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Abstract

This study analyses the dynamics of nonlinear monopoly. To this end,
the conventional assumptions in the text-book monopoly are modi�ed;
�rst, the complete information on the market is replaced with the partial
information; second, the instantaneous information is substituted by the
delay information. As a result, since such a monopoly is unable to jump,
with one shot, to the optimal point for which the pro�t is maximized,
the monopoly has to search for it. In a continuous-time framework, the
delay destabilizes the otherwise stable monopoly model and generates
cyclic oscillations via a Hopf bifurcation. In a discrete-time framework,
the steady state bifurcates to a bounded oscillation via a Neimark-Sacker
bifurcation. Although this has been only an introduction of delay into the
traditional monopoly model, it is clear that the delay can be a source of
essentially di¤erent behavior from those of the nondelay model.
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1 Introduction

Implicit in the text-book monopoly is an assumption of complete and instanta-
neous information or knowledge available to economic agents at free of charge.
Under such circumstances, knowing the certain price and cost functions, the
monopolist can make an optimal decision of price and output to maximize its
pro�t and realize it. As a result, the text-book monopoly model becomes static
in nature. There are, however, many empirical works to indicate that such an
assumption of rational economic agents goes too far. In reality the monopolist
is boundedly rational and adjusts its price and output as a function of its lim-
ited knowledge and past experiences. To �ll this gap, we propose, in this study,
to relax this assumption and develop a dynamic monopoly model. In particu-
lar, we assume �rst that the monopolist has only partial information about the
market condition and second that the monopolist obtains it with time delay. In
natural consequence of these alternations, the monopolist cannot jump to the
optimal point but searches for it with using the actual data obtained through
the market. The modi�ed model becomes dynamic in nature. This is the issue
far outside the scope of the text book monopoly and it is what we will consider
in this study.
In the recent literature, various learning processes of the boundedly rational

monopolist have been extensively studied. Puu (1995) constructs a discrete-time
monopoly model in which price function is cubic and cost function is linear. It
is shown that the gradient learning or search process based on locally obtained
information might behave in an erratic way under the condition that the price
function has an in�ection point. Assuming that the monopolist uses a rule
of thumb to determine quantity to produce, Naimzada and Ricchiute (2008)
reconsider Puu�s model with a linear cost function and a cubic price function
without the in�ection point. Their model is then generalized by Askar (2013)
who replaces the cubic function with higher-order polynomials. Matsumoto and
Szidarovszky (2013) further generalize Asker�s model by introducing the more
general type of the cost function. Since those models are described by one
dimensional di¤erence equation, chaotic dynamics can arise via period-doubling
bifurcation.
In this study we reconsider a dynamic monopoly model from two di¤erent

points of view. First, to detect the e¤ect caused by non-instantaneous informa-
tion, the dynamic process is constructed in continuous-time scales and a �xed
time delay is introduced. Second, we discretize the continuous process to obtain
a "delay" discrete process and analyse the delay e¤ect on discrete dynamics. In
both models, local stability of a stationary state is analytically considered and
global dynamics is numerically examined.
The paper is organized as follows. In Section 2, the delay di¤erential model

is presented and stability switch is considered. In Section 3, the delay di¤erence
model is constructed to give rise to the emergence of Neimark-Sacker bifurcation.
And �nally, Section 4 concludes the paper.
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2 Delay Di¤erential Dynamics

Consider a single product monopoly that sells its product to a homogeneous
market. Let q denote the output of the �rm, p(q) = a � bq the price function
and C(q) = cq the cost function.1 Since p(0) = a and j@p(q)=@qj = b; we call a
the maximum price and b the marginal price. There are many ways to introduce
uncertainty into this framework by considering a; b or c uncertain. In this study,
it is assumed that the �rm knows the marginal price and the marginal cost but
does not know the maximum price. In consequence it has only an estimate ae(t)
of it at each time period. So the �rm believes that its pro�t is

�e = (ae � bq)q � cq;

its best response is

qe =
ae � c
2b

and the �rm expects the market price to be

pe = ae � bqe = ae + c

2
: (1)

However, the actual market price is determined by the real price function

pa = a� bqe = 2a� ae + c
2

: (2)

Using these price data, the �rm updates its estimate. The simplest way for
adjusting the estimate is the following. If the actual price is higher than the
expected price, then the �rm shifts its believed price function by increasing the
value of ae; and if the actual price is the smaller, then the �rm decreases the
value of ae: If the two prices are the same, then the �rm wants to keep its
correct estimate of the maximum price. This adjustment or learning process
can be modeled by the following di¤erential equation:

_ae(t) = �(ae(t)) [pa(t)� pe(t)] ;

where �(ae) > 0 is the speed of adjustment. Substituting relations (1) and (2)
gives the adjustment equation as a di¤erential equation with respect to ae:

_ae(t) = �(ae) [a� ae(t)] : (3)

For analytical simplicity, we assume that

�(ae) = kae; k > 0;

1Linear functions are assumed only for the sake of simplicity. We can obtain a similar
learning process to be de�ned even if both functions are nonlinear. It is also assumed for
the sake of simplicity that the �rm has perfect knowledge of production technology (i.e., cost
function).
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so equation (3) is reduced to the logistic equation,

_ae(t) = kae(t) [a� ae(t)] (4)

which is a nonlinear di¤erential equation. Notice that equation (4) has two
steady states, ae = 0 and ae = a: Small perturbation from ae = 0 satis�es
the linear equation _ae(t) = akae(t); which shows that ae = 0 is unstable with
exponential growth. We thus only need to consider the stability of the positive
steady state ae = a: The steady state corresponds to the true value of the
maximum price.
If there is a time delay � in the estimated price, then equation (4) has to be

modi�ed as
_ae(t) = kae(t) [a� ae(t� �)] : (5)

By introducing the new variable z(t) = ae(t) � a; the linearized version of
equation (5) becomes

_z(t) + �z(t� �) = 0 (6)

where � = ak. As a benchmark for stability analysis, we start with the no-
delay case. If there is no delay, � = 0, then equation (6) becomes an ordinary
di¤erential equation with characteristic polynomial �+�: So the only eigenvalue
is negative implying the local asymptotic stability. If � > 0; then the exponential
form z(t) = e�tu of the solution reduces the characteristic equation to the
following form:

�+ �e��� = 0: (7)

This is a transcendental equation. Notice that the only eigenvalue is negative
when � = 0. Notice also that � = 0 is not a solution of equation (7). For
su¢ ciently small deviation of � from zero, the real parts of the eigenvalues
are still negative by continuity. We seek conditions of � such that the real
parts change from negative to positive. Since stability is changed to instability
under this condition, it is often called stability switch. At this critical value of
� ; the characteristic equation must have a pair of purely imaginary eigenvalues,
� = i�: If � is an eigenvalue, then its complex conjugate is also an eigenvalue.
So, without loss of generality, we can assume that � > 0: So equation (7) can
be written as

i� + �e�i�� = 0:

Separating the real and imaginary parts, we obtain

� cos �� = 0

and
� � � sin �� = 0:

Therefore
cos �� = 0 and sin �� =

�

�
implying that � = � leading to in�nitely many solutions,

� =
1

�

��
2
+ 2n�

�
for n = 0; 1; 2; ::: (8)
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The solution � with n = 0 forms a downward-sloping curve with respect to �,

�� =
�

2�
with � = ak:

Applying the main theorem in Hayes (1950) or the same result obtained dif-
ferently in Szidarovszky and Matsumoto (2012), we can �nd that this curve
divides the non-negative (�; �) plane into two subregions; the real parts of the
roots of the characteristic equation are all negative in the region below the curve
and for some roots are positive in the region above. This curve is often called
the partition curve separating the stability region from the instability region.
Notice that the critical value of � decreases with �; so a larger value of � caused
by the high speed of adjustment and/or the larger maximum price makes the
steady state less stable.
We can easily prove that all pure complex roots of equation (7) are single.

If � is a multiple eigenvalue, then it must solve equations

�+ �e��� = 0

and
1 + �e��� (��) = 0:

Based on the �rst equation, the second equation becomes

1 + �� = 0

or
� = �1

�
implying that � becomes a real negative value which contradicts the assumption
that it is purely imaginary.
In order to detect stability switches and the emergence of Hopf bifurcation,

we select � as the bifurcation parameter and consider � as function of � ; � =
�(�). By implicitly di¤erentiating equation (7) with respect to � , we have

d�

d�
+ �e���

�
�d�
d�
� � �

�
= 0

implying that
d�

d�
= � �2

1 + ��
:

With � = i�;

Re

�
d�

d�

�
= Re

�
�2

1 + i��

�

=
�2

1 + (��)2
> 0:

So the sign of the real part of an eigenvalue changes from negative to positive
and it is a Hopf bifurcation point of the nonlinear learning process (5) with one
delay. Thus we have the following result.
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Theorem 1 For the logistic adjustment process (5), the steady state is locally
asymptotically stable if � < �� and locally unstable if � < � s: : Hopf bifurcation
occurs if � = �� and a stable limit cycle exist for � > �� where

�� =
�

2�
and � = ak:

The delay logitstic adjustment process can have periodic solutions for a large
range of value of �; the product of the maximum price a and the adjustment
coe¢ cient k. The period of the solution at the critical delay value is �0 =
2�=�; which is 4�0:
An intuitive reason why stability switch occurs only at the critical value of

� with n = 0 is the following. Notice �rst that the delay di¤erential equation
has in�nitely many eigenvalues and second that their real parts are all negative
for � < ��. When increasing � arrives at the partition curve, then the real
part of one eigenvalue becomes zero and its derivative with respect to � is
positive implying that the real part changes its sign to positive from negative.
Hence the steady state loses stability at this critical value. Further increasing �
crosses the (�; �) curve de�ned by equation (8) with n = 1 where the real part
of another eigenvalue changes its sign to positive from negative. Repeating the
same arguments, we see that at each intersection one more eigenvalue changes its
real part from negative to positive, so stability cannot be regained and therefore
no stability switch occurs for any n � 1. Hence stability is changed only when
� crosses the partition curve.
Theorem 1 is numerically con�rmed. Given a = 2; a bifurcation diagram

with respect to � is depicted in Figure 1(A). It is seen that the steady state
loses stability at � = �� and bifurcates to a cyclic oscillation for � > ��. In
addition, given � = �a; Figure 1(A) indicates the maximum and the minimum
values of the trajectory are denoted by yM and ym: Figure 1(B) illustrates a
limit cycle having the same extremum in the phase plane.

(A) Bifurcation Diagram (B) Limit cycle with � = �a

Figure 1. Cyclic oscillations for � > ��
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We can discuss another delay adjustment process that is a hybrid of equation
(4) and equation (5),

_ae(t) = kae(t) [a� (!ae(t) + (1� !)ae(t� �))] (9)

where ! is a positive constant less than unity. It can be seen that equation (9) is
reduced to equation (4) when ! goes to unity and to equation (5) when ! goes
to zero. The steady state of equation (9) is equal to the maximum price and
thus the same as the one of equation (4) as well as equation (5). The linearized
equtaion becomes

_z(t) + �!z(t) + �(1� !)z(t� �) = 0

and its characteristic equation is

�+ �! + �(1� !)e��� = 0:

Using the similar arguments, we can obtain the results including that the delay
becomes harmless if the instanteneous term ae(t) is dominant in equation (9):

Theorem 2 (i) If ! � 1=2; then the steady state of the hybrid logistic ad-
justment process (9) is locally asymptotically stable for all delay � � 0; (ii) if
! < 1=2; then the steady state is locally asymptotically stable if � < ��, loses
stability for � = �� and bifurcates to a limit cycle via a Hopf bifurcation if
� > �� where

�� =
1

ak
p
1� 2!

sin�1
�p

1� 2!
1� !

�
:

3 Delay Discrete Dynamics

Our concern in this section is on how the di¤erent choice of the time scale a¤ects
dynamics examined in the previous section. Toward this end, we discretize the
delay di¤erential equation (4) by replacing _ae(t) with ae(t+1)�ae(t) to obtain

ae(t+ 1) = ae(t) + kae(t)(a� ae(t� �)) (10)

and then reconsider local and global dynamics in discrete time. The positive
steady state of equation (5) remains as a steady state of this di¤erece equation.
We mention that this discrete-time equation has a � -step delay when � � 1.2

The remaining of this section starts with the case of � = 0 and then, proceed
the cases of � � 1 in detail to concentrate on delay e¤ects in the discrete-time
framework.
If � = 0; then equation (10) becomes a nonlinear �rst-order di¤erence equa-

tion
x(t+ 1) = x(t) + kx(t)(a� x(t)) (11)

2A sailent feature of a discrete-time equation is that the equation involves at least one
di¤erence or time-delay of the dependent variable. So we refere to the � -step delay when � is
greater than unity.
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where we introduce the new variable x = ae: Changing the variable again by

z =
x

1+ak
k

reveals that equation (11) can be reduced to the familiar form,

z(t+ 1) = (1 + ak)z(t)(1� z(t)):

It is now well known that the logistic equation can generate wide variety of
dynamics ranging from a periodic cycle to chaos according to the speci�cation
of the coe¢ cient 1 + ak if the steady state is locally unstable.
If � = 1; then equation (10) has one-step delay and then becomes a nonlinear

second-order di¤erence equation

x(t+ 1) = x(t) + kx(t)(a� x(t� 1)) (12)

which can be converted to an equivalent 2D system of �rst-order di¤erence
equations,

y(t+ 1) = x(t);

x(t+ 1) = (1 + ak)x(t)� kx(t)y(t):
(13)

The linearized system around the steady state �x = �y = a is�
x�(t+ 1)
y�(t+ 1)

�
=

�
1 �ak
1 0

��
x�(t)
y�(t)

�
where the subscript � implies that the variable with this subscript is the dif-
ference between its value and the steady state. The characteristic equation is
transformed into a quadratic equation,

�2 � �+ ak = 0: (14)

The following three conditions imply that the quadratic polynomial �2 + a1�+
a2 has roots inside the unit cycle,

1 + a1 + a2 > 0;

1� a1 + a2 > 0;

1� a2 > 0

(15)

where
a1 = �1 and a2 = ak.

The �rst and second conditions of (15) are always satis�ed and so is the third
condition if and only if

ak < 1:

8



Taking a = 2 and selecting k as the bifurcation parameter, we illustrate the
bifurcation diagram in Figure 2(A) in which stability of the steady state is
changed to instability at ks = 1=a (= 0:5) and cyclic behavior emerges for
k > ks: When k arrives at k ' 0:635; the non-negativity condition is violated
resulting in the birth of economically uninteresting behavior.
We further extend our analysis to a two-step delay (i.e., � = 2) where the

marginal revenue includes the delayed information obtained at period t�2: The
dynamic equation (10) is now a third-order di¤erence equation,

x(t+ 1) = x(t) + kx(t)(a� x(t� 2)): (16)

This can be written as a 3D system of �rst-order di¤erence equations

y(t+ 1) = x(t)

z(t+ 1) = y(t)

x(t+ 1) = (1 + ak)x(t)� kx(t)z(t);

(17)

where the steady state is (�x; �y; �z) with �x = �y = �z = a: Linear approximation of
equations (17) yields the linearized system having the form0@ x�(t+ 1)

y�(t+ 1)
z�(t+ 1)

1A =

0@ 1 0 �ak
1 0 0
0 1 0

1A0@ x�(t)
y�(t)
z�(t)

1A (18)

and the corresponding characteristic equation is cubic,

�3 � �2 + ak = 0: (19)

The steady state is locally asymptotically stable if all eigenvalues of equation
(19) are less than unity in absolute value. Farebrother (1973) has proved that
the most simpli�ed form of the su¢ cient and necessary conditions for the cubic
equation �3 + a1�

2 + a2�+ a3 to have roots only inside the unit cycle are

1 + a1 + a2 + a3 > 0;

1� a1 + a2 � a3 > 0;

1� a2 + a1a3 � a23 > 0;

a2 < 3

(20)

where
a1 = �1; a2 = 0 and a3 = ak:

It can be veri�ed that the �rst and fourth conditions are always satis�ed while
the second and third condition holds if

ak <

p
5� 1
2

' 0:618:
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The bifurcation diagram with a = 1 is illustrated in Figure 2(B) where ks '
0:618. It can be seen that Hopf bifurcation emerges for k > ks:
If � = 3; then the characteristic equation is �4��3+� = 0 with � = ak: For

the quartic equation

�4 + a1�
3 + a2�

2 + a3�+ a4 = 0

the su¢ cient and necessary condition that all roots are inside the unit circle are
(see Farebrother, 1973) as follows:

1� a4 > 0

3 + 3a4 > a2

1 + a1 + a2 + a3 + a4 > 0

1� a1 + a2 � a3 + a4 > 0

(1� a4)(1� (a4)2)� a2(1� a4)2 + (a1 � a3)(a3 � a1a4) > 0

To our case, a1 = �1; a2 = a3 = 0 and a4 = �. The �rst four conditions are
clearly satis�ed if � < 1 and the last condition can be reduced to the following:

f(�) = �3 � �2 � 2�+ 1 > 0:

Clearly

f(�1) = 1; f(0) = 1; f(1) = �1; f(�1) = �1 and f(1) =1:

Since f 0(�) = 3�2 � 2�� 2 having two roots

�1 =
1�

p
7

3
' �0:548 and �2 =

1 +
p
7

3
' 1:215;

f(�) increases in intervals (�1; �1) and (�2;1); and decreases in (�1; �2).
Notice that f(�1) > 0 and f(�2) < 0; so f(�) has three real roots: one is
negative, two positive in intervals (0; 1) and (�2;1). Since � < 1 and the
smallest positive root is approximately 0:445;3 the stability condition is k <
0:445: It is numerically con�rmed that the steady state is violated via Neimark-
Sacker bifurcation for k > 0:445: Although the critical values ks seem to decrease
as the value of � increases,

ks = 1 if � = 1; ks ' 0:618 if � = 2 and ks ' 0:445 if � = 3;
3With Mathematica, it can be found that the critical value has the following form,

ks =
1

3
� 72=3(1 + i

p
3)

3� 22=3(�1 + i3
p
3)1=3

�
(1 + i

p
3)
�
7
2
(�1 + i3

p
3)
�1=3

6
' 0:445
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this fact has not been analytically con�rmed yet.
Applying the same argument to the case of the general case, we have the

adjustment process described by a (� + 1) th-order di¤erence equation,

x(t+ 1) = x(t) + kx(t)(a� x(t� �))

and a (� + 1) th-order characteristic equation,

��+1 � �� + ak = 0:

For a larger value of � � 4; we do not have the simplifed stability condition but
the Samuelson or the Cohn-Schur conditions for the n-th order equation can
be applied to determine the critical value of k for the birth of Neimark-Sacker
bifurcation.4 We summarize the main result on the delay di¤erence adjustment
process:

Theorem 3 Given the maximum price, the discrete-time adjustment process
(10) has the critical value of the adjustment coe¢ cient ks and the steady state
is locally asymptotically stable if k < ks, loses stability for k = ks and bifurcates
to a limit cycle via Neimark-Sacker bifurcation if k > ks.

(A) � = 1 and a = 2 (B) � = 2 and a = 1

Figure 2. Bifurcation diagrams with di¤erent steps

4 Concluding Remarks

In this study, we analyzed the delay dynamics of a nonlinear monopoly. Two
conventional assumptions in the traditional monopoly model are modi�ed: the

4The forms of both conditions are found in Gandolfo (2009). In either from, the stability
condition becomes complicated as the order of the equation increases.
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information obtained from the market are assumed to be limited and delayed.
As a natural consequence, the monopoly is unable to jump, with one shot, to
the optimal point but revises its decision by taking transaction data experiences
obtained from the market into account. In either the continuous-time frame-
work or the discrite-time framwork, the steady state is locally asymptotically
stable for the smaller values of delay and bifurcates to a limit cycle via a Hopf
bifurcation in the continuous-time framework and via a Neimark-Sacker bifur-
cation in the discrete-time framework for the larger values. Delay monopoly
generates very di¤erent dynamics of the those of the text-book monopoly.
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