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Abstract

An N -firm oligopoly is considered where the firms are familiar with

the technology of all competitors, so the cost functions are public in-

formation. However they do not have full knowledge of the linear price

function, which is determined by two parameters; the maximum price

and the market saturation point. It is assumed that they have full

information on only one of these parameters and try to estimate and

learn the value of the other. At each time period based on its current

estimate of the price function each firm is able to compute its believed
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equilibrium and the corresponding believed equilibrium price. Each

firm then sends its own believed equilibrium output amount to the

market, which is then produces an actual market price. The compari-

son of the actual market price and the believed equilibrium price is the

basis of an adaptive adjustment process of the uncertain parameter.

Two alternative learning schemes are introduced which are asymp-

totically stable if instantaneous market price information is available.

That is, as time goes to infinity, the estimates of the price functions

converge to the true function. The effect of information delay in the

observed market prices is examined in both learning schemes. It is

shown that asymptotical stability is preserved if the delay is below a

certain threshold, and unstable otherwise. The stability region shrinks

if either the number of firms increases or the firms select larger speeds

of adjustments. It is also shown that at the stability switch Hopf

bifurcation occurs giving the possibility of the birth of limit cycles.

1 Introduction

Dynamic systems theory is one of the most important research fields in quan-
titative sciences including engineering and mathematical economics. There
is a large number of issues being examined in the literature. The asymptotic
behavior of the state trajectories has been discussed in many textbooks and
monographs. Different stability conditions have been derived and applied
in particular models. For example, Szidarovszky and Bahill (1998) presents
several applications in engineering and also in the social sciences.

In the literature of mathematical economics the different variants of oligopoly
models play a significant role. This research area is based on the pioneering
work of Cournot (1838). The classical Cournot model considers an indus-
try where several firms produce the same item or offer the same service to
a homogeneous market. This economic situation can be modeled as a non-
cooperative game in which the players are the firms and the payoffs are the
profits. A comprehensive summary of the earlier results is given in Okuguchi
(1976) and their multiproduct extensions with several model variants and
applications are presented in Okuguchi and Szidarovszky (1999). More re-
cently an increasing attention has been given to nonlinear models and global
dynamics. Recent developments in nonlinear oligopolies are reported for
example in Bischi et al. (2010). In most dynamic economic models includ-
ing oligopolies complete and instantaneous information is assumed when the
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participants make their decisions. In real economies however there is always
uncertainty in economic quantities and functional relations. For example, it
is not realistic that in dynamic oligopolies the firms know the market de-
mand and price functions. The effect of misspecified price function on the
stability of the equilibrium is examined in Leonard and Nishimura (1999),
Bischi et al. (2004) and Chiarella and Szidarovszky (2001) among others.
However by repeated price informations the firms are able to learn and con-
tinuously update their beliefs of the price function. Fudenberg and Levine
(1998) offer a general theory of learning in games, and special learning pro-
cesses in dynamic oligopolies are discussed in Szidarovszky and Krawczyk
(2004). These models are further extended in Bischi et al. (2010). The
assumption of the availability of instantaneous information on prices and
outputs of the competitors is unrealistic in real economies. The introduc-
tion of delayed information in dynamic oligopolies and in learning processes
makes the dynamic properties of the models much more complicated. In-
formation lags can be examined either as fixed or continuously distributed
delays. In the case of fixed delays the dynamics is described by delay differ-
ential equations, the characteristic equations of which are mixed polynomial
- exponential equations with infinite spectra. For example, Burger (1956),
Cooke and Grossman (1982) and Bellman and Cooke (1956) offer complete
stability analysis in many important cases with single delays. If continuously
distributed delays are assumed, then Volterra-type integro-differential equa-
tions describe the dynamics. Cushing (1977) offers the theory of such models
with applications to population dynamics.

In this paper the learning process discussed in Bischi et al. (2010) will
be revisited with the additional assumption that only delayed price informa-
tion is available to the firms. Fixed delays are assumed, the continuously
distributed counterparts can be investigated in the same way as it is shown
in Chiarella and Szidarovszky (2004).

This paper develops as follows. After the mathematical models and the
learning process are revisited, fixed information delays are introduced into
the price observations of the firms. Then stability conditions will be derived,
and the occurance of Hopf bifurcation is proved. The last section offers
conclusion and future research directions.
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2 The Mathematical Models of Learning

An N -firm oligopoly is considered in which the firms offer the same product
to a homogeneous market. Let p(s) = B − As be the unit price, where B
is the maximum price and A the marginal price, s is the total output of the
industry. If xk is the output of firm k, then s =

∑N
k=1

xk is the total output
of the industry. Let Ck(xk) = ckxk + dk be the cost function of firm k, where
dk is the fixed cost and ck is the marginal cost, then its profit is given as

ϕk = xk(B − As)− (ckxk + dk). (1)

The uncertainty in the price function can be modeled in several ways. In
this paper we consider the following two cases:

1. Each firm knows the marginal price A but has its own estimate of the
maximum price, which is denoted by Bk(t) at time period t;

2. Each firm k knows the market saturation point B/A but has its own
estimate of the slope, Ak(t).

We will now revisit the corresponding learning processes and introduce
fixed delays into the price observations.

1. At each time period t each firm k believes that the profit of any firm
l (including itself) is

ϕl = xl(Bk(t)− As)− (clxl + dl), (2)

so firm k believes that the best response of firm l is

xl =
Bk(t)− As− cl

A
, (3)

and believes that the equilibrium is obtained by adding these equations for
all firms:

s =
1

A
(NBk(t)−NAs−

N
∑

i=1

ci).

Therefore firm k believes that at the equilibrium

s =
NBk(t)−

∑N
i=1

ci
A(N + 1)

(4)
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and the equilibrium price is

pk = Bk(t)− As =
Bk(t) +

∑

i ci
N + 1

. (5)

The corresponding equilibrium output of firm k is believed as

xk =
Bk(t)− ck − As

A
=

Bk(t) +
∑N

i=1
ci − (N + 1)ck

A(N + 1)
. (6)

Each firm thinks in the same way as shown above, so the total output of the
industry becomes

s =
N
∑

k=1

xk =
1

A(N + 1)

(

N
∑

k=1

Bk(t)−
N
∑

k=1

ck

)

(7)

with actual market price

p = B − As = B − 1

N + 1

(

N
∑

k=1

Bk(t)−
N
∑

k=1

ck

)

.

If the price information is delayed, then the firms believe that the actual
price is

p∗ = B − 1

N + 1

(

N
∑

k=1

Bk(t− τ)−
N
∑

k=1

ck

)

, (8)

where τ denotes the fixed delay.
Comparing the believed price pk and the actual price p∗ each firm adjusts

its belief on the maximum price as

Ḃk(t) = Kk (p
∗ − pk) , (9)

where Kk is the speed of adjustments of the firm. This process can be
explained as follows. If the actual price is higher than the believed price, then
the firm wants to increase its estimate of the price function by increasing the
value of Bk(t). If the actual price is smaller, then the firm wants to decrease
its estimate Bk(t), and if the two prices are equal, then the firm wants to keep
its estimate of the maximum price. By introducing the notations ∆k(t) =
Bk(t)−B and αk =

Kk

N+1
equation (9) can be rewritten as

∆̇k(t) + αk∆k(t) + αk

N
∑

i=1

∆i(t− τ) = 0 (1 ≤ k ≤ N), (10)
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which is a system of delayed ordinary differential equations. The only steady
state of this system is ∆k = 0 for all k, that is, Bk = B, the full knowledge
of the price function.

2. In this case firm k believes that each firm l has the profit function

ϕl = xlAk(t)

(

B

A
− s

)

− (clxl + dl) (11)

where only the ratio B
A
is known without knowing the individual values of A

and B. The believed best response of firm l is

xl =
B

A
− s− cl

Ak(t)
, (12)

so the believed industry output is the solution of equation

s =
NB

A
−Ns− 1

Ak(t)

N
∑

l=1

cl

which is

s =
1

N + 1

(

NB

A
− 1

Ak(t)

N
∑

l=1

cl

)

. (13)

So the believed equilibrium price is

pk = Ak(t)

(

B

A
− s

)

=
1

N + 1

(

B

A
Ak(t) +

N
∑

l=1

cl

)

(14)

and firm k produces the amount

xk =
B

A
− s− ck

Ak(t)
=

B

A(N + 1)
− ck

Ak(t)
+

1

Ak(t)(N + 1)

N
∑

l=1

cl. (15)

Then the actual industry output becomes

s =
N
∑

k=1

xk =
NB

A(N + 1)
−

N
∑

k=1

ck
Ak(t)

+

∑N
l=1

cl
N + 1

N
∑

k=1

1

Ak(t)
(16)

with the corresponding market price

p = B − As =
B

N + 1
+ A

N
∑

k=1

ck
Ak(t)

− A

N + 1

(

N
∑

l=1

cl

)(

N
∑

k=1

1

Ak(t)

)

.
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If the price has a delay τ > 0, then the firms actually observe the price

p∗ =
B

N + 1
+ A

N
∑

k=1

ck
Ak(t− τ)

− A

N + 1

(

N
∑

l=1

cl

)(

N
∑

k=1

1

Ak(t− τ)

)

. (17)

The comparison of the believed price pk and actually observed price p∗ leads
to the adjustment process

Ȧk(t) = Kk(p
∗ − pk) (18)

where Kk is the speed of adjustments of firm k. This is a system of nonlinear
delayed differential equations

Ȧk(t) = Kk

(

B

N + 1
+ A

N
∑

l=1

cl
Al(t− τ)

− A

N + 1

(

N
∑

l=1

cl

)(

N
∑

l=1

1

Al(t− τ)

)

− 1

N + 1

(

B

A
Ak(t) +

N
∑

l=1

cl

))

. (19)

Clearly at the steady state the Ak values are equal, and the common value,
A, satisfies equation

0 =
B

N + 1
+

A

A

N
∑

l=1

cl −
A

N + 1

(

N
∑

l=1

cl

)

N

A
− 1

N + 1

(

BA

A
+

N
∑

l=1

cl

)

=
B

N + 1

(

1− A

A

)

+

(

N
∑

l=1

cl

)

1

N + 1

(

−1 +
A

A

)

which can occur only if A = A, which corresponds to the full knowledge of
the price function. We can examine the asymptotical behavior of system (19)
by linearizing it around the steady state. Simple differentiation shows that

∂

∂Ak(t)
(p∗ − pk) = − B

A(N + 1)
,

∂

∂Al(t)
(p∗ − pk) = 0 (l 6= k)

∂

∂Ak(t− τ)
(p∗ − pk) =

A

A2
k(t− τ)

(

−ck +
1

N + 1

N
∑

l=1

cl

)

=
1

A

(

−ck +
1

N + 1

N
∑

l=1

cl

)
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and similarly

∂

∂Al(t− τ)
(p∗ − pk) =

1

A

(

−cl +
1

N + 1

N
∑

i=1

ci

)

at the steady state. Therefore the linearized equation (19) can be written as

∆̇k(t) = Kk

(

− B

A(N + 1)
∆k(t)−

N
∑

l=1

γl
A
∆l(t− τ)

)

(20)

with

γl = cl −
1

N + 1

N
∑

i=1

ci, ∆l(t) = Al(t)− A

for all l. By letting

αk =
KkB

A(N + 1)
βkl =

Kkγl
A

system (20) can be written as

∆̇k(t) + αk∆k(t) +
N
∑

l=1

βkl∆l(t− τ) = 0. (21)

3 Stability Analysis

For the sake of simplicity the symmetric case is considered, when ck ≡ c,
Kk ≡ K for all k. In this special case equation (10) is simplified as

∆̇k(t) + α∆k(t) + α

N
∑

i=1

∆i(t− τ) = 0

with α = K/(N + 1). Therefore with identical initial values ∆i(−t) (0 ≤
t ≤ τ) the trajectories are also identical and equal to the solution of the
one-dimensional equation

∆̇(t) + α∆(t) + αN∆(t− τ) = 0. (22)

8



In the symmetric case equation (21) also specializes to the following:

∆̇(t) + α∆(t) + βN∆(t− τ) = 0 (23)

with α = KB/(A(N + 1)) and β = Kc/(A(N + 1)). Since (22) is a special
case of (23) with β = α, we will first concentrate on equation (23).

In order to guarantee the non-negativity of the equilibrium outputs at
the steady we have to assume that B ≥ c, that is, α ≥ β. Let’s look for the
solution in the usual exponential form ∆(t) = eλtu, and by substituting it
into (23) the characteristic equation of the system is obtained:

λ+ α + βNe−λτ = 0. (24)

By introducing the new variables Λ = λτ , C = ατ and D = βτ , we have

Λ + C +DNe−Λ = 0 (25)

where C ≥ D. Notice first that without delay τ = 0 and equation (24)
becomes

λ+ α + βN = 0,

so the only eigenvalue is negative. Assume that τ > 0 and let Λ = q + ir be
a complex solution. We can assume that r > 0, since if Λ is a solution, then
its conjugate is also a solution. Then

q + ir + C +DNe−q(cos r − i sin r) = 0.

Separating the real and imaginary parts we have

q + C +DNe−q cos r = 0 (26)

and
r −DNe−q sin r = 0. (27)

If sin r = 0, then r = 0, so from (26)

q = −C −DNe−q

showing that q < 0. If sin r 6= 0, then

e−q =
r

DN sin r
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and substituting it into (26) gives relation

q + C + r cot r = 0

so
q = −C − r cot r. (28)

If we substitute this equation into (27), a single variable equation is obtained
for r:

r −DNeC+r cot r sin r = 0

or
r

DNeC
= er cot r sin r. (29)

The steady state is asymptotically stable if q < 0, which occurs if

r cot r > −C. (30)

Let f(r) denote the right hand side of (29) and let g(r) = r cot r. Simple
differentiation shows that

g
′

(r) =
(r cos r

sin r

)′

=
sin 2r − 2r

2 sin2 r
< 0

for all r > 0 implying that g(r) strictly decreases in r. Furthermore

lim
r→0

r cos r

sin r
= 1,

lim
r→π/2+kπ

r cos r

sin r
= 0

and

lim
r→kπ

r cos r

sin r
=

{

−∞ from the left hand side

+∞ from the right hand side.

The graph of g(r) is shown in Figure 1.
Notice that in each subinterval (π

2
+kπ, (k+1)π) there is a unique intercept

rk of the graph of g(r) and the horizontal line of −C, and (30) implies that
the real part of the solution is negative if kπ < r < rk, k = 0, 1, 2, . . .. It is
also easy to see that

lim
r→0

f(r) = 0
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π/2 5π/23π/2 2ππ

1

r

g(r)

-C

r0 r1 r2

3π

Figure 1: Graph of g(r)

and for all k ≥ 1,
lim

r→kπ−0
f(r) = 0,

since cot r → −∞ as r → kπ − 0.
Furthermore

lim
r→kπ+0

f(r) =

{

∞ if k is even

−∞ if k is odd

and

f
(π

2
+ kπ

)

=

{

1 if k is even

−1 if k is odd.

By differentiation

f
′

(r) =
1

sin r
er cot r

(

sin 2r − r

)

. (31)
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There is a unique r∗ ∈ (0, π
2
) such that sin 2r∗ = r∗, and for r < r∗ we have

sin 2r > r, and for r > r∗, clearly sin 2r < r. Therefore f
′

(r) > 0 if and only
if r ∈ (0, r∗) or r ∈

(

(2k − 1)π, 2kπ
)

for k ≥ 1. Similarly f
′

(r) < 0 if and
only if r ∈ (r∗, π) or r ∈

(

2kπ, (2k + 1)π
)

for k ≥ 1. The graph of f(r) is
shown in Figure 2.

π/2 5π/22π3π/2
r

f(r)

π 3π 5π7π/2 4π 9π/2
r0

f(r0)

Figure 2: Graph of f(r)

The solution of equation (29) is the intercept of this graph with the linear
function r/(DNeC). In order to satisfy relation (30) the solution has to be
in the union of intervals [0, r0), [2π, r2], [4π, r4],· · · , which is the case when

1

DNeC
>

f(rk)

rk
(k = 0, 2, 4, · · · ).

This can be rewritten as

1 >
erk cot rk sin rkDNeC

rk
=

e−CeCDN cos rk
rk cot rk

(32)

= −ND

C
cos rk.
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Notice that r0 < r2 < r4 < · · · and rk cot rk = −C implying that cos r0 <
cos r2 < cos r4 < · · · < 0, so if (32) holds with k = 0, then it holds for all even
values of k. We can therefore conclude that the steady state is asymptotically
stable if

1 > −ND

C
cos r0 (33)

and unstable if

1 < −ND

C
cos r0.

If C > ND, then (33) holds implying that the system is asymptotically
stable. We will assume that C ≤ ND in the following discussion.

Clearly r0 is a strictly increasing function of C, r0 = r0(C), so (33) holds
if

r0(C) < cos−1

(

− C

ND

)

or

g (r0(C)) > g

(

cos−1
(

− C

ND

)

)

which can be rewritten as

−C > cos−1
(

− C

ND

)

cot
(

cos−1(− C

ND
)
)

= cos−1
(

− C

ND

) − C
ND

√

1− C2

N2D2

or

C < cos−1
(

− C

ND

) C√
D2N2 − C2

. (34)

In the case of system (22), α = β = K/(N + 1), C = D = Kτ/(N + 1),
so this stability condition can be written as

Kτ

N + 1
< cos−1

(

− 1

N

)

1√
N2 − 1

or

τ <
cos−1(− 1

N
)(N + 1)

K
√
N2 − 1

=
cos−1(− 1

N
)
√

N+1

N−1

K
. (35)

Hence we have the following result.
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Theorem 1 The steady state of system (22) is globally asymptotically stable

if τ < τ ∗ and unstable if τ > τ∗ where

τ∗ =
cos−1(− 1

N
)
√

N+1

N−1

K
.

Notice that τ ∗ is decreasing in both N and K, and converges to zero as
K → ∞, furthermore it converges to π/(2K) as N → ∞.

Consider next system (23), where α = KB/(A(N +1)), β = Kc/(A(N +
1)) and so C = KBτ/(A(N + 1)) and D = Kcτ/(A(N + 1)). Since

C

ND
=

B

cN
,

the stability condition (34) can be rewritten as

KBτ

A(N + 1)
< cos−1

(

− B

cN

)

B
cN

√

1− B2

c2N2

.

That is,

τ <
A(N + 1)

K
cos−1(− B

cN
)

1√
c2N2 −B2

, (36)

which proves the following result.

Theorem 2 The steady state of system (23) is locally asymptotically stable

if τ < τ ∗∗ and unstable if τ > τ ∗∗, where

τ ∗∗ =
A(N + 1)

K
cos−1

(

− B

cN

)

1√
c2N2 −B2

.

Notice that τ ∗∗ strictly decreases in both K and N , it converges to zero as
K → ∞ and converges to Aπ/(2Kc) as N → ∞.

4 Occurance of Hopf bifurcation

Stability switch may occur when Λ = ir (r > 0) is an eigenvalue of equation
(25). By substitution

ir + C +DN(cos r − i sin r) = 0.
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Separating the real and imaginary parts gives two equations:

C +DN cos r = 0 (37)

r −DN sin r = 0. (38)

From (37),

cos r = − C

DN
so

r = cos−1

(

− C

DN

)

+ 2nπ

since sin r > 0 by (38). Then (38) implies that

cos−1
(

− C

DN

)

+ 2nπ −DN

√

1− C2

D2N2
= 0.

It is easy to see that with n = 0 this equation is the same as the equality
versions of (35) and (36). Consider τ as the bifurcation parameter with
all other constants being fixed. Then we can assume that Λ = Λ(τ). By
implicitly differentiating equation (25) with respect to τ we have

Λ
′

+ α + βNe−Λ − βτNe−ΛΛ
′

= 0

implying that

Λ
′

=
α + βNe−Λ

βτNe−Λ − 1
.

Combining this equation with (25) gives

Λ
′

=
α + βN(−Λ− C)/DN

βτN(−Λ− C)/DN − 1
=

−Λ

−τΛ− τ 2α− τ

where we used the notations C = ατ and D = βτ . If Λ = ir, then

Λ
′

=
ir

τ 2α + τ + iτr

with real part

ReΛ
′

=
r2

τ(τα + 1)2 + τr2
> 0

showing that at the stability switches Hopf bifurcation occurs giving the
possibility of the birth of limit cycles.
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5 Conclusions

In this paper two special learning schemes were examined under the addi-
tional assumption that only delayed information is available about the mar-
ket price. Linear price and cost functions were assumed, and fixed time
delay was incorporated into the dynamic models. The mathematical models
were formulated in general, and the stability analysis was performed in the
symmetric case, when the firms had identical marginal costs, speeds of ad-
justments and initial output quantities. If the delay is sufficiently small, less
than τ ∗ or τ ∗∗, then the steady state is asymptotically stable meaning that
the estimates of the price function converge to the true function, which shows
the possibility of learning. If the delay is larger than the given threshold,
then the steady state is unstable. At the stability switches Hopf bifurcation
occurs. Notice that model (10) is linear, where asymptotic stability is global,
however system (19) is nonlinear, where only local asymptotic stability can
be guaranteed under the derived conditions.

Nonlinear and nonsymmetric oligopolies will be the subjects of our future
research when recent results of nonlinear dynamics can be applied.
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