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Abstract

It has been well-known that nonlinearity, time delay and local in-
stability are significant sources for a birth of cyclical dynamics since
the pioneering work of Goodwin (1951). He has constructed a delay
nonlinear business cycle model with the nonlninear acceleration prin-
ciple which gives rise to cyclic oscillations when a stationary state is
locally unstable. However very little is known about time delay effects
caused by investment lags in Goodwin’s cyclic dynamics, furthermore
global dynamics in the locally stable case has not been considered yet.
This study draws attentions to these unexplored aspects of Goodwin’s
business model. It is shown that increasing investment lag makes the
length of business cycle longer and its amplitude larger. It is further
demonstrated that multiple cycles coexist when the stationary state is
locally stable. These results imply two issues: Goodwin’s model is not
only robust in cyclic oscillations regardless of local dynamic properties
but also corridor stable when the stationary state is locally stable.
Key words: fixed time delay, continuously distributed time delay,

corridor stability, coexistence of multiple limit cycles.
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1 Introduction

The contributions of Goodwin (1951) are reconsidered and further devel-
oped in this study. Goodwin introduced a nonlinear accelerator business
cycle model with an investment lag, numerically specified it and graphically
showed that it could generate a stable limit cycle when a stationary point is
locally unstable. Since Goodwin’s work, it is expected that instability, nonlin-
earity and delay could be significant sources for the birth of cyclic behavior.
In view of the fact that it is difficult to analytically solve delay nonlinear
models, it is a natural way to perform numerical studies or to convert the
model to a tractable one by using approximation. Indeed, considerable ef-
fort has been devoted to investigate the nonlinear structure of the ordinary
differential version of the unstable Goodwin’s model. Recently, Sasakura
(1996) gives an elegant proof of the stability and the uniqueness of Good-
win’s cycle. More recently Lorenz and Nusse (2002), based on Lorenz (1987),
reconstructs Goodwin’s model as a forced oscillator system and demonstrates
the emergence of chaos when nonlinearities become stronger. In the existing
literature, however, there have been only limited analytical works on the de-
lay differential version,1 and, furthermore, very little has yet been revealed
with respect to the circumstances under which the stationary point is lo-
cally asymptotically stable. The main purpose of this study is to provide an
investigation of these unexplored aspects of Goodwin’s business cycle model.
We add two new observations to the existing results. First, we reformate

the model in terms of a nonlinear differential equation with the explicit treat-
ment of time delay (i.e., fixed time delay and distributed time delay) and find
out how the time delay affects the emergence and characteristics of a limit
cycle. Second, we demonstrate that the nonlinear delay Goodwin’s model
has the corridor stability when a stationary point is locally stable. That
is, the model is stable and the trajectory returns to the stationary state for
smaller disturbances but is unstable and exhibits persistent fluctuations for
larger disturbances.
In what follows, Section 2 overviews the basic structure of Goodwin’s

nonlinear accelerator model and introduces time delay to see its effect on
cyclic dynamics. Section 3 shows a coexistence of a stable stationary point,
an unstable limit cycle and a stable limit cycle. Section 4 concludes the
paper.

1Yoshida and Asada (2007) investigates the impact of delayed government stabilization
policy on the dynamic behavior of a Keynes-Goodwin model. Also see Bischi, Chiarella,
Kopel and Szidarovszky (2007) for applications of the delay differential method to oligopoly
models.
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2 Goodwin’s Business Cycle Model

This section is divided into three parts. In Section 2.1, we recapitulate the
basic elements of Goodwin’s model and perform simulations to see the birth
of limit cycles when a stationary state is locally unstable and the investment
function is nonlinear. We, then, adopt an explicit treatment of the investment
lag into the model. In particular, we will examine fixed time delay in Section
2.2 and continuously distributed time delay in Section 2.3, and we will show
see how such a delay affects the characteristics of cyclic dynamics.

2.1 Basic Model

Goodwin (1951) presents five different versions of the nonlinear accelerator
model. The first version assumes a piecewise linear function with three levels
of investment, which can be thought as the crudest or simplest version of
the non-linear accelerator. This is a text-book model that can give a simple
exhibition on how nonlinearities give rise to endogenous cycles without rely-
ing on structurally unstable parameters, exogenous shocks, etc. The second
version replaces the piecewise linear investment function with a smooth non-
linear investment function. Although persistent cyclical oscillations of output
are shown to exist, the second version includes a unfavorable phenomenon,
namely, discontinuous investment jump , which is not realistic in the real
economic world. "In order to come close to reality" (p.11, Goodwin (1951)),
the investment lag is introduced in the third version. However, no analytical
considerations are given to this third version. The existence of a business
cycle is confirmed in the fourth version, which is a linear approximation of
the third version with respect to the investment lag. Finally alternation of
autonomous expenditure over time is taken into account in the fifth version.
To find out how nonlinearity works to generate endogenous cycles, we

review the second version of Goodwin’s model, which we call the basic model,⎧⎨⎩ εẏ(t) = k̇(t)− (1− α)y(t),

k̇(t) = ϕ(ẏ(t)).

(1)

Here k is capital stock, y national income, α the marginal propensity to con-
sume, which is positive and less than unity, and the reciprocal of ε a positive
adjustment coefficient. The dot over variables stands for time differentia-
tion. The first equation of (1) defines an adjustment process of the national
income. Accordingly, national income rises or falls if investment is larger
or smaller than savings. The second equation, in which ϕ(ẏ(t)) denotes the
induced investment, describes an accumulation process of capital stock based
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on the acceleration principle. According to the principle, investment depends
on the rate of changes in the national income. A distinctive feature of Good-
win’ model is to introduce a nonlinearity into the investment function in such
a way that the investment is proportional to the change in the national in-
come in the neighborhood of the equilibrium income but becomes inflexible
(i.e., less elastic) for extremely larger or smaller values of the income. This
nonlinear acceleration principle is crucial in obtaining endogenous cycles in
Goodwin’s model. We will next retain this nonlinear assumption and specify
its explicit form. On the other hand, we depart from Goodwin’s non-essential
assumption of positive autonomous expenditure and will work with zero au-
tonomous expenditure for the sake of simplicity. A direct consequence of this
assumption is that an equilibrium solution or a stationary point of the basic
model is y(t) = ẏ(t) = 0 for all t.
Inserting the second equation of (1) into the first one and movining the

terms on the left hand side to the right gives a single dynamics equation for
the national income y,

εẏ(t)− ϕ(ẏ(t)) + (1− α)y(t) = 0. (2)

This is a nonlinear differential equation. Although it is one-dimensional,
its nonlinearity prevents deriving an explicit form of the solution. In spite
of this simple form, it is possible to detect local dynamics by examining
its linearized version in a neighborhood of the stationary point and global
dynamics by performing numerical simulations.
The linear version of the income dynamic equation (2) is

εẏ(t)− νẏ(t) + (1− α)y(t) = 0, (3)

where ν = ϕ0(0) is the slope of the investment function at the stationary
point. This is a first-order ordinary differential equation. Applying separa-
tion of variables gives a complete solution,

y(t) = y0e
λt with λ =

1− α

ν − ε
, (4)

where y0 is an initial condition. The stationary point is stable or unstable
according to whether the eigenvalue λ is negative or positive. Since 1− α is
the positive marginal propensity to save, the sign of the eigenvalue depends
on whether the numerator is positive or negative. Thus the stationary point
is locally stable if ν < ε and unstable if ν > ε.
We turn our attentions to global dynamics under the assumption of local

instability, namely, where ν > ε . We first specify the investment function
as well as the values of the coefficients of (2) and then perform simulations
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to see what dynamics of y can be generated by the nonlinear equation (2).
Although Goodwin (1951) assumed piecewise linear investment function, we,
for the sake of analytical convenience, adopt a smooth nonlinear investment
function of the form of an arctangent,

ϕ(ẏ(t)) = δ
©
tan−1(ẏ(t)− a)− tan−1(−a)

ª
, δ > 0 and a > 0. (5)

This function has endogenous "ceiling" and "floor" and is asymmetric when
the parameter, a, is non-zero. In what follows, we set a = 1 and δ = 12

π
for

which the investment function (5) passes through the origin, and its ceiling
is three time higher than its floor as it was the case in Goodwin’s model.
In numerical examples below, the initial point is set at y(0) = 10, and

we set of ε = 0.5 as the adjustment coefficient and α = 0.6 as the marginal
propensity to consume as in Goodwin’s model. The numerical results are
given in Figure 1 in which an endogenous cycle is illustrated on the right and
the corresponding time path of output on the left. Along the upside-down
N-shaped locus on the right, the initial point, denoted by I0, is displaced
slightly upward to point A so that the output is increasing to yH , the high-
est level. Investment immediately switches discontinuously from positive to
negative. Consequently, the orbit jumps from point A to point B.With neg-
ative ẏ(t) at point B, the national income gradually declines from point B
to point C so that the output is decreasing to yL, the lowest level. Once
point C is reached, investment switches again discontinuously from negative
to positive. In other words, the orbit jumps again to point D from point C,
from which the national income glides toward point A, and then the process
repeats itself. Thus we have a closed orbit constituting a self-sustaining cycle.
The points A and C are critical points at which one of the variables makes a
discontinuous jump. The same dynamics are depicted as a function of time t
on the left in Figure 1. The kinked points of the time-trajectory correspond
to the discontinuous jumps of the cyclic behavior. This is a simple exhibi-
tion of generating an endogenous cycle of output. We can summarize these
numerical results as follows.

Result 1 Given ν > ε (i.e., locally unstable stationary point), a slow-rapid
limit cycle is brought about in the basic model due to the nonlinear
investment accelerator (5).

Insert Figure 1 Here.
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2.2 Delay Model with Fixed Time Lags

Due to the fact that in real economy, plans and their realizations need time to
take effects, Goodwin (1951) introduces the investment lag, θ, between deci-
sions to invest and the corresponding outlays. Inserting θ into the investment
function of the basic model yields the third version,

εẏ(t)− ϕ(ẏ(t− θ)) + (1− α)y(t) = 0. (6)

This is a neutral delayed nonlinear differential equation, which we call the
fixed delay model. Goodwin does not analyze dynamics generated by this
fixed delay model. Furthermore, to the best of our knowledge, no analytical
solutions of the delayed model are available yet. However, it is possible,
again, to investigate dynamics of the delayed model by using linearization
for local dynamics and numerical simulations for global dynamics. Since a
cyclic oscillation has been shown to exist in the basic model, our main concern
is to see how the presence of the investment lag affects characteristics of such
a slow-rapid cycle. To this end, we analytically investigate the stability of the
cycle generated in the linearized model and numerically detect what effects
are caused by the lag on cyclical dynamics.
The fixed delay model is autonomous and its special solution is constant

(i.e., y(t) = 0) so that its linearized version takes the form of a linear neutral
autonomous delay differential equation,

εẏ(t)− vẏ(t− θ) + (1− α)y(t) = 0. (7)

It is well known that if the characteristic polynomial of a linear neutral
equation has roots only with negative real parts, the stationary point is
locally asymptotically stable. The normal procedure for solving this equation
is to try an exponential form of the solution. Substituting y(t) = y0e

λt

into (7) and rearranging terms, we obtain the corresponding characteristic
equation:

ελ− vλe−λθ + (1− α) = 0.

To check stability, we determine conditions under which all roots of this
characteristic equation lie in the left or right of the complex plane. Divid-
ing both sides of the characteristic equation by ε and introducing the new
variables A = 1−α

ε
and B = −ν

ε
, we rewrite the characteristic equation as

λ+A+Bλe−λθ = 0. (8)

Kuang (1993) derives explicit conditions for stability/instability of the n-th
order linear real scalar neutral differential difference equation with a single
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delay. Since (8) is a special case of the n-th order equation, applying the result
of Kuang (1993, Theorem 1.2) implies that the real parts of the solutions of
equation (8) are positive for all θ if |B| > 1. Hence we have the following
result.

Theorem 1 If ν > ε, then the stationary point of (7) is unstable for all
θ > 0.

If v < ε (i.e., |B| < 1), (8) has at most finitely many eigenvalues with
positive real part. The roots of the characteristic equation are functions of the
delay. As the lengths of the delay change, the roots may change their signs
from positive to negative or vise versa so that the stability of the solution
may also change. Such phenomena are often referred to as stability switches.
We will next show that such stability switchings cannot take place in the
fixed delayed model.
For the following discussion we assume that v < ε. The case v = ε will be

treated later as a critical case. It can be checked that λ = 0 is not a solution
of (8) because substituting λ = 0 yields A = 0 that contradicts A > 0. In the
case of v < ε, Kuang (1993, Theorem 1.4) shows that if the stability switches
at θ = θ̄, then (8) must have a pair of pure conjugate imaginary roots with
θ = θ̄. Thus to find the critical value of θ̄, we assume that λ = iω, with ω > 0
is a root of (8) for θ = θ̄, θ̄ ≥ 0. Substituting λ = iω into (8), we have

A+Bω sinωθ = 0,

and
ω +Bω cosωθ = 0.

MovingA and ω to the right hand side and adding the squares of the resultant
equations, we obtain

A2 + (1−B2)ω2 = 0.
Since A > 0 and 1−B2 > 0 as |B| < 1 is assumed, there is no ω that satisfies
the above equation. In other words, there are no roots of (8) crossing the
imaginary axis when θ increases. Therefore, there are no stability switches
for any θ.
In case ε = ν in which |B| = 1, the characteristic equation becomes

λ(1− e−λθ) +A = 0. (9)

It is clear that λ = 0 is not a solution of (9) since A > 0. Thus we can
assume that a root of (9) have non-negative real part, λ = u+ iv with u ≥ 0
for some θ > 0. From (9), we have

(u+A)2 + v2 = e−2uθ(u2 + v2) ≤ (u2 + v2),
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where the last inequality is due to e−2uθ ≤ 1 for u ≥ 0 and θ > 0. Hence

2uA+A2 ≤ 0,

where the direction of inequality contradicts the assumption that u ≥ 0 and
A > 0 in case ε = ν. Hence it is impossible that the characteristic equation
has roots with nonnegative real parts. Therefore, all roots of (9) must have
negative real parts for all θ > 0. Summarizing the above discussions gives
the following theorem.

Theorem 2 In case of v ≤ ε, the the stationary point of (7) is asymptotically
stable for all θ > 0.

Result 1 and Theorems 1 and 2 show that the stability condition of the
fixed delay model is the same as the one of the basic model. Thus it can
be seen that if the basic model is stable (resp. unstable), then the fixed
delay model is also stable (resp. unstable). In other words, introducing fixed
time lag does not change the stability condition of the basic model. It is,
however, numerically confirmed that the fixed production lag has distinctive
effects on the global dynamics as shown in Figure 2 in which we illustrate
four different limit cycles for four different values of θ. It can be observed
that the limit cycles change their shapes from parallelorgram-type cycle to
vertically elongated parallelogram with rounded corners as the investment
lag increases from 0.125 to unity by doubling θ, that is, the width of the
cycles becomes smaller and the height becomes larger. Since the peak and
the bottom of the output-cycle are reached at the point where the time
derivative is zero, the amplitude of the cycle is equal to the distance between
the two points at which the limit cycles cross the vertical axis. It is also
observed that the amplitude of the cycles increases and the rate of output
change becomes smaller as the production lag increases. These numerical
results are summarized in:

Result 2 The fixed time delay gets rid of discontinuous jumps and increasing
investment lag makes the length of cycles longer and its amplitude larger
in the case of ν > ε.

Insert Figure 2 about here.
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2.3 Delay Model with Continuously Distributed Lags

Continuously distributed time delay is an alternative approach to deal with a
time lag in investment. If the expected change of national income is denoted
by ẏe(t) at time t and is based on the entire history of the actual changes of
national income from zero to t, the dynamic system can be written as the
system of integro-difference equations,

εẏ(t)− ϕ(ẏe(t)) + (1− α)y(t) = 0,

ẏe(t) =

Z t

0

w(t− s, θ,m)ẏ(s)ds,
(10)

where the weighting function is

w(t− s, θ,m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

θ
e−

t−s
θ if m = 0,

1

m!

³m
θ

´m+1
(t− s)me−m(t−s)

θ if m ≥ 1.

Here m is a nonnegative integer and θ is a positive real parameter, which
is associated with the length of the delay. We call this dynamic system the
distributed delay model.
To examine local dynamics of the above system in the neighborhood of

the stationary point, we consider the linearized version,

εẏ(t)− ν

Z t

0

w(t− s, θ,m)ẏ(s)ds+ (1− α)y(t) = 0.

Looking for the solution in the usual exponential form

y(t) = y0e
λt and ẏ(t) = λy0e

λt,

we substitute y(t) and ẏ(t) into the linearized version to obtain

ελ− νλ

Z t

0

w(t− s, θ,m)e−λ(t−s)ds+ (1− α) = 0.

As shown in Bischi et al, (2007), introducing the new variable z = t − s
simplifies the integral asZ t

0

w(t− s, θ,m)e−λ(t−s)ds =
Z t

0

w(z, θ,m)e−λzdz.
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By letting t→∞ and assuming that Re(λ) + m
θ
> 0, we haveZ ∞

0

1

θ
e−

z
θ e−λzdz = (1 + λθ)−1 if m = 0,

and Z ∞

0

1

m!

³m
θ

´m+1
zme−

mz
θ e−λzdz = (1 +

λθ

m
)−(m+1) if m > 1.

That is, Z ∞

0

w(z, θ,m)e−λzds =

µ
1 +

λθ

q

¶−(m+1)
with

q =

⎧⎨⎩ 1 if m = 0,

m if m ≥ 1.
Then the characteristic equation becomes

(ελ+ (1− α))

µ
1 +

λθ

q

¶m+1
− νλ = 0. (11)

If there are no time delays, θ = 0, then the above equation is reduced to the
same characteristic equation as the one we have already derived above. We
will next show some simple cases in which analytical results can be obtained.
Since the case of m = 0 will be rigorously discussed in the next section,

we examine stability in cases with m ≥ 1. We expand the characteristic
equation (11) by using the binomial theorem to obtain,

a0λ
m+2 + a1λ

m+1 + ...+ am+1λ+ am+2 = 0, (12)

where the coefficients ai are defined as

a0 = εθm+1 > 0,

ak =

½µ
m+ 1
k + 1

¶
mε+

µ
m+ 1
k

¶
(1− α)θ

¾
mkθm−k > 0 for k = 1, 2, ...m,

am+1 = mm{mε+ (m+ 1)(1− α)θ −mν} R 0,

am+2 = mm+1(1− α) > 0.
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According to the Routh-Hurwitz criterion, the necessary and sufficient con-
ditions that all roots of the characteristic equation (12) have negative real
parts are the following:

(1) the coefficients are positive, ak > 0 for k = 1, 2, ...2m+ 1,

(2) the principle minors of the Routh-Hurwitz determinant are positive,

Dm
2 =

¯̄̄̄
a1 a0
a3 a2

¯̄̄̄
> 0, Dm

3 =

¯̄̄̄
¯̄ a1 a0 0
a3 a2 a0
a5 a4 a3

¯̄̄̄
¯̄ > 0, Dm

4 =

¯̄̄̄
¯̄̄̄ a1 a0 0 0
a3 a2 a1 a0
a5 a4 a3 a2
a7 a6 a5 a4

¯̄̄̄
¯̄̄̄ > 0, ...

Case 1. m = 1

Substituting m = 1 into (12) yields

a0λ
3 + a1λ

2 + a2λ+ a3 = 0, (13)

where

a0 = εθ3 > 0,

a1 = (2ε+ (1− α)θ)θ > 0,

a2 = ε+ (1− α)2θ − ν R 0,
a3 = 1− α > 0.

It can be seen that the sign of a2 is not determined. In addition to a2 > 0, the
Routh-Hurwitz criterion requires that the following second- and third-order
Routh-Hurwitz determinants are positive,

Dm=1
2 =

¯̄̄̄
a1 a0
a3 a2

¯̄̄̄
> 0 and Dm=1

3 =

¯̄̄̄
¯̄ a1 a0 0
a3 a2 a1
0 0 a3

¯̄̄̄
¯̄ > 0.

Since Dm=1
3 = a3D

m=1
2 and a3 = 1− α > 0, we have

sign
¡
Dm=1
3

¢
= sign

¡
Dm=1
2

¢
,

where
Dm=1
2 = θ

©
2(ε+ (1− α)θ)2 − (2ε+ (1− α)θ)ν

ª
. (14)

Consider an a2 = 0 curve and a Dm=1
2 = 0 curve in the positive quadrant

of the (θ, ν)-plane. First we assert that both curves are upward sloping and
intersect only once for θ = 0. Moreover we can assert that a2 < 0 to the left
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of the a2 = 0 curve and a2 > 0 to the right and that Dm=1
2 < 0 to the left

of the Dm=1
2 = 0 curve and Dm=1

2 > 0 to the right. Substituting a2 = 0 into
Dm=1
2 gives Dm=1

2 = −(1− α)εθ2 < 0. This implies that the a2 = 0 curve is
located in the region where Dm=1

2 < 0. Thus, a2 > 0 and Dm=1
3 > 0 in the

region where Dm=1
2 > 0.Therefore the Dm=1

2 = 0 curve is the partition line
that divides the (θ, ν)-plane into two regions: one region below the line in
which the stationary state is stable as the Routh-Hurwitz criterion is satisfied
and the other region above the line in which the stationary state is unstable.
Solving Dm=1

2 = 0 for ν yields the explicit expression of the partition line,

ν =
2(ε+ (1− α)θ)2

2ε+ (1− α)θ
. (15)

We now return to equation (13) to show the existence of a limit cycle
even with continuously distributed delay by applying the Hopf bifurcation
theorem. According to the theorem, we can establish the existence if the
cubic characteristic equation has a pair of pure imaginary roots and the real
part of these roots vary with a bifurcation parameter. We select ν as the
bifurcation parameter and then calculate its value at the point for which
loss of stability just occurs. Substituting (15) into (13), we can obtain a
factorized expression of the characteristic equation along the partition line,

(2ε+ (1− α)θ + εθλ)(1− α+ (2εθ + (1− α)θ2)λ2) = 0,

which can be explicitly solved for λ. One of the characteristic roots is real
and negative and the other two are pure imaginary:

λ1 = −2ε+ (1− α)θ

εθ
< 0,

λ2,3 = ±i
s

1− α

2εθ + (1− α)θ2
= ±iω.

In order to apply the Hopf bifurcation theorem, we need to check whether
the real part of the conjugate complex roots change its sign as the bifurcation
parameter passes through its critical value. Suppose that λ depends on ν,
λ(ν), and then implicit-differentiation of (13) shows that

3εθ3λ2 +
¡
2εθ + (1− α)θ2

¢
λ+ ε+ (1− α)2θ − ν

dλ

dν
= λ.

Thus

sign

½
d(Reλ)

dν

¾
λ=iω

= sign

(
Re

µ
dλ

dν

¶−1)
λ=iω

= sign
©
(2εθ + (1− α)θ2)

ª
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where we used the facts that the terms with λ are imaginary and the constant
terms are real. Therefore we have

d(Reλ)

dν

¯̄̄̄
λ=iω

> 0.

This implies that the roots cross the imaginary axis at iω from left to right
as ν increases. Therefore the Hopf bifurcation theorem applies, and thus a
birth of limit cycles is assured around the stationary point. The left part of
Figure 3 illustrates a limit cycle in a 3D space when the stationary state is
unstable, and the right side shown an orbit approaching the stationary state
when stable.2

Insert Figure 3 about here.

Case 2. m = 2

The characteristic equation is quartic in λ and its coefficients are all
positive except a3 whose sign is not determined,

a3 = 4(2ε+ 3(1− α)θ)− 2ν).

The Routh-Hurwitz determinants can be defined in the same way as before,

Dm=2
2 =

¯̄̄̄
a1 a0
a3 a2

¯̄̄̄
, Dm=2

3 =

¯̄̄̄
¯̄ a1 a0 0
a3 a2 a1
0 a4 a3

¯̄̄̄
¯̄ and Dm=2

4 =

¯̄̄̄
¯̄̄̄ a1 a0 0 0
a3 a2 a1 a0
0 a4 a3 a2
0 0 0 a4

¯̄̄̄
¯̄̄̄ ,

2z(t) and w(t) are defined as follows:

z(t) =

Z t

0

1

θ2
(t− s) e−

t−s
θ ẏ(s)ds

and

w(t) =

Z t

0

1

θ
e−

t−s
θ ẏ(s)ds.

ν is selected as
2(ε+ (1− α)θ)2

2ε+ (1− α)θ
+ 0.05 in the unstable case,

and
2(ε+ (1− α)θ)2

2ε+ (1− α)θ
− 0.05 in the stable case.
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where

Dm=2
2 = 2θ3

©
32ε2 + 3(1− α)2θ2 + ε(18(1− α) + 4v)

ª
> 0,

Dm=2
3 = 8θ3

©
8(2ε+ (1− α)θ)3 − 2(28ε2 + 12(1− α)εθ) + 3(1− α)2θ2)ν − 8εν2

ª
,

Dm=2
4 = 8(1− α)Dm=2

3 .

By the same way as given in the case of m = 1, we assert that the a3 = 0
curve and the Dm=2

3 = 0 curve are upward sloping, intersect once for θ = 0
and the former curve is located above the latter curve. Substituting a3 = 0
into Dm=2

3 gives

Dm=2
3 = −64(1− α)2θ4(6ε+ (1− α)θ)2 < 0.

The direction of this inequality implies that the a3 = 0 curve is located in
the region in which Dm=2

3 < 0. Thus we have a3 > 0 and Dm=2
4 > 0 in the

region in which Dm=2
3 > 0. Hence the Dm=2

3 = 0 locus is the partition line
that divides the (θ, ν)-plane into two regions: one region below the line in
which the stationary state is stable and the other region above the line in
which the stationary state is unstable. FromDm=1

2 = 0 we obtain the explicit
expression of the partition line,

8(2ε+ (1− α)θ)3− 2(28ε2 + 12(1− α)εθ) + 3(1− α)2θ2)ν − 8εν2 = 0. (16)

It can be confirmed that the Dm=1
2 = 0 curve is steeper than the Dm=2

3 = 0
curve, and both curves have the same vertical intercept for θ = 0. This means
that the distributed delay model with m = 1 has a larger stable region than
the model withm = 2. By the same procedure as in the case of m = 1 above,
we can show the birth of a limit cycle in the case of m = 2 as well.
After we repeat the above procedure for all values ofm, it is then possible

to show that Dm+1 > 0 implies am+1 > 0 and Di > 0 for all i. Hence the
Dm
m+1 = 0 locus is the partition line that divides the (θ, ν)-plane into two

regions, the stable region and the unstable region. The five partition lines
withm from 1 to 5 are depicted in Figure 4. It can be seen that all lines cross
the vertical axis for ν = ε and their slopes become smaller as m increases.
Notice that the dotted horizontal line is the partition line in the case of fixed
time delay. This implies that the stable region becomes smaller as the value
of m increases and converges to the region defined with the fixed time delay
when m tends to infinity.

Insert Figure 4 about here.

14



3 Coexistence of Multiple Cycles

In this section, we demonstrate a coexistence of multiple cycles when the
stationary point is locally stable. This finding implies the robustness of
cyclic properties of Goodwin’s model regardless of whether the stationary
point is locally stable or unstable. In what follows, we select the slope of
the investment function evaluated at the stationary point as the bifurcation
parameter and investigate the possibility of the supercritical bifurcation in
Section 3.1. After proving the existence of an unstable limit cycle, we con-
struct an invariant set in the state space and apply the Poincaré-Bendixson
theorem to find a stable limit cycle that encloses the unstable limit cycle in
Section 3.2. The coexistence of multiple cycles has been already shown for a
multiplier-accelerator model in Puu (1986), for Kaldor’s business cycle model
in Grasman and Wentzel (1994) and for a Metzlerian inventory cycle model
in Matsumoto (1996) using an approach that will be further explored.

3.1 Distributed Delay Model with m = 0

We consider the distributed delay model with m = 0 in which the weighting
function becomes exponentially declining and thus gives the most weight to
the most recent income change. The dynamic system of the Volterra-type
integro-differential equation is

εẏ(t)− ϕ(ẏe(t)) + (1− α)y(t) = 0,

ẏe(t) =

tZ
0

1

θ
e−

t−s
θ ẏ(s)ds.

(17)

As shown below, we have rewritten the continuously distributed delay equa-
tion as a system of ordinary differential equations. By doing so, we can use
all tools known from the stability theory of ordinary differential equations to
analyze the asymptotic behavior of the stationary point.
The time-differentiation of the second equation of (17) and introducing

z = ẏe reduce it to

ż(t) =
1

θ
(ẏ(t)− z(t)) . (18)

Solving the first equation for ẏ, replacing ẏe with z, replacing ẏ in (18) with
the new expression of ẏ and then adding the new dynamic equation of z
will transform the integro-differential equation to the following 2D system of
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ordinary differential equations,

ẏ(t) = −1− α

ε
y(t) +

1

ε
ϕ(z(t)),

ż(t) =
1

θ

µ
−1− α

ε
y(t) +

1

ε
ϕ(z(t))− z(t)

¶
.

(19)

It can be seen that the stationary state of (19) is y = z = 0. By linearizing
the system at the stationary state, we get the Jacobian matrix,

J =

⎛⎜⎜⎜⎝
−1− α

ε

ν

ε

−1− α

εθ

1

θ

³ν
ε
− 1
´
⎞⎟⎟⎟⎠ .

The corresponding characteristic equation is quadratic in λ,3

λ2 +
ε+ (1− α)θ − ν

εθ
λ+

1− α

εθ
= 0.

Setting k = ν − [ε+ (1− α)θ] gives,

λ1,2 =
1

2

⎧⎨⎩ k

εθ
±

sµ
k

εθ

¶2
− 4(1− α)

εθ

⎫⎬⎭ .
The product of the eigenvalues is positive,

λ1λ2 =
1− α

εθ
> 0

due to the assumptions imposed on parameters, 0 < α < 1 and (ε, θ) > 0.
These parametric restrictions ensure that the stationary point is not a saddle
point. It also follows that the sum of the eigenvalues is either positive or
negative according to whether k is negative or positive,

λ1 + λ2 =
k

εθ
R 0⇔ k R 0.

3Notice that this characteristic equation is identical with the characteristic equation
that can be derived from Goodwin’s approximated model (i.e., equation (5f) of Goodwin
(1951)). This means that both equations generates exactly the same dynamics in the
neighborhood of θ = 0. See Szidarovszky and Matsumoto (2007) for the similarities and
dissimilarities between the two dynamic equations.
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To confirm the dependency of the stability on the parameters θ and ν, we
define the parameter region by Ω = {(θ, ν) |θ > 0 and ν > 0}, considering
the values of the other two parameters α and ε given. Since the stability of
the stationary point depends of the sign of k so that a k = 0 curve becomes
the partition line that divides Ω into two regions, one stable and the other
unstable. Solving k = 0 gives the partition line

ν = [ε+ (1− α)θ], (20)

which is positive-sloping in Ω. Thus the stationary state is stable in the
region below this line in which k < 0 and unstable in the region above. It
also depends on the value of the discriminant of the characteristic equation
whether the local dynamics is oscillatory or monotonic. The curve along
which the discriminant is zero is determined by

ν = [ε+ (1− α)θ]± 2
p
(1− α)εθ, (21)

which distinguishes the parameter region for real roots from that for complex
roots.
These two curves divide the parameter region Ω as shown in Figure 5. For

combinations of θ and ν in a region marked as either [MS] (in the bottom
left and bottom right corners) or [MU], the stationary state is monotonic
stable and unstable while for those in [OS] or [OU], the stationary state is
oscillatory stable and unstable.4 In Figure 5, we plot θ on the horizontal axis
and v on the vertical axis. For certain combinations of the parameters, θ
and ν, in either the light-gray region or the dark-gray region, the character-
istic roots are complex and thus the system produces oscillations. Moreover,
the oscillations are explosive for the combinations in the light-gray region
and damped for those in the dark-gray region. On the other hand, for the
combinations of θ and ν in the white regions, the characteristic roots are
real and thus the system produces monotonic dynamics that is convergent or
divergent according to whether the combination is in the lower-white region
or the upper-white region. Figure 5 also implies that the distributed delay
model may produce qualitatively the same dynamics as ν increases regardless
of the value of the production lag. Thus, for a given θ, the linearized model
first generates monotonic stable dynamics, then oscillatory stable dynamics,
oscillatory unstable dynamics and finally monotonic unstable dynamics as ν
increases from zero.

4The partition line crosses the vertical axis for ν = ε and is positive sloping while
the zero-discriminant locus is tangent to the vertical line for ν = ε and to the horizontal
line for θ = ε

1−α . Thus the qualitatively similar divisions are obtained regardless of the
specified values of parameters, although we specify α = 0.6 and ε = 0.5 in Figure 5.
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Insert Figure 5 about here.

3.2 Hopf Cycle

By applying the Hopf bifurcation theorem, we investigate whether there is
a limit cycle in the stable distributed delay model with m = 0. According
to the theorem, Hopf bifurcation occurs if the complex conjugate roots as
functions of the bifurcation parameters cross the imaginary axis. Obviously,
the characteristic roots are complex conjugate with zero real part if k = 0.
As there are no other roots in the two-dimensional system, a limit cycle ex-
ists if the eigenvalues cross the imaginary axis with non-zero speed at the
bifurcation point. Though there may exist several possibilities to parame-
trize the distributed delay model, it seems interesting to choose the slope of
the investment function evaluated at the stationary point as the bifurcation
parameter.
Since we consider the case of local stability (i.e., k < 0 or ν < ε+(1−α)θ)

in this section, it can be easily seen that there exists a value ν0 for which

ν0 − [ε+ (1− α)θ] = 0,

implying that the complex conjugate roots cross the imaginary axis. For
ν > ν0, respectively ν < ν0, the real part becomes positive, respectively
negative. Hence, v0 is indeed a bifurcation value of the distributed delay
model. Due to the Hopf bifurcation theorem, this establishes the existence
of closed orbits in a neighborhood of the stationary point (0, 0) at ν = ν0.

5

The Hopf theorem, however, has no indication about the nature of the
limit cycle. There are two possibilities, one is that orbits spiral outward
from the stationary point toward a stable limit cycle, called the supercritical
bifurcation, and the other is that all orbits starting inside the cycle spiral in
toward the stationary point and becomes explosive outside the cycle, called
the subcritical bifurcation. To make the distinction between the sub- and
super-critical Hopf bifurcation, we calculate the stability index.
The distributed delay model can be written asµ

ẏ
ż

¶
= J

µ
y
z

¶
+

µ
g1(z)
g2(z)

¶
5See Lorenz (1993) for the Hopf bifurcation theorem, the stability index and the fol-

lowing coordinate transformations.
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where J is the Jacobian matrix defined above, and gi(z) for i = 1, 2 are
nonlinear terms that can be derived as

g1(z) =
1

θ
(ϕ(z)− ν0z) ,

g2(z) =
1

εθ
(ϕ(z)− ν0z) .

In order to transform the Jacobian matrix of the distributed delay model
into the normal form, we introduce the coordinate transformationµ

y
z

¶
= D

µ
u
v

¶
with D =

µ
0 1
d21 d22

¶
,

where

d21 =
ε

ν0θ

r
ν0 − ε

ε
and d22 =

ν0 − ε

ν0θ
.

Since matrixD transforms the coordinate system (y, z) into a new coordinate
system (u, v), the distributed delay model becomes

µ
u̇
v̇

¶
=

⎛⎜⎜⎝ 0 −
r
1− α

εθr
1− α

εθ
0

⎞⎟⎟⎠µ u
v

¶
+

µ
ag(u, v)
bg(u, v)

¶

where

g(u, v) = ϕ(d21u+ d22v)− ν0(d21u+ d22v).

a =
1p

ε(ν0 − ε)
and b =

1

ε
.

It is well-known that the stability of the emerging cycle depends on up
to the third-order derivatives of the nonlinear function g(u, v). The stability
index is

I =
1

16
[a (guuu + guvv) + b (guuv + gvvv)]

+
1

16

r
εθ

1− α

£¡
a2 − b2

¢
guv (guu + gvv) + ab

¡
(guu)

2 − (gvv)2
¢¤

where the partial derivatives are

guu = ϕ00 (d21)
2 , gvv = ϕ00 (d22)

2 , guv = ϕ00d21d22,

guuu = ϕ000(d21)
3, gvvv = ϕ000(d22)

3, guvv = ϕ000d21(d22)
2, guuv = ϕ000 (d21)

2 d22.
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Then arranging terms gives

I =
ϕ000(0)ν0(ν0 − ε)

16εθ3
> 0.

This inequality indicates that the emerging cycle, enclosing the stable sta-
tionary point, is repelling (i.e., unstable). A subcritical Hopf bifurcation
occurs for ν < ν0 in the distributed delay model with m = 0. We can
summarize our results as follows.

Theorem 3 Given the stability of the stationary point, there is an unstable
limit cycle that encloses a stable equilibrium in the distributed delay model
with m = 0.

3.3 Stable and Unstable Limit Cycles

Assuming that ν < ν0, we investigate a number of a limit cycle in this
subsection. As shown in Theorem 3, an unstable limit cycle exists for v < v0
due to the Hopf theorem. We will also show that a stable limit cycle exists
and it encloses the unstable Hopf cycle. We will finally construct an invariant
set in such a way that once an orbit enters the set, it cannot escape from
it at any future time and then will apply the Poincaré-Bendixon theorem to
examine whether a stable cycle can arise in the set. A typical application of
the theorem is in the case in which there is a single unstable equilibrium in
some invariant set. Remove the neighborhood of the stationary point in which
all orbits move away from it. Then the theorem ensures that the remaining
set must contain a limit cycle.6 Since the stationary point is now assumed
to be stable in the distributed delay model, we need another approach for
searching for such an invariant set.
In Figure 6 below, we may find a point A located so high on the vertical

axis that an orbit starting there comes back to cross again the vertical axis
at a lower point E after crossing not only the horizontal axis at points B
and D but also the vertical axis at point C. Consider a region bounded by
ABCDEA and an open region bounded by the unstable limit cycle that is
shown to exist in Theorem 3. Then the invariant set to be considered can be
obtained by deleting the latter region from the former region. The result is
shown in Figure 6 in which the shaded region represents this invariant set.
The boundary of the inner white region corresponds to the unstable limit
cycle that surrounds the stable stationary point. The shaded region thus has
no stationary point, and any orbit starting inside the region stays within this

6See Chaper 2.2 of Lorenze (1993) for example.
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region. Formally, the Poincaré-Bendixson theorem guarantees the existence
of one stable limit cycle in the shaded region as illustrated as the bold cycle
in Figure 6. Combining the discussion above with Theorem 3 yields the
following:

Theorem 4 Given the stability of the stationary point, a stable limit cycle
coexists with an unstable limit cycle that encloses a stable equilibrium point
for the distributed delay model with m = 0.

Insert Figure 6 Here

In Figure 7, we present a bifurcation diagram in which the amplitude of
the cycle is on the vertical axis and the bifurcation parameter ν on the hori-
zontal axis. νu is the critical value at which the distributed delay model loses
its stability, and a limit cycle is born. For ν > νu, the model is destabilized
for small perturbations so that any orbit moves away from the stationary
point. Nonlinearity of the model prevents it from diverging globally but
leads to a unique stable limit cycle. This is essentially the same cycle as the
one that Goodwin (1951) demonstrates by applying the Lienard method. On
the other hand, for ν < νu, it is locally stabilized but generates an unstable
cycle as well as a stable cycle for ν in the interval [νs, νu]. It can be seen that
as ν decreases from νu, the amplitude of the inner unstable cycle increases
and that of the outer stable cycle decreases. vs is the other critical value for
which the two cycles coincide. For a lower ν < νs, limit cycles no longer exit
since the invariant set vanishes.
The coexistence of multiple cycles and a stable stationary point reminds

us to "corridor stability," the notion which was introduced by Leijonhufvud
(1973). It implies that a dynamic system is stable for small perturbations
but unstable for large perturbations. The interior of the white elliptic region
in Figure 7 is the corridor in which the stationary point is stable. Thus,
if perturbations around the stationary point are small enough not to take
the trajectory out of the corridor, the restoring effect of the model forces the
trajectory to return to the stationary point. To the contrary, if perturbations
are large enough to take orbits outside the corridor, the lasting effect of the
model leads to persistent cyclic oscillations. The foregoing numerical analysis
indicates that the nonlinearity of the investment function and the time delay
can be the sources of corridor stability in the distributed delay model with
m = 0.

Insert Figure 7 Here
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4 Concluding Remarks

We reconsidered Goodwin’s 1951 nonlinear accelerator model of business cy-
cle and demonstrated two new features, the effects caused by investment lag
on the characteristic of Goodwin’s cycle when the stationary state was locally
unstable and the coexistence of multiple business cycles when locally stable.
Concerning the first feature, it is numerically confirmed that increasing in-
vestment lag makes the length of the business cycle longer and its amplitude
larger. Moreover, it is analytically confirmed that the fixed investment lag
has the stronger destabilizing effect in comparison to the continuously dis-
tributed investment lag.
Concerning the second feature, we showed, by combining the result ob-

tained from the Hopf bifurcation theorem with the one due to Poincare-
Bendixon theorem, that two limit cycles can coexist with the stable station-
ary state: one cycle is unstable and surrounds the stationary state, and the
other is stable and encloses the unstable limit cycle. This finding indicates
the corridor stability of Goodwin’s model in which a damping force dominates
and makes trajectories approach the stationary state for small disturbances
but an anti-damping force dominates and makes trajectories converge to the
outer stable limit cycle for larger disturbances. The results imply global
stability of Goodwin’s model regardless of the local dynamic properties.
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Caption of Figures

Figure 1. Limit cycle without time lag.

Figure 2. Limit cycles with time lags.

Figure 3. Limt cycle and stable trajectory in 3D system.

Figure4. Partion lines.

Figure 5. Stable and unstable regions.

Figure 6. Coexistence of multiple limit cycles.

Figure 7. Bifurcation diaram.
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