12 - m22 )=0. 
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  By using the same method, another location circle is derived which has its center on the 

perpendicular bisector of the line connecting points A1 and A3 and it passes through the points A1 and 

A3. It can be said, therefore, that the place of minimum transportation cost is indicated by the 

intersection of these two location circles; the place is derived by solving simultaneous equations 

representing the two location circles for x and y. 

  Let us find the place of minimum transportation cost by using the above analytical geometry with 

reference to Figure 4. It is assumed as follows; the coordinates of point A1 are (0, 0), point A2 are (5, 

0), and point A3 are (2.5, 5). The weight of goods handled by each point is m1= 1.5 tons, m2 = m3 = 

1 ton. From equation (12), the place of minimum transportation cost in Figure 4 is on the location 

circle, C1, which passes point A1 and A2. This location circle C1 is indicated by the next equation, 

 

                    (x-2.5)2 + (y+2.8347)2 = (3.7796)2                            (13) 

 

 The equation of the location circle C2 in Figure 4 which passes point A1 and A3 is derived as follows:  

First, the distance between the points A1 to A3 in Figure 4 is 5.5902. Thus, as shown in Figure 5, in 

another coordinate system X - Y, A*1 is placed at (0, 0) and A*3 is placed at (-5.5902, 0). By using the 

equation (12) to describe a location circle C*2 in this coordinate system X - Y.  

 

    
 

  Figure 5. Location circle in X-Y coordination  
     

Second, since the angle at point A is 63.43∘, this coordinate is rotated by -116.57∘. As a result, the 

relationship between the coordinate axes X and Y and the coordinate axes x and y is expressed by the 

following equation, 

 

                     X=x∙cos(-116.57∘) +y∙sin(-116.57∘),                   (14) 

X 

Y 

A*1(0,0） 

A*3(-5.5902,0) 

 

C*2 
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                     Y= x∙sin(-116.57∘) +y∙cos(-116.57∘).                   (15) 

  

Therefore, the equation of the location circle C2 in Figure 4 is given as equation (16),    

 

                     (x+1.5843)2 + (y-3.9175)2 = (4.2258)2.                   (16)              

 

Point P that minimizes the transportation cost is obtained by solving the simultaneous equations of 

equations (13) and (16) representing the location circle for x and y. The coordinates of point P are 

derived as X = 1.1499, y = 0.695, and are displayed at point P at which the two location circles intersect 

in Figure 4. 

 

3.2 Derivation of minimum transportation cost place at a vertex 

There are cases that point where transportation is minimized is a vertex of the location figure. If 

location figure is triangle, under what conditions it is known for some time that such a case arises3.  

  As shown in Figure 1, vertex angles at points A 1, A 2, A 3 are indicated by r1, r2, and r3. And the 

weights of the raw materials and products in charge of each point are noted as m1, m2, and m3. 

In this situation, the condition for point A1 to minimize the transportation cost is expressed by the 

equation (17), 

 

       cos(r1) ≤ (m12 – m22 – m32 ) / (2 m2 m3).                              (17) 

 

The conditions for point A2 and point A3 to be the places to minimize the transportation cost are given 

by the equation (18) and (19), 

 

      cos(r2) ≤ (m22 – m12 – m32 ) / (2 m1 m3),                               (18) 

 

      cos(r3) ≤ (m32 – m12 – m22 ) / (2 m1 m2).                               (19) 

 

Furthermore, when the weight of the goods in charge of a certain point, for instance point A1, is the 

same as or larger than the total of the weights in charge of other points, that is, when equation (20) 

holds, that point A1 minimizes the transportation cost4, 

 

                                                   
3 Nishioka (1976) explains the condition under which minimum transportation cost place is settled 

at a vertex.  
4 This fact is explained by Weber (1909,S.235). 
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       m1 ≥ ∑ 𝑚𝑚𝑖𝑖
3
𝑖𝑖=2 R  .                                                                         (20) 

 

4. Derivation of area of minimum production costs 

4.1. Incorporation of the production function into the analysis 

In the derivation of the above-mentioned transportation cost minimization point, the weight of the raw 

materials and products to be used is given. Such assumption is of course effective in theoretical 

analysis in a rather short period of time. Under a rather long period of time, however, the theoretical 

effectiveness of this assumption declines. The prices of raw materials fluctuate in a somewhat long 

period, and the amounts of raw materials used change accordingly. As a result, the ratio of the weights 

of the raw materials used change and the transportation cost minimizing point moves. The change of 

prices of the raw materials vary the combination of the weights of the raw materials used at the factory. 

The problem of how the combination of raw materials is changed with respect to price changes of raw 

materials is explained by incorporating the factory’s production function into the analysis.  
By introducing the production function into the analysis, the object of the analysis is led to the 

derivation of the point which minimizes the production cost including the transportation cost. 

Therefore, the assumption of analysis is expanded and the place where the production cost of the 

factory is minimized is derived.  

The assumptions used in the previous section are expanded. (1) Prices of material M1 and M2 are 

given as p1, p2. (2) Distances between the factory and each point A1, A2, A3 are denoted by d1, d2, 

and d3. (3)  The freight rates of each material M1, M2 and the final goods M3 are given as tm1, tm2 

tm3, respectively. (4) Production function of the factory is shown by equation (21), 

 

       Q= Am1
αm2

β  .                                                                             (21) 

 

where Q is production amount of the final goods M3, A denotes parameter to indicate production 

efficiency of the factory, parameter α and β are assumed 0.4 for simplicity of calculation. 

 Making use of the law of equi-marginal productivity, that is, the ratio between the productivities of 

the two raw materials should be equal to the ratio between their delivered prices, quantities of them 

are derived as equations (22) and (23), 

     

     m1= Q1.25A-1.25(p2+tm2d2)0.5/(p1+tm1d1)0.5 ,                                              (22)   

 

     m2= Q1.25A-1.25(p1+tm1d1)0.5/(p2+tm2d2)0.5                                                (23) 

 

The factory’s production cost Cp is given by equation (24), 
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      Cp = 2Q1.25A-1.25(p1+tm1d1)0.5(p2+tm2d2)0.5 +Qtm3d3.                         (24) 

 

When the cost function is given as in equation (24), the production cost becomes a function of the 

factory’s location. The factory’s production cost is varied as a function of x and y as shown in Figure 

6. It is assumed in Figure 6 that points A1, A2, A3 in Figure 4 are specified as A1= (0.0), A2= (5.0), 

A3= (2.5.5), the production amount of the final goods M3,Q=50, production efficiency; A=1, the prices 

of the raw materials are given as p1=0.25, p2=0.75. the freight rates are given as tm1=0.11, tm2=0.15, 

tm3=0.57. As shown in Figure 6, the production cost of the factory is minimized at point (2.65, 3.49) 

and rises as it goes away from that point.  

 
Figure 6. The relationship between the factory’s location and production cost  

  

Then, as the production cost becomes a function of the factory’s location, by solving the 

simultaneous equations of (25) and (26) for x and y, the place at which production cost is minimized 

can be derived. In deviation of equation (25) and (26), A1= (0.0), A2= (5.0), A3= (2.5.5) are assumed. 

 

 ∂Cp/∂x =Qtm3(x-2.5)/(((x-2.5)2+(y-5)2)0.5) 

+Q1.25tm1x(p2+tm2((x-5)2+y2)0.5)0.5/(A1.25((x2+y2)0.5)(p1+tm1(x2+y2)0.5)0.5) 

+ Q1.25tm2(x-5) (p1+tm1(x2+y2)0.5)0.5/(A1.25((x-5)2+y2)0.5)(p2+tm2((x-5)2+y2)0.5)0.5)=0,    (25) 

 

∂Cp/∂y = Qtm3(y-5)/(((x-2.5)2+(y-5)2)0.5) 

+Q1.25tm1y(p2+tm2((x-5)2+y2)0.5)0.5/(A1.25((x2+y2)0.5)(p1+tm1(x2+y2)0.5)0.5)  

+ Q1.25tm2y (p1+tm1(x2+y2)0.5)0.5/(A1.25((x-5)2+y2)0.5)(p2+tm2((x-5)2+y2)0.5)0.5)=0.      (26) 

 

If the parameters are given the same value used in the derivation of Figure 6, the place of minimizing 

production costs is dived from equations of (25) and (26). The solution can be derived as (2.653,3.490). 

 

x 

y 

Cp 
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4.2. The concept of area of minimum production costs 

The curved surface shown in Figure 6 shows the relationship between the location of the factory and 

its production cost. Let's cut this curved surface several times at different height around the minimum 

value with a plane parallel to the bottom. Each cut is projected onto x-y plane and they are indicated 

by each closed curve in Figure 7. These curves may be called equal production cost curves. Among 

these equal production cost curves, the inside of the innermost equal cost curve is indicated by dark 

blue. If the factory is located in an area indicated by dark blue, the production costs of the factory is 

not higher than 309.7. That is, it can be said that it is not more than 0.1 higher than the minimum 

production cost. Point (2.65, 3.49) of minimum production cost is indicated by the white mark “*”   

in Figure 7. 

 

 

 
Figure 7. Derivation of area of minimum production costs 

 

Based on the considerations of production costs using Figure4, Figure 6 and Figure7, the following 

inference is possible. If the amount of each of the raw materials used by the factory has been 

determined and it is stable over a relatively long period of time, deriving a point that minimizes the 

transportation expenditure is quite important in determining the location of the factory. In a situation, 

however, where the prices of raw materials change in relatively long term, even if one place that 

minimizes shipping costs is found, that place will shift quickly. Hence, it can be said that the 

importance of finding such a point is relatively low.  

Instead, it is significant in the factory’s location strategy for the factory to set an amount that allows 

deviation from the minimum production cost level, and the factory sets the spatial area in which the 

x 

y 

* 
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deviation of the production costs is allowed. And if the factory is in the area, the factory accepts its 

location from the viewpoint of production cost. This area can be called as area of minimum production 

costs. It could be said, thus, that the location issue of the factory is to set the area of minimum 

production cost in a geographical space. 

As mentioned above, it is predicted that changes in raw material prices will often occur. In response 

to such raw material price change, it is thought that the idea of area of minimum production costs is 

effective for the firm's location strategy. For instance, if the factory sets 0.1 that can deviate from the 

minimum production cost level in the situation assumed in the above analysis, the spatial area in which 

the factory’s location is allowed from the viewpoint of the production costs is indicated by the area of 

dark blue in Figure 7. This area is the area of minimum production costs.  

Let us examine the significance of the area of minimum production costs. Suppose that the price 

p2 of the material M2 is changed by 12 percent from the 0.25: if the price is increased to 0.28, other 

parameters are kept the same level, point of minimum production costs shift from point (2.65,3.49) to 

point (2.63,3.56) which is shown by the white diamond mark. In this situation, the new area of 

minimum production costs is set as shown by the inside dark blue area of the innermost equal cost 

curve in Figure 8. The existing location of the factory, which is shown by the white mark “*”, is 

included in the new area of minimum production costs in Figure 8. Thus, the factory does not need to 

consider the shifting its location according to the increase of price of the material.  

In sum, when the factory allows the concept of area of minimum production costs, it can be said 

that even if the price of the raw material changes somewhat, the factory does not shift its location point 

according to the change. 

 

 

 Figure 8 A new area of minimum production costs 

 

x 

ｙ 

* 
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In addition, since within area of minimum production costs the production costs of the factory are 

almost same irrelatively its location, the factory can have a lot of location selections: Within this area 

the factory incorporates many location factors in the determination of the factory’s location such as 

security, health care, and dwellings of workers and so on. The concept of area of minimum production 

costs may offer usefulness to the factory’s location determination: the factory can flexibly consider 

the its location and select a better location considering various location factors. 

  

5. Concluding remarks 

Factory’s shipping costs tend to decline due to intermittent technological progress in transportation 

systems. In addition, the transportation costs have been greatly reduced by technological innovation 

in office processing. Due to the decline in transportation costs, many production processes become to 

be released from places where transportation costs are minimized. The locations of the production 

processes have become more influenced by labor costs and the agglomeration economies, and the 

locations of the factories are becoming diversified. Transportation costs have various impacts on the 

location determination of various economic activities in each region of the world. The economic role 

played by transportation expenses has been relatively declining, but the way of its work has become 

diversified as economic activity is geographically broadened. 

  This paper analyzes the location effect of transportation cost on factory: At the initial stage of 

economic development, the production activities are relatively simple, and it is assumed that the prices 

of the raw materials used by the factory are constant for a relatively long time. Under this assumption, 

first, the paper explains the traditional theory to derive the place that minimizes the transportation cost 

of the factory, and clarifies its validity by analytical method. Secondly, the globalized economy is 

assumed, in this stage of economic development production process is fragmented into small blocs, 

and some of them are spatially scattered from the existing place to various places which provide 

production condition suitable to the individual production blocs. In this stage, there are many raw 

materials and intermediate good are used to produce final goods, and it is assumed that the prices of 

these materials and intermediate goods are not constant, but they change in a relatively short period. 

Thus, this paper proposes the concept of area of production cost minimization. This concept implies 

as follows: In determining the location of a factory, deriving place that minimizes transportation costs 

is not very important as the prices of intermediate goods easily changes. Rather it is more important 

for the factory to allow some deviation from the minimum transportation cost and to determine an 

acceptable geographical range. By setting area of production cost minimization the factory does not 

need to consider the shifting its location in response to mild price changes of the materials and 

intermediate goods. And the factory can flexibly consider the its location within this area and select a 

better location by incorporating various location factors into the consideration. 
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