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Abstract

This study examines the competition in Bertrand and Cournot mar-
kets from both statics and dynamic points of view. It formalizes optimal
behavior in the n-�rm framework with product di¤erentiation. Our �rst
�ndings is that di¤erentiated Bertrand and Cournot equilibria can be
destabilized when the number of the �rms is strictly greater than three.
This �nding extends the well-known stability result shown by Theocharis
(1960) in which the stability of a non-di¤erentiated Cournot equilibrium
is con�rmed only in duopolies framework. A complete analysis is then
given in comparing Bertrand and Cournot outputs, prices and pro�ts.
The focus is placed upon the e¤ects caused by the increasing number of
�rms. Our second �nding exhibits that the number of the �rms really
matters in the comparison. In particular, it demonstrates that the com-
parison results obtained in the duopoly framework do not necessarily hold
in the general n-�rm framework. This �nding extends the results shown
by Singh and Vives (1984) examining the duality of these two competi-
tions in the duopoly markets and complements the analysis developed by
Häcker (2000) that makes comparison in the case of n-�rm markets.
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1 Introduction

A considerable number of studies has been made so far on the nature of Cournot
and Bertrand competitions in which the �rms are adjusting their quantities and
prices, respectively. In di¤erentiated Bertrand and Cournot markets using the
linear duopoly framework, Singh and Vives (1984) show, among others, the
followings clear-cut results1 :

(i-SV) Prices are higher and quantities lower under Cournot competition than
under Bertrand competition regardless of whether the goods are substi-
tutes or complements;

(ii-SV) Cournot competition is more pro�table than Bertrand competition if
the goods are substitutes;

(iii-SV) Bertrand competition is more pro�table than Cournot competition if
the goods are complements.

In n-�rm di¤erentiated oligopoly markets, Häckner (2000) points out that
some of Singh and Vives� results are sensitive to the duopoly case: although
(iii-SV) is robust in the n-�rm framework, (i-SV) and (ii-SV) can be reversed in
the n-�rm case with n > 2. In particular, it is shown that prices can be higher
under Bertrand competition than under Cournot competition when the goods
are complements and Bertrand competition can be more pro�table when the
goods are substitutes.
In this study, adopting the n-�rm framework, we shall look more carefully

into the results developed by Häckner (2000) from both static and dynamic
points of view. It has been well-known since Theocharis (1960) that if the
number of �rms is more than three, then the Cournot equilibrium becomes
unstable even in a linear structure where the demand and the cost functions are
linear. This controversial result is shown when the goods are homogenous (i.e.,
non-di¤erentiated). Considering the two types of competitions with n �rms,
we may raise a natural question whether the similar result holds or not when
the goods are di¤erentiated, namely, whether the di¤erentiated Cournot and
Bertrand equilibria become destabilized by the increasing number of �rms. We
answer the question in the a¢ rmative. The Cournot equilibrium is possibly
destabilized when the goods are substitutes and remains stable when the goods
are complements. On the other hand, the Bertrand equilibrium is possibly
destabilized when the goods are complements and is stable when the goods are
substitutes.
In the linear structure, it is not di¢ cult to convert an inverse demand func-

tion into a direct demand function. To make the direct demand economically
meaningful, it is usually, but implicitly, assumed that its non-induced or price
independent demand is positive. This assumption is explicitly considered in
Singh and Vives (1984). However, its role is not examined in Häckner (2000).
Taking this assumption into account in the n-�rm framework, we may improve
Häckner�s analysis and demonstrate that all of the above-mentioned Singh-Vives
results can be reversed:

1SV stands for Singh and Vives. MS to be appeared in the later part of the Introduction
means Matsumoto and Szidarovszky.
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(i-MS) Bertrand price can be higher than Cournot price when the goods are
complements whereas Cournot output can be larger than Bertrand output
when the goods are substitutes;

(ii-MS) Bertrand pro�t can be higher than Cournot pro�t when the goods are
substitutes;

(iii-MS) Cournot pro�t can be higher than Bertrand pro�t when the goods
are complements.

The rest of the paper is organized as follows. In Section 2 we present an
n-�rm linear oligopoly model and determine the �rm�s optimal behavior under
Cournot and Bertrand competitions. In Section 3, employing a combination
of analytical and numerical methods, we compare the optimal price, output
and pro�t under Cournot competition with those under Bertrand competition.
Concluding remarks are given in Section 4.

2 n-Firm Oligopoly Models

We will assume consumer�s utility maximization in Section 2.1 to obtain a spe-
cial demand function. In Section 2.2, the �rm�s pro�t maximization will be
considered under quantity (Cournot) competition, and in Section 2.3 we will
derive the optimal prices, outputs and pro�ts under price (Bertrand) competi-
tion.

2.1 Consumers

As in Singh and Vives (1984) and Häckner (2000), it is assumed that there
is a continuum of consumers of the same type and the utility function of the
representative consumer is given as

U(q; I) =

nX
i=1

�iqi �
1

2

0@ nX
i=1

q2i + 2


nX
i=1

nX
j>i

qiqj

1A� I; (1)

where q = (qi) is the quantity vector, I =
Pn

i=1 piqi with pi being the price
of good k; �i measures the quality of good i and 
 2 [�1; 1] measures the
degree of relation between the goods: 
 > 0; 
 < 0 or 
 = 0 imply that the
goods are substitutes, complements or independent. Moreover, the goods are
perfect substitutes if 
 = 1 and perfect complements if 
 = �1: In this study,
we con�ne our analysis to the case in which the goods are imperfect substitutes
or complements and are not independent, by assuming that j
j < 1 and 
 6= 0:
The linear inverse demand function (or the price function) of good k is

obtained from the �rst-order condition of the interior optimal consumption of
good k and is given by

pk = �k � qk � 

nX
i 6=k

qi for k = 1; 2; :::; n; (2)

where n � 2 is assumed. That is, the price vector is a linear function of the
output vector:

p = ��Bq; (3)
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where p = (pi); � = (�i) and B = (Bij) with Bii = 1 and Bij = 
 for i 6= j:
Since B is invertible2 , solving (3) for q yields the direct demand

q = B�1(�� p) (4)

where the diagonal and the o¤-diagonal elements of B�1 are, respectively,

1 + (n� 2)

(1� 
)(1 + (n� 1)
) and �




(1� 
)(1 + (n� 1)
) :

Hence the direct demand of good k, the kth -component of q, is linear in the
prices and is given as

qk =

(1 + (n� 2)
)(�k � pk)� 

nP
i 6=k
(�i � pi)

(1� 
)(1 + (n� 1)
) for k = 1; 2; :::; n: (5)

Since Singh and Vives (1984) have already examined the duopoly case (i.e.,
n = 2), we will mainly consider a more general case of n > 2 henceforth. For the
sake of the later analysis, let us de�ne the admissible region of (
; n) by D(+)
or D(�) according to whether the goods are substitutes or complements:

D(+) = f(
; n) j 0 < 
 < 1 and 2 < ng

and
D(�) = f(
; n) j �1 < 
 < 0 and 2 < ng:

2.2 Quantity-adjusting �rms

In Cournot competition, �rm k chooses a quantity qk of good k to maximize
its pro�t �k = (pk � ck)qk subject to its price function (2), taking the other
�rms�quantities given. We assume a linear cost function for each �rm, so that
the marginal cost ck is constant and non-negative. To avoid negative optimal
production, we also assume that the net quality of good k; �k � ck; is positive.

Assumption 1. ck � 0 and �k � ck > 0 for all k:

Assuming interior maximum and solving its �rst-order condition yield the
best reply of �rm k,

qk =
�k � ck
2

� 

2

nX
i 6=k

qi for k = 1; 2; :::; n: (6)

It can be easily checked that the second-order condition is certainly satis�ed.
The Cournot equilibrium output and price for �rm k are obtained by solving
the following simultaneous equations:

qk +



2

nX
i 6=k

qi =
�k � ck
2

for k = 1; 2; :::; n;

2The n by n matrix B is invertible if detB = (1� 
)n�1(1+ (n� 1)
) 6= 0: It is invertible
when 
 > 0: In the case of 
 < 0; the inequality constraint 1 + (n� 1)
 > 0 will be assumed
in Assumption 2 below and it will guarantee the invertiblity of B:
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or in vector form,
BCq = AC ;

where AC = (�i � ci)=2 and BC = (BCij) with B
C
ii = 1 and BCij = 
=2 for

i 6= j: Since BC is invertible, the Cournot output vector is given by

qC =
�
BC

��1
AC ;

where the diagonal and o¤-diagonal elements of
�
BC

��1
are, respectively,

2(2 + (n� 2)
)
(2� 
)(2 + (n� 1)
) and �

2


(2� 
)(2 + (n� 1)
) :

Hence the Cournot equilibrium output of �rm k is

qCk =
�k � ck
2� 
 � 


(2� 
)(2 + (n� 1)
)
nP
i=1

(�i � ci) (7)

and the Cournot equilibrium price of �rm k is

pCk =
�k + ck � 
ck

2� 
 � 


(2� 
)(2 + (n� 1)
)
nP
i=1

(�i � ci): (8)

Subtracting (7) from (8) yields pCk � ck = qCk and then by substituting it into
the pro�t function, the Cournot pro�t is obtained:

�Ck =
�
qCk
�2
: (9)

The relation pCk � ck = qCk also implies that the Cournot price is positive if
the Cournot output is positive. Equation (7) implies that the Cournot output
is always positive when 
 < 0; and non-negative with 
 > 0 if

zC(
; n) � �k; (10)

where

zC(
; n) =
2 + (n� 1)


n

(11)

and �k is the ratio of the average net quality over the individual net quality of
�rm k;

�k =

1

n

Pn
i=1(�i � ci)
�k � ck

: (12)

When �k < 1; the individual net quality of �rm k is larger than the average net
quality. Firm k is called higher-quali�ed in this case. On the other hand, when
�k > 1; the individual net quality is less than the average net quality. Firm k is
then called lower-quali�ed.
We now inquire into the stability of the Cournot output. Best response

dynamics is assumed with static expectations, when each �rm assumes believes
that the other �rms remain unchanged with their outputs from the previous
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period. Then the best response equation (6) gives rise to the time invariant
linear dynamic system

qk(t+ 1) =
�k � ck
2

� 

2

nX
i 6=k

qi(t); k = 1; 2; :::; n: (13)

Substituting qk(t + 1) into (2), the price function of �rm k; yields the price
dynamic equation associated with the output dynamics:

pk(t+ 1) = �k � qk(t+ 1)� 

nX
i 6=k

qi(t+ 1); k = 1; 2; :::; n: (14)

Equations (13) and (14) imply that the price dynamics is essentially the same
as the quantity dynamics: In other words, the Cournot price is stable (resp.
unstable) if the Cournot output is stable (resp. unstable). Therefore it is enough
for our purpose to draw our attention only to the stability of the Cournot output.
The coe¢ cient matrix of system (13) is its Jacobian:

JC =

0BBBBB@
0 �


2
� �


2
�

2

0 � �

2

� � � �
�

2

�

2

� 0

1CCCCCA :

The corresponding characteristic equation reads

jJC � �Ij = (�1)n
�
�� 


2

�n�1�
�+

(n� 1)

2

�
= 0;

which indicates that there are n � 1 identical eigenvalues and one di¤erent
eigenvalue. Without a loss of generality, the �rst n� 1 eigenvalues are assumed
to be identical,

�C1 = �
C
2 = ::: = �

C
n�1 =




2
and �Cn = �

(n� 1)

2

:

Since j
j < 1 is assumed; the �rst n�1 eigenvalues are less than unity in absolute
value. It depends on the absolute value of �Cn whether the Cournot output is

stable or not. It follows that
����C2 ��� = ���


2

�� < 1 for n = 2 (i.e., duopoly) and����C3 ��� = j
j < 1 for n = 3 (triopoly): Solving
����Cn ��� < 1 for n > 3 presents the

stability conditions of the Cournot output3 :

n < 1 +
2



if 
 > 0 and n < 1� 2



if 
 < 0:

We can now summrize these stability results as follows.
3 If the Jacobian of the price function satis�es a diagonally dominant condition (i.e.,

jdpk=dqkj >
P
i6=k jdpk=dqij), then we have

n < 1 +
1




under which
���Cn �� < 1: However, we proceed our analysis without this strong assumption.
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Theorem 1 Under Cournot competition with n > 2; (i) the Cournot output
and price are stable for (
; n) 2 RCS and unstable for (
; n) 2 RCU = D(+)nRCS
if the goods are substitutes; (ii) they are stable for (
; n) 2 RCs and unstable for
(
; n) 2 RCu = D(�)nRCs if the goods are complements where the stability regions
are, respectively, de�ned by

RCS = f(
; n) 2 D(+) j n < 1 +
2



g and RCs = f(
; n) 2 D(�) j n < 1�

2



g;

and the instability regions, RCU and RCu ; are the complements of the stability
regions.

Notice that Cournot outputs are locally unstable if n > 4 and j
j > 1=2; that
is when the number of �rms is more than four and the products are su¢ ciently
di¤erentiated.

2.3 Price-adjusting �rms

In Bertrand competition, �rm k chooses the price of good k to maximize the
pro�t �k = (pk � ck)qk subject to its direct demand (5), taking the other �rms�
prices given. Solving the �rst-order condition yields the best reply of �rm k,

pk =
�k + ck
2

� 


2[1 + (n� 2)
]
nP
i 6=k
(�i � pi); for k = 1; 2; :::; n: (15)

The second-order condition for an interior optimum solution is

@2�k
@p2k

= � 2 (1 + (n� 2)
)
(1� 
)(1 + (n� 1)
) < 0; (16)

where the direction of inequality depends on the parameter con�guration.4 For
(
; n) 2 D(+); we see that (16) is always satis�ed. On the other hand, for
(
; n) 2 D(�); we need additional condition to ful�ll the second-order condition.
Since

1 + (n� 1)
 < 1 + (n� 2)
;

for 
 < 0, the required condition is either 0 < 1 + (n� 1)
 or 1 + (n� 2)
 < 0.
As in Häckner (2000), we make the following assumption:

Assumption 2. 1 + (n� 1)
 > 0 when 
 < 0.

The Bertrand equilibrium prices are obtained by solving the simultaneous
equations

pk �



2[1 + (n� 2)
]
nP
i 6=k

pi =
�k + ck
2

� 


2[1 + (n� 2)
]
nP
i 6=k

�i

for k = 1; 2; :::; n with unknown pk: In vector form,

BBp = AB ;

4Note that inequality (16) is always ful�lled for n = 2.
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with AB = (�k+ck2 � 

2[1+(n�2)
]

nP
i 6=k

�i), B
B = (BBij ) where B

B
ii = 1 and B

B
ij =

� 

2[1+(n�2)
] for i 6= j. Since B

B is invertible, the solution is

p =
�
BB

��1
AB ;

where the diagonal and o¤-diagonal elements of
�
BB

��1
are, respectively,

2(1 + (n� 2)
)(2 + (n� 2)
)
(2 + (n� 3)
)(2 + (2n� 3)
) and

2
(1 + (n� 2)
)
(2 + (n� 3)
)(2 + (2n� 3)
) :

Hence, the Bertrand equilibrium price and output of �rm k are given by

pBk =
(2+(n�3)
)[(1+(n�1)
)(�k+ck)�
ck]�
(1+(n�2)
)

nP
i=1

(�i�ci)

(2+(2n�3)
)(2+(n�3)
) (17)

and

qBk =
1 + (n� 2)


(1� 
)(1 + (n� 1)
) (p
B
k � ck) (18)

with

pBk � ck=
(2+(n�3)
)(1+(n�1)
)(�k�ck)�
(1+(n�2)
)

nP
i=1

(�i�ci)

(2+(2n�3)
)(2+(n�3)
) : (19)

Due to (18), the Bertrand pro�t of �rm k becomes

�Bk =
(1� 
)(1 + (n� 1)
)

1 + (n� 2)
 (qBk )
2: (20)

Equation (18) implies that the Bertrand output is positive if pBk � ck is positive.
Under Assumption 2, equation (19) implies that pBk � ck is always positive if

 < 0, and is nonnegative with 
 > 0 if

zB(
; n) � �k (21)

where

zB(
; n) =
(2 + (n� 3)
)(1 + (n� 1)
)

(1 + (n� 2)
)n
 (22)

and �k is de�ned by (12).
In examining stability of the Bertrand price, we assume best response dy-

namics with static expectations on price formation and obtain the following
system of time-invariant di¤erence equations:

pk(t+ 1) =
�k + ck
2

� 


2[1 + (n� 2)
]
nP
i 6=k

[�i � pi(t)] for k = 1; 2; :::; n: (23)

Similarly to the Cournot competition, we can also obtain the output di¤erence
equations under Bertrand competition by substituting pk(t+ 1) into the direct
demand function (5):

qk(t+ 1) =

(1 + (n� 2)
)(�k � pk(t+ 1))� 

nP
i 6=k
(�i � pi(t+ 1))

(1� 
)(1 + (n� 1)
) : (24)
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It is clear from (23) and (24) that the output dynamics is synchronized with the
price dynamics. The coe¢ cient matrix of this price adjusting system is

JB =

0BBBBBB@
0




2[1 + (n� 2)
] � 


2[1 + (n� 2)
]



2[1 + (n� 2)
] 0 � 


2[1 + (n� 2)
]
� � � �



2[1 + (n� 2)
]



2[1 + (n� 2)
] � 0

1CCCCCCA :

This matrix has the same structure as JC when 
 is replaced by �
=2[1+ (n�
2)
]; so the eigenvalues are

�B1 = �
B
2 = ::: = �

B
n�1 = �




2[1 + (n� 2)
] and �
B
n =

(n� 1)

2[1 + (n� 2)
] :

When 
 > 0 and n > 2; we have
����Bk ��� < 1 for k = 1; 2; :::; n: That is, the

Bertrand price is asymptotically locally stable in D(+):5 On the other hand,
when 
 < 0; 0 < �Bk < 1 also holds for k = 1; 2; :::; n � 1: The value of �Bn is
clearly negative and �Bn > �1 can be rewritten as

n <
5

3
� 2

3


under which the Bertrand price is stable6 . Since the Bertrand competition
synchronizes output dynamics with price dynamics, the stability conditions of
the Bertrand price and output are summarized as follows:

Theorem 2 Under Bertrand competition with n > 2, (i) the Bertrand price and
output are stable if the goods are substitutes; (ii) if the goods are complements,
then they are stable for (
; n) 2 RBs and unstable for (
; n) 2 RBu = DBnRBs
where DB is the feasible region under Assumption 2,

DB = f(
; n) 2 D(�) j 0 < 1 + (n� 1)
g;

RBs is the stable region,

RBs = f(
; n) 2 DB j n < 5

3
� 2

3

g

and RBu is the unstable region, which is the complement of the stable region.

Theorems 1 and 2 consider stability of the Cournot output and the Bertrand
price as well as stability of the Cournot price and the Bertrand output through
the di¤erence equations (14) and (24). Graphical explanations of Theorems 1

5Okuguchi (1987) has already shown the same result with a more general demand function.
6 If the Jacobian of the demand function is diagonally dominant (i.e., jdqk=dpkj >P
i6=k jdqi=dpkj), then we have

n <
3

2
� 1

2


which is stronger than the price-stability condition and thus leads to the stability of Bertrand
price. However we do not assume this strong condition in what follows.
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and 2 are given in Figure 1. In the �rst quadrant where 
 > 0; the admissible
regionD(+) is divided into two parts by the neutral stability locus of the Cournot
output �Cn = �1; the light-gray region RCS below the locus and the dark-gray
region RCU above: The Cournot output is stable in the former and unstable in the
latter while the Bertrand price is stable in both regions. In the second quadrant
where 
 < 0; the admissible region D(�) of the Bertrand price is reduced to DB

by Assumption 2. The neutral stability locus of the Bertrand price �Bn = �1
cuts across the locus of 1 + (n � 1)
 = 0 from left to right at point (�1=2; 3)
and divides the region DB into two parts: the light-gray region RBs and the
dark-gray region RBu : The Bertrand price is stable in the former and unstable
in the latter. In comparing the Cournot and the Bertrand optimal behavior of
output, price and pro�t, we should con�ne our analysis to the parametric region
in which both equilibria are feasible, otherwise the comparison has no economic
meanings. Two facts are clear. One is that we can ignore the white region of
the second quadrant in all further discussions as Assumption 2 is violated there.
The other is that the Cournot output is always stable in DB since DB � RCs :

Figure 1. Stable and unstable regions

Theocharis (1960) studies stability of discrete dynamic evolution of the
Cournot output under static expectation when the goods are perfect substitutes
(i.e., no product di¤erentiation) and demonstrates that the Cournot output is
asymptotically stable if and only if the number of �rms is equal to two. The-
orems 1 and 2 extend Theocharis�classical result and assert that the Cournot
output as well as the Bertrand price can be unstable when the number of �rms
is strictly greater than three and the goods are di¤erentiated. The main point is
that Cournot output can be unstable only when the goods are substitutes and
the Bertrand price only when the goods are complements.
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3 Optimal Strategy Comparison

We call the optimal price, output and pro�t under Cournot competition Cournot
strategy and those under Bertrand competition Bertrand strategy. In this section
we will compare Cournot strategy with Bertrand strategy to examine which
strategy is more preferable when the number of the �rms becomes more than
three.
Assuming n > 2 and subtracting (17) from (8) yield a price di¤erence

pCk � pBk =
(�k � ck)(n� 1)
2

(2� 
)(2 + (2n� 3)
)
1

zP (
; n)

�
zP (
; n)� �k

�
; (25)

where

zP (
; n) =
(2 + (n� 1)
)(2 + (n� 3)
)

(n� 2)n
2 :

Since the �rst two factors multiplying the parenthesized term on the right hand
side of (25) are positive,

sign
�
pCk � pBk

�
= sign

�
zP (
; n)� �k

�
: (26)

Subtracting (18) from (7) yields the output di¤erence,

qCk � qBk =
(�k � ck)(n� 1)
2

(2� 
)(1� 
)(2 + (2n� 3)
)
1

zQ(
; n)

�
�k � zQ(
; n)

�
(27)

where

zQ(
; n) =
(2 + (n� 3)
)(1 + (n� 1)
)(2 + (n� 1)
)
n
(4 + 5(n� 2)
 + (n2 � 5n+ 5)
2) :

Consider the right hand side of (27). The �rst factor is positive while the second
one (i.e., the reciprocal of zQ(
; n)) is ambiguous: it is positive when the goods
are substitutes and negative when the goods are complements. The sign of the
output di¤erence is therefore determined by the simpli�ed expression:

sign
�
qCk � qBk

�
= sign

�


�
�k � zQ(
; n)

��
: (28)

Finally, dividing (9) by (20) gives a pro�t ratio,

�Ck
�Bk

=
1 + (n� 2)


(1� 
)(1 + (n� 1)
)

�
qCk
qBk

�2
:

Since the �rst factor of the right hand side is positive and greater than unity, we
have �Ck > �

B
k if q

C
k > q

B
k : In order to �nd a more general condition determining

whether the pro�t ratio is greater or less than unity, we substitute (18) and (7)
into the last expression to have

�Ck
�Bk

= G(�k)

with

G(�k) = B(
; n)

�
A(
; n)

zC(
; n)� �k
zB(
; n)� �k

�2
; (29)
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where

A(
; n) =
(1� 
)(1 + (n� 1)
)(2 + (2n� 3)
)(2 + (n� 3)
)

(2� 
)(2 + (n� 1)
)(1 + (n� 2)
)2 > 0

and

B(
; n) =
1 + (n� 2)


(1� 
)(1 + (n� 1)
) > 0:

When the net quality of �rm k is equal to the average net quality o¤ered by all
�rms, the pro�t ratio is

G(1) =
(2 + (n� 3)
)2(1 + (n� 1)
)

(1� 
)(1 + (n� 2)
)(2 + (n� 1)
)2 :

The di¤erence of the denominator and the numerator of G(1) is

(n� 1)2(2 + (n� 2)
)
3;

which then implies that

G(1) > 1 if 
 > 0 and G(1) < 1 if 
 < 0: (30)

Di¤erentiating G(�k) with respect to �k gives, after arranging terms,

dG(�k)

d�k
=
2A(
; n)2B(
; n)(zC(
; n)� zB(
; n))(zC(
; n)� �k)

(zB(
; n)� �k)2
: (31)

Noticing that zC(
; n)� zB(
; n) > 0; zC(
; n)��k > 0 and zB(
; n)��k > 0
when 
 > 0 and zC(
; n)�zB(
; n) < 0; zC(
; n)��k < 0 and zB(
; n)��k < 0
when 
 < 0; we �nd that the sign of the derivative of G(�k) is positive when
the goods are substitutes and negative when complements:

dG(�k)

d�k
> 0 when 
 > 0 and

dG(�k)

d�k
< 0 when 
 < 0: (32)

3.1 Duopoly Case: n = 2

As a benchmark case, we consider duopolies and con�rm the Singh-Vives results
in our framework. Substituting n = 2 into (25), (27) and (29) yields

pCk � pBk =
(�k � ck)
2
4� 
2 ; (33)

qCk � qBk =

2

(1� 
2)(4� 
2)

�
2(�k � ck)


�
�k �

1 + 


2


��
(34)

and

G(�k) = (1� 
2)
�
zC � �k
zB � �k

�2
; (35)

where

zC =
2 + 


2

and zB =

(2� 
)(1 + 
)
2


:
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Given j
j < 1; it is fairly straightforward that pCk > pBk always and qCk < qBk
when 
 < 0. To determine the sign of the output di¤erence in case of 
 > 0, we
return to the direct demand (5) and consider consequences of the assumption
�i � 
�j > 0 for i 6= j, which is implicitly imposed to guarantee that the
independent or non-induced demand for pi = 0; i = 1; 2 is positive when the
goods are substitutes. This assumption can be rewritten as

�k � 
�j = 2�k

�
1 + 


2

� zk

�
> 0

with

zk =
1

2

P2
i=1 �i
�k

being the ratio of the average quality of the two �rms over the individual quality
of �rm k. Since 
 > 0 and �k > 0; this inequality indicates that an upper bound
is imposed on zk;

zk <
1 + 


2

:

Furthermore, �i � 
�k > 0 can be rewritten as
�i
�k

> 
;

which is substituted into the de�nition of zk to have

zk >
1 + 


2
:

If the marginal costs are zero, then it is apparent from the de�nitions that
�k = zk: In the future discussions, we retain ci > 0 and make the following
assumption,

c1
�1
=
c2
�2
;

under which, it is not di¢ cult to show that �k = zk: Then �k is bounded both
from above and from below,

1 + 


2
< �k <

1 + 


2


and

2(�k � ck)

�
1 + 


2

� �k

�
> 0:

With the last inequality, the output di¤erence (34) is negative, so qCk < q
B
k in

case of 
 > 0. Hence we have qCk < q
B
k always regardless of whether the goods

are substitutes or complements.
Substituting n = 2 into (31) gives

dG(�k)

d�k
= 


zC � �k
zB � �k

? 0 if 
 ? 0:

13



The minimum value of �k is (1 + 
)=2 when 
 > 0 and 1=2 when 
 < 0; which
is substituted into the pro�t ratio (35) to obtain

G

�
1 + 


2

�
=
(2� 
2)2
4� 
2 > 1 and G

�
1

2

�
=

4� 
2
(2� 
2)2 < 1:

The value of G(�k) increases in �k and is greater than unity for the minimum
value of �k when 
 > 0 whereas it decreases and is less than unity for the
minimum value of �k when 
 < 0: Hence we obtain that

�Ck > �
B
k if 
 > 0 and �

C
k < �

B
k if 
 < 0:

We have therefore con�rmed the Singh-Vives results, (i-SV), (ii-SV) and (iii-
SV), mentioned in the Introduction and now we will proceed to the general
n-�rm case in order to examine the e¤ects of the increasing number of �rms on
these results.

3.2 The goods are substitutes, 
 > 0

We �rst assume that �rm k is higher-quali�ed (i.e., �k � 1). If 
 > 0; then
zP (
; n) > zC(
; n) > zB(
; n) > zQ(
; n) > 1 and thus

zQ(
; n) > �k:

With this inequality, equations (11), (21), (25) and (28) imply the following
three results: (i) qCk and pCk are positive; (ii) qBk and pBk are positive; (iii)
pCk > p

B
k and q

C
k < q

B
k : Before examining the pro�t ratio, we assume, as in the

duopoly case, that the non-induced demand of (5) is positive:

Assumption 3. (1 + (n� 2)
)�k � 

Pn

i 6=k �i > 0:

This assumption can be rewritten as

�kn


�
1 + (n� 1)


n

� zk

�
> 0;

where

zk =
1

n

Pn
i=k �i
�k

is the ratio of the average quality over the individual quality of �rm k: The
above inequality implies that Assumption 3 imposes an upper bound on zk;

zk <
1 + (n� 1)


n

:

The same assumption for �rm j (6= k) can be converted into

�j >
n


1 + (n� 1)
 zk�k:

This inequality is substituted into the de�nition of zk to obtain a lower bound
of zk;

zk >
1 + (n� 1)


n
:

14



That is, Assumption 3 restricts the value of zk into an interval by imposing
upper and lower bounds. To simplify the relation between zk and �k; we make
one more assumption that the ratio of the unit cost over the quality of �rm k
is identical with the ratio of the average cost over the average quality in the
market:

Assumption 4.
ck
�k

=

Pn
i=1 ci=nPn
i=1 �i=n

:

Under Assumptions 3 and 4, the net quality ratio of �rm k is equal to the
quality ratio (i.e., �k = zk) and thus has the upper and lower bounds,

�mk =
1 + (n� 1)


n
< 1 and �Mk =

1 + (n� 1)

n


> 1

and satis�es inequality

(�k � ck)n

�
1 + (n� 1)


n

� �k

�
> 0:

Substituting �mk and �Mk into (29) gives

G(�mk ) R 1 and G(�Mk ) > 1:

First of all, if G(�mk ) � 1; then G(�k) � 1 as G0(�k) > 0. Hence �Ck � �Bk : If,
on the other hand, G(�mk ) < 1, then there is a threshold value ��ks(
; n) making
G(��ks(
; n)) = 1; since G(�

M
k ) > 1 and G

0(�k) > 0, where the explicit form of
��ks(
; n) is obtained by solving G(�k) = 1;

7

��ks(
; n) =
zB �A2BzC �A(zC � zB)

p
B

1�A2B : (36)

Here the dependency of each term on 
 and n is omitted for the sake of notational
simplicity. Given �k; 
 and n; we have the following results on the pro�t
di¤erences:

if �k < ��k(
; n); then G(�k) < 1 implying �
C
k < �

B
k

and
if �k � ��k(
; n); then G(�k) � 1 implying �Ck � �Bk :

It is clear from these discussions that the two conditions G(�mk ) < 1 and
�k >

��ks(
; n) give rise to �
C
k > �Bk : We are now ready to consider para-

metric con�gurations under which these two inequality conditions are ful�lled.
In particular, we take the following three steps to determine the con�gurations:

7Solving G(�k) = 1 yields one more solution,

zB �A2BzC +A(zC � zB)
p
B

1�A2B
:

It is, however, becomes greater than unity for 
 2 (0; 1) and n � 3 whereas �k < 1 is assumed
here. This solution is eliminated for further considerations.
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Step I. The net quality ratio �k is assumed to be less than unity and its lower
bound �mk is also less than unity. Thus given the value of �k; the locus
of �mk = �k divides the admissible region D(+) into two parts: one is a
region with �mk � �k and the other is a region with �mk > �k: The latter
region is discarded because Assumption 3 is violated there.

Step II. The former region obtained at Step I is further divided by the locus
of G(�mk ) = 1 into two parts: one region with G(�

m
k ) < 1 and the other

with G(�mk ) � 1 in which �Ck � �Bk follows.

Step III. Finally the former region with G(�mk ) < 1 obtained at Step II is
further divided by the locus of ��ks(
; n) = �k into two parts: one region
with �k < ��ks(
; n) and other region with �k � ��ks(
; n): All these
divisions make it clear that �Ck < �

B
k in the former region and �

C
k � �Bk

in the latter region.

A graphical representation of dividing D(+) is given in Figure 2 with �k =
1=2.8 It is the reproduction of the �rst quadrant of Figure 1 and thus the
downward-sloping hyperbola is the neutral stability locus. The steeper positive
sloping curve is the �mk = �k locus. Assumption 3 is violated in the white region
in the right side of this locus. The U -shaped curve is the G(�mk ) = 1 locus, above
which G(�mk ) < 1. The half-real and half-dotted curve is the equal-pro�t locus
��ks(
; n) = �k and divides the region with G(�

m
k ) < 1 and �

m
k < �k into two

parts. In the horizontally-striped region we have �Ck < �
B
k and the inequality is

reversed in the non-striped region.9

Notice the two important issues. The �rst issue is that �Ck < �Bk holds
in the horizontally-striped region of Figure 2.As mentioned in (ii-SV) in the
Introduction, �Ck > �Bk always in the duopoly framework when 
 > 0. This
inequality become reverse in the n-�rm framework, however, it has been already
pointed out by Häckner (2000) in his Proposition 2(ii). We con�rm it and further
construct a set of pairs (
; n) for which it holds under Assumptions 3 and 4. The
second issue is that the Cournot output and price are locally unstable whenever
�Ck < �Bk since the horizontally-striped region is located within the unstable
region, which is the dark-gray domain surrounded by the two loci of �Cn = �1
and �mk = �k. In summary, we arrive at the following conclusions when 
 > 0
and �k � 1:

Theorem 3 When �k; 
 and n are given such that �rm k is higher-quali�ed
and �mk < �k, then (i) �rm k charges a higher price and produces smaller output
under Cournot competition than under Bertrand competition; (ii) its Bertrand
pro�t is higher than its Cournot pro�t when �k < ��ks(
; n) whereas the pro�t
dominance is reversed otherwise; (iii) the Cournot equilibrium is locally unstable
when �Ck < �

B
k .

8Changing the value of �k keeps the results obtained under �k = 1=2 qualitatively the
same.

9The directions of the inequalities in the divided regions such as �Ck < �
B
k and G(�mk ) < 1

are numerically con�rmed.
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Figure 2. The division of the feasible
region D(+) when �k = 1=2

Next, �rm k is assumed to be lower-quali�ed (i.e., �k > 1). In order to make
any comparison meaningful, we have to �nd out the parametric con�gurations
of 
 and n when Assumption 3 is satis�ed. Since �mk < �k as �

m
k < 1 by

de�nition, �k should be chosen to be less than its upper bound. The locus of
�Mk = �k divides the admissible region D(+) into two parts,

R+ = f(
; n) 2 D(+) j �Mk � �kg

and
R� = f(
; n) 2 D(+) j �Mk < �kg:

For (
; n) 2 R�; Assumption 3 is violated. So we eliminate this region from all
further considerations and con�ne our attention to R+. When 
 > 0; we have
the following orderings:

zP (
; n) > zC(
; n) > zB(
; n) > 1 and zB(
; n) > �Mk > zQ(
; n):

Consequently, zP (
; n) > �k in R+ and then equation (25) indicates that p
C
k >

pBk always in R+: Since �k > 1; G(1) > 1 and G
0(�k) > 0 lead to G(�k) > 1; so

equation (29) indicates that �Ck > �
B
k always in R+:

The indeterminacy of the relative magnitude between zQ(
; n) and �k im-
plies that the equal-product locus of zQ(
; n) = �k divides R+ into two parts.
In a part with zQ(
; n) < �k; the Cournot output is larger than the Bertrand
output, according to equation (28). Notice that the case of qCk > q

B
k does not

emerge in duopolies and its possibility is not examined in Häckner (2000). The
�Mk = �k locus crosses the �

C
n = �1 locus at point (
q; nq) with


q =
3

�k
� 2 and nq = 1 +

2


q
:
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Here 
q is positive for �k 2 (1; 3=2) and decreases monotonically form 1 to 0 as
�k increases from 1 to 3=2: Accordingly, nq increases from 3 to in�nity. Graph-
ically this means that the intersection (
q; nq) moves upwards along the neutral
stability locus since the upper bound curve shifts leftward in R+ as �k increases.
It also means that when �k > 3=2; the two curves do not intercept and the up-
per bound curve is within the stable region: Summarizing these observations,
we possibly obtain qCk > q

B
k for n � 3 when 
 > 0 and �k > 1: Two examples

of the division of R+ are given in Figure 3. In Figure 3(A) where �k = 1:15,
qCk > qBk in the horizontally-striped and hatched regions. Furthermore qCk is
unstable in the horizontally-striped region and stable in the hatched region. In
Figure 3(B) where �k = 3=2; qCk > qBk in the horizontally-striped region and
qCk < qBk in the light-gray region while qCk is stable in both regions. Since �k
is larger than its upper bound in the white region right to the �Mk = �k locus,
we discard it. Comparing Figure 3(A) with Figure 3(B), it can be seen that the
whole horizontally-striped region is inside the stable region for �k > 3=2 and
some part of the region is outside the stable region for �k < 3=2: That is, qCk
can be unstable for a relatively large value of n and �k < 3=2 although it is
always stable with �k � 3=2: We summarize these results as follows:

Theorem 4 When �k; 
 and n are given such that �rm k is lower-quali�ed and
�k < �

M
k , then (i) �rm k charges a higher price and earns a larger pro�t under

Cournot competition than under Bertrand competition; (ii) its Cournot output
is larger than its Bertrand output for �k > z

Q(
; n) and the relation is reversed
for �k < z

Q(
; n); (iii) its Cournot output is locally stable for �k � 3=2 and the
stability may be lost for �k < 3=2:

(A) �k = 1:15 (B) �k = 1:5

Figure 3. Stable and unstable regions in D(+) when �k > 1

3.3 The goods are complements, 
 < 0

When 
 < 0; it should be noticed that the non-induced demand is always
positive and Assumption 3 is not necessary. However, �k still has the lower
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bound that is de�ned to be 1=n when the net qualities of any other �rms are
zero. Let us begin with quantity comparison. It is clear that zQ(
; n) < 0
for any 
 and n in DB : Regardless of whether �k is greater or less than unity,
equation (28) implies that

qCk < q
B
k :

Concerning the pro�t ratio with 
 < 0, G(1) < 1 in (30) and G0(�k) < 0 in
(32) lead to �Ck < �Bk when �rm k is not higher-quali�ed (i.e., �k � 1). This
is the same result as the one obtained in the duopoly framework. We proceed
to pursue the inequality reversal of the pro�t di¤erence when �rm k is higher-
quali�ed (i.e., �k < 1). Given n; the pro�t ratio for �mk = 1=n is reduced
to

G

�
1

n

�
= A(
; n)2B(
; n)

�
(1 + (n� 2)
)(2 + (n� 2)
)

2 + 3(n� 2)
 + (n2 � 5n+ 5)
2

�2
:

It is indeterminate in general whether G(1=n) is greater or less than unity. If it
is less than or equal to unity, then G0(�k) < 0 leads to G(�k) � 1 for �k � 1=n:
In consequence, we have �Ck � �Bk : On the other hand, if G(1=n) is greater than
unity, then G0(�k) < 0 reveals an existence of a threshold value of �k that solves
G(�k) = 1: Let this solution be denoted by ��kc(
; n),

10

��kc(
; n) =
zB �A2BzC +A(zC � zB)

p
B

1�A2B : (37)

We thus have the following results on the pro�t di¤erences:

if �k > ��kc(
; n); then G(�k) < 1 implying �
C
k < �

B
k

and
if �k < ��kc(
; n); then G(�k) > 1 implying �

C
k > �

B
k :

The last result does not agree with �Ck < �
B
k in (iii-SV), the result obtained in

the duopoly framework and indicates a possibility that the inequality reversal
may take place in the n-�rm framework. In what follows, we will inquire into
the parametric con�gurations that generates G(1=n) > 1 and �k < ��kc(
; n):
Since the G(1=n) = 1 locus is distorted U -shaped as illustrated in Figure 5

below, it depends on a value of n whether G(1=n) is greater or less than unity,

G

�
1

n

�
< 1 for 
 2 (
0; 0) when n = 8

and

G

�
1

n

�
> 1 for 
 2 (
1; 
2) when n = 9

where 
0 = 1=(1 � n); 
i 2 (
0; 0) for i = 1; 2 are the solutions of equation
G(1=n) = 1: Hence there is a threshold value ~n 2 (8; 9) such that G(1=~n) = 1
has a unique solution for ~
 2 (~
0; 0) with ~
0 = 1=(1 � ~n). It is numerically
obtained that ~
 ' �0:133 and ~n ' 8:16: For n � ~n; we have G(1=n) � 1 which
implies that G(�k) � 1 for �k � 1=n: It then follows that �Ck � �Bk for n � ~n:
10Needless to say, ��ks(
; n) in (36) is also the solution. However, it is negative for (
; n)

such as 1 + (n� 1)
 > 0: Therefore we eliminate ��ks(
; n) from further considerations.
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Before proceeding further, we return to the de�nitions of ��kc(
; n) in (37)
and ~n to obtain

G(��kc(
; n)) = G

�
1

~n

�
implying ��kc(~
; ~n) =

1

~n
:

We denote this threshold value of �k by �̂ = ��kc(~
; ~n) or �̂ = 1=~n: Simple
calculation shows that �̂ ' 0:123: In Figure 4 below, the graphs of ��kc(
; n)
with changing values of n are depicted against 
: The left most graph is for
n = ~n(' 8:16) and the next graph is for n = 9: As the value of n increases from
9 with two increments, the graph moves rightward accordingly. The right most
graph is for n = 33: Given n, ��kc(
; n) takes a concave-convex curve and

max

0<
<0

��kc(
; n) � lim

!0

��kc(
; n)

where the equality holds only for n = ~n. The maximum value of ��kc(
; n) is
attained at the vertex of the concave part and decreases with increasing number
of n. In other words, �̂ is the upper bound of ��kc(
; n) for n > ~n and 0 > 
 > ~
0:
Given �k < 1; let nk = 1=�k: If n < nk, then �

m
k (= 1=n) > �k: This

inequality violates the assumption that the net quality �k is greater than or
equal to its lower bound, �mk : Thus the case of n < nk is not considered as
further discuttions. After the above special cases, we may now turn to the case
with n � nk and n > ~n; from which the following two sub-cases are identi�ed:

nk � ~n < n and ~n < nk � n:

We examine the �rst case of nk � ~n < n: The latter condition ~n < n implies
that the equation G(1=n) = 1 has two distinct solutions 
1 and 
2 such that
G(1=n) > 1 for 
 2 (
1; 
2): Since G0(�k) < 0, there exists a ��kc(
; n) > 1=n

for 
 2 (
1; 
2) such that G(��kc(
; n)) = 1: As is explained, �̂ = ��kc(~
; ~n) is
greater than ��kc(
; n): The alternative expression of the former condition nk � ~n
is �̂ � �k: In consequence, we have ��kc(
; n) < �k implying that G(�k) < 1:
Therefore our �rst result on the pro�t di¤erence is that

�Ck < �
B
k if nk � ~n < n: (38)

In the second case of ~n < nk � n; we can show that �Ck > �Bk is also possible.
The former condition ~n < nk implies �k < �̂ = ��kc(~
; ~n): The maximum value
of ��kc(
; n) with respect to 
 decreases when the number of n increases. In
consequence, we can �nd the threshold value n̂ such that

max

0<
<0

��kc(
; n̂) = �k and max

0<
<0

��kc(
; n) > �k for n < n̂: (39)

For n > n̂; ��kc(
; n) < �k implying that G(��kc(
; n)) = 1 > G(�k): Hence our
second result on the pro�t di¤erence is

�Ck < �
B
k if ~n < nk � n̂ < n: (40)

On the other hand (39) implies that for n < n̂; there are two distinct values

ak and 


b
k such that ��(


a
k; n) =

��(
bk; n) = �k. Hence we have ��kc(
; n) >
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�k for 
 2 (
ak; 
bk) and n < n̂: As it turned out, this inequality means that
G(��kc(
; n)) = 1 < G(�k): Hence our third result on the pro�t di¤erence is

�Ck > �
B
k if ~n < nk < n < n̂: (41)

Lastly, if n = n̂; then 
ak = 

b
k and G(��kc(


i
k; n̂)) = G(�k) for i = a; b implying

that �Ck = �
B
k :

Figure 4. Various ~�(
; n) curves aginst 
;
given n

As an illustration, we specify a value of �k and construct a parametric con-
�guration in which �Ck < �

B
k : Figure 5 is an enlargement of the second quadrant

of Figure 1 in which we take �k = 0:1 (i.e., nk = 10 > ~n ' 8:16)11 and divide
the feasible region DB with the following three steps:

Step I. The white region is a union of the region with 1 + (n � 1)
 < 0 and
the region with n < nk: It is eliminated from further considerations as the
optimal Bertrand solution does not ful�ll the second-order condition and
/or �k is less than its lower bound for 
 and n in this region.

Step II. The neutral stability locus �Bn = �1 divides the remaining DB region
into two parts: the unstable (dark-gray) region and the stable (light-gray)
region. The G(1=n) = 1 locus further divides the unstable region into two
parts: one with G(1=n) < 1 and the other with G(1=n) > 1; the least
dark-gray region illustrated inside the unstable darker-gray region. In the
stable region and the region with G(1=n) < 1; we have �Ck < �

B
k .

Step III. The equal-pro�t locus of ��kc(
; n) = �k or �
C
k = �Bk de�ned for

n � nk divides the lightes-gray region into two parts: one with �k >

11 It is numerically checked that

max


��kc(
; 31) > 0:1 and max


��kc(
; 33) < 0:1

from which n̂ 2 (31; 33) follows:
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��kc(
; n) and the other with �k < ��kc(
; n): It crosses the n = nk locus at
points (
1k; nk) and (


2
k; nk).

12 In the horizontally-striped region, we have
G(�k) > 1 and �k < ��kc(
; n) so that the Cournot pro�t is larger than
the Bertrand pro�t while the Bertrand pro�t is larger in the non-striped
gray region.

It is worthwhile to point out two issues. The �rst issue is that a higher-
quali�ed �rm k possibly earns more pro�ts under Cournot competition if its
net quality di¤erence is large to the extent that �k is less than the maximum
value of ��k(
; n); with given n. In the case when the goods are complements,
the dominance of Cournot pro�t over Bertrand pro�t is not observed in Singh
and Vives (1984) and Häckner (2000). The second issue is that the Bertrand
price is locally unstable when �Ck > �

B
k since the horizontally-striped region is

located within the unstable region.

Figure 5. Division of the feasible region
DB when �k < 1

Next we turn our attention to the price di¤erence. We have already seen
that the Cournot price as well as the Bertrand price is positive when 
 < 0 and
that the neutral stability curve �Bn = �1 intercepts the locus of 1+(n�1)
 = 0
at point (�1=2; 3) so it divides the feasible region DB into the unstable region
RBu and the stable region RBs as shown in the second quadrant of Figure 1.
In addition to this, with given �k; the equal-price locus of z

P (
; n) = �k also
divides DB into two parts:

RB+ = f(
; n) 2 DB j zP (
; n) > �kg
12Solving G(1=nk) = 1 yields two distinct solutions 
1k and 


2
k for which

G(��(
1k; nk)) = G(
��(
2k; nk)) = 1:

Since �k = 1=nk; we have
��(
1k; nk) =

��(
2k; nk) = �k;

For nk = 10; 
1k ' �0:11 and 
2k ' �0:098:
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and
RB� = f(
; n) 2 DB j zP (
; n) � �kg:

The location of the zP (
; n) = �k locus is sensitive to the value of �k. Various
combinations of 
 and n determining the price di¤erence and possible dynamic
behavior can be conveniently classi�ed according to the di¤erent values of pa-
rameter �k. We start with a case in which �rm k is higher-quali�ed. The case
of lower-quali�ed �rm k will be discussed later.

Case 1. 0 < �k � 1:

In this case, RB� is empty because z
P (
; n) > 1 for (
; n) 2 DB : Consequently

pCk > p
B
k always in D

B � RB+. In Figure 5 with �k = 0:1; the equal-price curve
zP (
; n) = �k is located in the white region that does not belong to D

B : As
shown in the second quadrant of Figure 1, pCk is always stable while the stability
of pBk is indeterminate: it is stable in R

B
s and unstable in R

B
u .

Case 2. 1 < �k � 8
3 :

The equal-price locus shifts downward as �k increases. For �k > 1, it crosses
the locus of 1 + (n� 1)
 = 0 at the point (
1; n1) with


1 =
1�

q
1� �k + �2k
�k

and n1 = 1�
1


1
:

The equal-price locus divides the unstable region RBu into two parts. In Figure 6
where �k = 2;

13 RBu \RB� is located above the equal-price locus and vertically-
striped, RBs \ RB+ is the lighter-gray region above the neutral stability locus
while RBu \ RB+ is between these two loci . The intersection moves downwards
along the locus of 1+(n� 1)
 = 0 as �k increases from unity and arrives at the
point (�1=2; 3) when �k = 8=3: Hence we have the following results concerning
the price di¤erence and the stability of the Bertrand price:

(2-i) pCk < p
B
k and p

B
k is unstable for (
; n) 2 RBu \RB�;

(2-ii) pCk > p
B
k and p

B
k is unstable for (
; n) 2 RBu \RB+;

(2-iii) pCk > p
B
k and p

B
k is stable for (
; n) 2 RBs \RB+:

13We take n = 8 and restrict the interval of 
 to (�0:5;�0:1) only for the sake of graphical
convenience. Changing the values of n and enlarging the interval do not a¤ect the qualitative
aspects of the results.
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Figure 6, Division of DB when
1 < �k <

8
3

Case 3. 8
3 < �k � 4:

When �k increases further from 8=3; then the equal-price locus intercepts
the neutral stability locus of �Bn = �1 from below at point (
2; n2) with


2 =
2(�k � 4)
5�k � 8

and n2 =
5

3
� 2

3
2
:

As shown in Figure 7 where �k = 3; the equal-price locus divides the unstable
region RBu into the vertically-striped gray region above the locus and the darker-
gray region below. It also divides the stable region RBs into two parts: the
hatched region above the locus and the light-gray region below. Since it is not
easy to see that the hatched region is bounded by the neutral stability locus and
the equal-price locus, the lower-left part of Figure 7 is enlarged and is inserted
into Figure 7. We have the following four possibilities concerning the price
di¤erence and the stability of the Bertrand price in this case:

(3-i) pCk < p
B
k and p

B
k is unstable for (
; n) 2 RBu \RB�;

(3-ii) pCk > p
B
k and p

B
k is unstable for (
; n) 2 RBu \RB+;

(3-iii) pCk < p
B
k and p

B
k is stable for (
; n) 2 RBs \RB�;

(3-iv) pCk > p
B
k and p

B
k is stable for (
; n) 2 RBs \RB+:

Notice that the value of 
2 becomes negative for �k � 4: The intersection moves
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upward along the neutral stability locus as �k increases further up to 4:

Figure 7. Division of DB when
8
3 < �k < 4

Case 4. �k > 4:

When �k becomes larger than 4; the equal-price locus is located below the
�Bn = �1 locus. It then divides the stable region RBs into two parts, RBs \ RB�
and RBs \ RB+: The former corresponds to the hatched region and the latter
to the light-gray region in Figure 8 in which �k = 5. The hatched region that
appeared �rst in Figure 7 becomes larger with increasing value of �k. The whole
region RBu is vertically striped, which means that the Bertrand price is larger
than the Cournot price and is unstable. We have therefore the following results
concerning the price di¤erences and the stability of the Bertrand price in this
case:

(4-i) pCk < p
B
k and p

B
k is unstable for (
; n) 2 RBu ;

(4-ii) pCk < p
B
k and p

B
k is stable for (
; n) 2 RBs \RB�;

(4-iii) pCk > p
B
k and p

B
k is stable for (
; n) 2 RBs \RB+:
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Figure 8. Division of DB when �k > 4

We are now in a position to present our results on the price di¤erences with

 < 0. Proposition 1(ii) of Häckner (2000) deals with the case where the goods
are complements and shows that lower-quali�ed �rms charge higher prices under
Bertrand competition than under Cournot competition when quality di¤erences
are large. The same result is obtained in our analysis (see (3-i), (3-iii), (4-i) and
(4-ii)) when �k > 8=3. However, (2-i) implies that large quality di¤erences are
not necessary to obtain pCk < p

B
k . It is shown there that even if the deviation

of �k from unity is small enough, pCk < pBk is still possible when the number
of �rms are relatively large. Furthermore, two new results are obtained in our
analysis: it is shown �rst that the region of (
; n) with pCk < p

B
k becomes larger

as �k increases and second that p
B
k can become unstable.

We summarize the comparison between the Cournot strategy and the Bertrand
strategy when the goods are complements in the following theorem:

Theorem 5 (i) When �rm k is higher-quali�ed, then pCk > pBk and qCk < qBk
always whereas �Ck > �Bk if ~n < nk < n < n̂ and �Ck � �Bk otherwise. In
addition, the Bertrand price is locally unstable when �Ck > �

B
k : (ii) When �rm

k is lower-quali�ed, then qCk < qBk and �Ck < �Bk always whereas pCk < pBk is
possible.

Theorems 3, 4 and 5 are summarized in Table 1. When a �rm is higher-
quali�ed, the quantity and price comparisons given in the �rst two rows sup-
port the conventional wisdom that the Bertrand competition is more competi-
tive than the Cournot competition in the sense that the Bertrand �rm charges
a lower price and produces a higher output. Pro�tability between these com-
petitions are ambiguous. It is not the case when the �rm is lower-quali�ed.
The results with "Q" are obtained in the n-�rm framework. Two of them,
however, have already been exhibited by Häckner (2000): when the goods are
complements lower-qualifed �rms charge higher prices under Bertrand competi-
tion than under Cournot competition (i.e., pCk < p

B
k when 
 < 0 and �k > 1) in

his Proposition 1(ii) and when the goods are substitutes, higher-quali�ed �rms
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earn higher pro�ts under Bertrand competition than under Cournot competition
(i.e., �Ck < �

B
k when 
 > 0 and �k < 1) in his Proposition 2(ii). In this study, we

�rst con�rm these results and then classify the parameter region into speci�ed
subregions in which these results hold as seen in Figures 2-8 except Figure 4.
In addition, we demonstrate two new results: when the goods are complements,
then higher-quali�ed �rms earn higher pro�ts under Cournot competition (i.e.,
�Ck > �Bk when 
 < 0 and �k < 1) and when the goods are substitutes, then
lower-quali�ed �rms may produce more output under Cournot competition (i.e.,
qCk > q

B
k ).

Substitutes (
 > 0) Complements (
 < 0)

Higher-quali�ed
(�k < 1)

pCk > p
B
k

qCk < q
B
k

�Ck Q �Bk

pCk > p
B
k

qCk < q
B
k

�Ck Q �Bk

Lower-quali�ed
(�k > 1)

pCk > p
B
k

qCk Q qBk

�Ck > �
B
k

pCk Q pBk

qCk < q
B
k

�Ck < �
B
k

Table 1. Comparison of Cournot and Bertrand strategies

4 Concluding Remarks

Singh and Vives (1984) have shown that the duopoly model with linear demand
and cost functions have de�nitive results concerning the nature of Cournot and
Bertrand competition as it was mentioned in the Introduction. Häckner (2000)
increases the number of �rms to n from 2 and exhibits that some of these results
are sensitive to the duopoly assumption. In this study, we examine the general
n-�rm oligopoly model and add two main �ndings to the existing literature on
Cournot and Bertrand competitions. The �rst �nding is concerned with the
stability of Cournot and Bertrand equilibria. As stated in Theorems 1 and 2,
Cournot equilibrium may be unstable whereas Bertrand equilibrium is always
stable when the goods are substitutes. It is further shown that Bertrand equi-
librium may be unstable whereas Cournot equilibrium is always stable when the
goods are complements. This �nding extends the stability result of Theocharis
(1960) that a Cournot oligopoly model is unstable if more than three �rms are
involved and the goods are homogenous (i.e., perfectly substitutes).
The second �nding is concerned with the comparison of Cournot and Bertrand

strategies. In addition to the inequality reversal of the price and quantity dif-
ferences, the pro�t di¤erences shown in the duopoly framework may be re-
versed in the n-�rm framework. Furthermore, as shown in Figures 2 and 5,
the horizontally-striped regions are located inside the instability regions. This
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means that, for example, �Ck < �
B
k is possible when 
 > 0 and �k < 1; however,

�Ck is locally unstable. The result of �Ck < �Bk does not have much economic
implication from the dynamic point of view. Therefore the natural question
to be next raised should be concerned with the global dynamic properties of
the locally unstable model. Matsumoto and Szidarovszky (2010) have already
started their research in this direction.
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