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AbstractAbstractAbstractAbstract    

  In this paper, we reconsider the analytical results on the existence of cyclical 

fluctuations in continuous time dynamic optimization models with two state variables 

and their applications to dynamic economic theory. In the first part of the paper, we 

survey the useful analytical results which were obtained by Dockner and 

Feichtinger(1991), Liu(1994) and Asada and Yoshida(2003) on the general theory of 

cyclical fluctuations in continuous time dynamic optimizing and non-optimizing models. 

In the second part of the paper, we provide an application of these analytical results to a 

particular continuous time dynamic optimizing economic model, that is, a model of 

dynamic limit pricing with two state variables, which is an extension of Gaskins’ (1971) 

prototype model. 
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1. Introduction1. Introduction1. Introduction1. Introduction    

  It is well known that the typical continuous time dynamic optimization model with 

only one state variable, which is very popular in economics, does not produce the cyclical 

fluctuations but it produces the monotonic convergence to the equilibrium point. On the 

other hand, some economic theorists provided various types of continuous time dynamic 

optimization models with two state variables which entails cyclical fluctuations. Some 

examples of such works are Benhabib and Nishimura(1979), Benhabib and 

Rustichini(1990), Asada and Semmler(1995), and Asada and Semmler(2004). The 

above-mentioned works showed the existence of closed orbits as the optimal trajectories 

analytically as well as numerically by applying the Hopf Bifurcation theorem.1 

  All of the above-mentioned works are the studies of particular economic models 

rather than the systematic investigations of the general continuous time dynamic 

optimization models with two state variables. On the other hand, Dockner and 

Feichtinger(1991) provided an exhaustive classification of the nature of the solution of 

such a general model including the conditions for the occurrence of the Hopf Bifurcation. 

Feichtinger, Novak and Wirl(1994) and Faria and Andrade(1998) are examples of the 

applications of Dockner and Feichtinger’s (1991) theorem to the economic models. 

Asada and Yoshida(2003) discussed on the analytical results of Dockner and 

Fichtinger(1991) from a particular point of view. 

  In this paper, we reconsider the analytical results on the existence of cyclical 

fluctuations in continuous time dynamic optimization models with two state variables 

and their applications to dynamic economic theory. Our strategy is to take up a 

particular economic model from the viewpoint of an application of the general theory of 

dynamic optimization. In section 2, we survey the useful analytical results which were 

obtained by Dockner and Feichtinger(1991), Liu(1994) and Asada and Yoshida(2003) on 

the general theory of cyclical fluctuations in continuous time dynamic optimizing and 

non-optimizing models. In section 3, we provide an application of these analytical 

results to a particular continuous time dynamic optimization model, that is a model of 

dynamic limit pricing with two state variables, which is an extension of Gaskin’s (1971) 

prototype model. Section 4 is devoted to an interpretation of the analytical results 

obtained in section 3. 

 

                                                   
1 This does not necessarily mean that every continuous time dynamic optimization 
model with two state variables produces cyclical fluctuations. For example, Asada, 
Semmler and Novak(1998) proved analytically that Romer’s (1990) continuous time 
dynamic optimization model of endogenous growth with two state variables entails only 
the monotonic convergence to the equilibrium point. 
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2. Survey of general theory2. Survey of general theory2. Survey of general theory2. Survey of general theory    

  In this section, we survey some useful analytical results on the existence of cyclical 

fluctuations in continuous time dynamic optimization and non-optimization models. 

First, let us quote the following ‘Hopf Bifurcation theorem’ which describes a set of 

sufficient conditions for the existence of the closed orbits in a general n-dimensional 

system of nonlinear differential equations (cf. Gandolfo 1996 Chap. 25 and Asada, 

Chiarella, Flaschel and Franke 2003 Mathematical Appendix). 

 

Theorem 1.Theorem 1.Theorem 1.Theorem 1. (Hopf Bifurcation theorem) 

  Let ),;( εxfx =&  ,nRx∈  R∈ε  be an n-dimensional system of differential 

equations depending upon a parameter .ε  Suppose that the following conditions (H1) – 

(H3) are satisfied. 

(H1) The system has a smooth curve of equilibria given by ,0));(*( =εεxf  

(H2) The characteristic equation 0));(*( 00 =− εελ xDfI  has a pair of pure 

imaginary roots ),( 0ελ  )( 0ελ  and no other roots with zero real parts, where 

));(*( 00 εεxDf  is the Jacobian matrix of the above system at )),(*( 00 εεx  

with the parameter value ,0ε  

(H3) ,0
)}({Re

0

≠
=εεε

ελ
d

d
 where )(Re ελ  is the real part of ).(ελ  

  Then, there exists a continuous function )(γε  with ,)0( 0εε =  and for all 

sufficiently small values of 0≠γ  there exists a continuous family of non-constant 

periodic solution ),( γtx  for the above dynamical system, which collapses to the 

equilibrium point )(* 0εx  as .0→γ  The period of the cycle is close to ),(Im/2 0ελπ  

where )(Im 0ελ  is the imaginary part of ).( 0ελ  

 

  The point 0εε =  that satisfies all of the above conditions (H1) – (H3) is called the 

‘Hopf Bifurcation point’. An important necessary condition for the occurrence of Hopf 

Bifurcation is that the characteristic equation of the above system has a pair of pure 

imaginary roots at .0εε =  It is well known that the typical continuous time dynamic 

optimization model with single state variable has two characteristic roots and at least 

one of which has positive real part, so that the Hopf Bifurcation cannot occur in such a 

model. But, Dockner and Feichtinger (1991) and Asada and Yoshida (2003) proved 
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analytically that the existence of Hopf Bifurcation is at least potentially possible if we 

consider the continuous time dynamic optimization model with two state variables. 

  Following Dockner and Feichtinger(1991) and Asada and Yoshida(2003), let us 

consider the following typical continuous time dynamic optimization problem with two 

state variables. 

  Maximize dteuuukkF rt

n

−∞

∫ ),,,,,( 212
0

1 L          (1) 

subject to 

  ),,,,,,( 21211 nuuukkfk L& =  ),;,,,,,( 21212 εnuuukkgk L& =     (2) 

  ,)0( 101 givenkk ==  ,)0( 202 givenkk ==          (3) 

where )2,1( =ik i  are two state variables, ),,2,1( nju j L=  are control variables, r  

is the rate of discount that is a positive parameter, and ε  is another parameter.2 We 
assume that the functions ,F  ,f  and g  are at least twice continuously 

differentiable. 

  We can solve this problem by means of Pontryagin’s maximum principle (cf. Chiang 

1992 and Dockner, Jorgensen, Van Long and Sorger 2000). First, let us define the 

current value Hamiltonian as 

  ),,,,,(),,,,( 212112121 nn uuukkfuuukkFH LL µ+=  

       ),;,,,,,( 21212 εµ nuuukkg L+             (4) 

where 1µ  and 2µ  are two costate variables which correspond to two state variables 

1k  and 2k  respectively. Then, a set of necessary conditions of the optimality becomes 

as follows. 

( i )   ii Hk µ∂∂= /&   )2,1( =i  

( ii )  iii kHr ∂∂−= /µµ&   )2,1( =i  

( iii ) HMax
nuuu ),,,( 21 L

 

( iv )  0lim =−

∞→

rt

ii
t

ek µ   )2,1( =i          (5) 

  The conditions (5)( i ) are equivalent to the dynamic constraints (2). The conditions 

(5)( ii ) are a set of differential equations which describe the dynamics of the costate 

variables. We suppose that the condition (5)( iii ) are equivalent to the following first 

                                                   
2 We can introduce other parameters which affect functions F  and ,f  but the 

formulation in the text is sufficient for our purpose. 
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order conditions.3 

  0/ =∂∂ juH   ),,2,1( nj L=         (6) 

This is a set of simultaneous equations with respect to the control variables. We assume 

that its solution is uniquely determined and it can be expressed by the following 

continuously differentiable functions. 

  );,,,( 2121 εµµkkuu jj =   ),,2,1( nj L=         (7) 

The conditions (5)( iv ) are called the ‘transversality conditions’. 

  Substituting the relationships (7) into (5)( i ) and (5)( ii ), we obtain the following 

four-dimensional system of linear or nonlinear differential equations. 

( i )  );,,,( 212111 εµµkkGk =&  

( ii )  );,,,( 212122 εµµkkGk =&  

( iii ) ),;,,,( 212131 εµµµ rkkG=&  

( iv ) ),;,,,( 212142 εµµµ rkkG=&          (8) 

We shall consider the dynamics of this system around the equilibrium point by 

assuming that there exists a meaningful equilibrium solution *)*,*,*,( 2121 µµkk  of 

this system such that .02121 ==== µµ &&&& kk  

  Let us write the (4✕4) Jacobian matrix of this system at the equilibrium point as .J  

Then, we can write the characteristic equation of this system as 

  ,0)( 43

2

2

3

1

4 =++++=−≡∆ aaaaJI λλλλλλ        (9) 

  ,1 traceJa −=  ,22 Ma =  ,33 Ma −=  ,det4 Ja =       (10) 

where jM  is the sum of all principal j-th order minors of ).3,2( =jJ 4 

  Dockner and Feichtinger(1991) proved that the following relationships are satisfied 

in case of this particular Jacobian matrix .J  

  ,2rtraceJ =  03

23 =−+− rrMM           (11) 

Following Dockner and Feichtinger(1991), let us write 

  .22 rMK −≡                (12) 

                                                   
3 We assume that the second order conditions are also satisfied. 
4 See Mathematical Appendix of Asada, Chiarella, Flaschel and Franke(2003). 
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Then, we can rewrite Eq. (11) as 

  ,2rtraceJ =  .03 =+− rKM         (13) 

Then, we have the following expression substituting equations (12) and (13) into a set of 

relationships (10). 

  rtraceJa 21 −=−= ＜0, ,2

2 Kra +=  ,3 rKa −=  Ja det4 =     (14) 

  It is worth to note that we have 

  rtraceJ
j

j 2
4

1

==∑
=

λ ＞0,           (15) 

where )4,3,2,1( =jjλ  are the characteristic roots of Eq. (9). Therefore, this system has 

at least one root with positive real part. 

  Furthermore, Dockner and Feichtinger(1991) proved that the following set of 

conditions (DF) is equivalent to the condition (H2) in Theorem 1 in this paper. 

  Jdet ＞ ,)2/( 2K  0det)2/()2/( 22 =−+ JKrK      (DF) 

More accurately, they proved the following quite useful theorem. 

 

Theorem 2.Theorem 2.Theorem 2.Theorem 2. (Dockner and Feichtinger 1991) 

  The characteristic equation 0)( =−≡∆ JIλλ  of the particular Jacobian matrix J  

of the system (8) has the following properties ( i ) – ( iv ). 

( i )  The characteristic equation has two positive real roots and two negative real roots 

if and only if  

    K＜0,  0＜ Jdet ≦ .)2/( 2K       (16) 

( ii ) The characteristic equation has a pair of complex roots with positive real part and a 

pair of complex roots with negative real part if and only if 

      Jdet ＞ ,)2/( 2K  )2/()2/(det 22 KrKJ −− ＞0.   (17) 

( iii )  The characteristic equation has one positive real root and three roots with 

negative real parts, or it has three roots with positive real parts and one negative 

real roots if and only if 

      Jdet ＜0.        (18) 

( iv )  The characteristic equation has a pair of complex roots with positive real part 

and a pair of pure imaginary roots if and only if the condition (DF) is satisfied. 

 

  Dockner and Feichtinger(1991) expressed the result of this theorem visually by using 

Figure 1. 
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  Next, let us turn to the investigation of the conditions for the occurrence of the Hopf 

Bifurcation in a general system of nonlinear differential equations without restricting to 

the particular dynamic optimization model. It is worth noting that the following ‘Liu’s 

theorem’ provides us very powerful result that is applicable to general n-dimensional 

system of differential equations. 

 

Theprem 3Theprem 3Theprem 3Theprem 3. (Liu 1994) 

  Consider the following characteristic equation with n≧3 : 

  .01

2

2

1

1 =+++++ −
−−

nn

nnn bbbb λλλλ L      (19) 

This characteristic equation has a pair of pure imaginary roots and )2( −n  roots with 

negative real parts if and only if the following set of conditions are satisfied : 

  jA ＞0 for all },2,,2,1{ −∈ nj L  ,01 =−nA  nb ＞0,      (20) 

where )1,,2,1( −= njA j L  are Routh-Hurwitz terms defined as 

  ,11 bA =  ,
1 2

31

2
b

bb
A =  ,

0

1

31

42

531

3

bb

bb

bbb

A =  ,LL  
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0000
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001

00
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1

−−

−

−

− =

nn

nn

n

n

n

bb

bb

b

b

bb
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MMOMMMM

L
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        (21) 

 

  Although this ‘Liu’s theorem’ is quite useful in the sense that it can be applicable to 

the general n-dimensional system of differential equations, it has the following 

deficiency. The Hopf Bifurcation in which all the characteristic roots except a pair of 

purely imaginary ones have negative real parts is called the ‘simple’ Hopf Bifurcation. 
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Liu’s theorem is applicable only to the case of ‘simple’ Hopf Bifurcation. But, in the 

typical dynamic optimization model, usually there exists at least one characteristic root 

that has positive real part. This means that Liu’s theorem is inapplicable to the typical 

dynamic optimization model. On the other hand, Asada and Yoshida(2003) provided the 

following complete mathematical characterization of the criteria for the occurrence of 

the Hopf Bifurcation including the ‘non simple’ as well as the ‘simple’ case, although 

their analysis is restricted to four-dimensional system. 

 

Theorem 4.Theorem 4.Theorem 4.Theorem 4. (Asada and Yoshida 2003) 

(1) Consider the characteristic equation 

    .043

2

2

3

1

4 =++++ bbbb λλλλ         (22) 

( i )  The characteristic equation (22) has a pair of pure imaginary roots and two 

roots with non-zero real parts if and only if either of the following set of 

conditions (A) or (B) is satisfied. 

        31bb ＞0, ,04 ≠b  .0
2

34

2

1321 =−−≡Φ bbbbbb     (A) 

        ,031 == bb  4b ＜0.         (B) 

    ( ii )  The characteristic equation (22) has a pair of pure imaginary roots and two 

roots with negative real parts if and only if the following condition (C) is 

satisfied. 

          1b ＞0, 3b ＞0, 4b ＞0, .0
2

34

2

1321 =−−≡Φ bbbbbb    (C) 

(2) Consider the characteristic equation 

   ,0)()()()( 43

2

2

3

1

4 =++++ ελελελελ bbbb       (23) 

  where it is assumed that the coefficients )4,3,2,1( =jb j  are the continuously 

differentiable functions of a parameter .ε  Then, we have the following properties ( i ) 

and ( ii ). 

  ( i )  Suppose that we have )()( 0301 εε bb ＞0, ,0)( 04 ≠εb  and 

       0)()()()()()()( 2

0304

2

010302010 =−−≡Φ εεεεεεε bbbbbb  at the point .0εε =  

Then, the condition (H3) in Theorem 1 is equivalent to the following condition 

(D). 
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      0
)(

0

≠
Φ

=εεε
ε

d

d
            (D) 

( ii )  Suppose that we have ,0)( 01 =εb  ,0)( 03 =εb  and )( 04 εb ＜0 at the point 

.0εε =  Then, the condition (H3) in Theorem 1 is equivalent to the following 

condition (E). 

      0)(2)(])(4)()([ 030104

2

0202 ≠′−′−+ εεεεε bbbbb      (E) 

 

  Asada and Yoshida(2003) proved the following proposition by applying Theorem 4 (1) 

( i ) to the particular characteristic equation (9).5 

 

Proposition 1Proposition 1Proposition 1Proposition 1. (Asada and Yoshida 2003) 

( i )  The characteristic equation (9) of the particular system of differential equations 

(8) has a set of pure imaginary roots and two roots with non-zero real parts if and 

only if the following set of conditions (AY) is satisfied. 

    K＞0, 0det)2/()2/( 22 =−+ JKrK         (AY) 

( ii )  A set of conditions (AY) is equivalent to a set of conditions (DF) by Dockner and 

Feichtinger(1991). 

 

[Proof.] 

( i )  First, it follows from the relationships (14) that 

     ].det)2/()2/[(4 2222

34

2

1321 JKrKraaaaaa −+=−−≡Φ    (24) 

    Second, a set of conditions (A) in Theorem 4 (1) ( i ) is equivalent to the following set 

of conditions in case of the particular characteristic equation (9). 

    3a ＜0, ,04 ≠a  0=Φ             (25) 

    We can see from the relationships (14) that the condition 3a ＜0 is equivalent to the 

condition K＞0. Furthermore, the condition 0=Φ  is equivalent to the condition 

.0det)2/()2/( 22 =−+ JKrK  If these two conditions are satisfied, we also have 

04 ≠a  because of the fact that )2/()2/(det 22

4 KrKJa +== ＞0. 

( ii ) First, let us suppose that a set of conditions (DF) is satisfied. In this case, we have 

    )2/()2/(det 22 KrKJ += ＞ ,)2/( 2K          (26) 

    which means that K＞0. This proves the causality (DF)⇒ (AY). 

    Next, let us suppose that a set of conditions (AY) is satisfied. Also in this case, we 

                                                   
5 We reproduce the proof here. The method of proof is quite simple and straightforward. 
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have the relationship (26), which means that a set of conditions (DF) is satisfied. 

This proves the causality (AY)⇒ (DF). □ 

 

Remark 1.Remark 1.Remark 1.Remark 1.    

  Comparing Theorem 2 ( iv ) and Proposition 1, we can see that the particular 

characteristic equation (9) has a pair of pure imaginary roots and two complex roots 

with positive real parts if a set of conditions (AY) is satisfied. In this case, the condition 

(D) in Theorem 4 (2) ( i ) is equivalent to the condition 

  .0]det)2/()2/[(

0

22 ≠−+
=εεε

JKrK
d

d
        (27) 

 

  In the next section, we shall apply the analytical results which were surveyed in this 

section to an extended version of Gaskins’ (1971) model of dynamic limit pricing. 

 

 

3. An application to dynamic limit pricing3. An application to dynamic limit pricing3. An application to dynamic limit pricing3. An application to dynamic limit pricing    

3 3 3 3 –––– 1. Gaskins 1. Gaskins 1. Gaskins 1. Gaskins’’’’ prototype model of dynamic limit pricing prototype model of dynamic limit pricing prototype model of dynamic limit pricing prototype model of dynamic limit pricing    

  First, let us summarize the prototype model of dynamic limit pricing that was 

originated by Gaskins(1971). We consider a partial equilibrium model of an industry in 

which one dominant large firm and many small fringe firms exist. The demand function 

is expressed by the following linear decreasing function : 

  bpaq −=  ; a＞0, b＞0,          (28) 

where q  is the demand for the product of this industry, p  is the price of this product., 

and ,a  b  are two parameters of the demand function.6 

  The dominant large firm acts as the price leader (the price setter) subject to the 

threat of entry by the fringe firms. Fringe firms behave as price takers and the entry 

dynamics of the fringe firms are expressed by the differential equation 

  )( ppx −=α&  ; α ＞0, p＞0,      (29) 

where x  is the total output of fringe firms and ,α  p  are parameters of the entry 

dynamics. It is assumed that the dominant large firm selects its output level 

corresponding to ),( xq −  and the average cost of the dominant large firm )(c  is 

constant. Then, the discounted present value of the dominant large firm becomes 

                                                   
6 Gaskins(1971) used more general demand function that is not necessarily linear, but 
we use the linear demand function for simplicity of the analysis following Dixit(1990) 
Chap. 10. 
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  ∫
∞ −−−−=
0

,))(( dtexbpacpW rt              (30) 

where r  is the rate of discount, which is a positive parameter. 

  The dominant large firm is supposed to select the dynamic path of price )( p  that 

maximizes W  subject to the dynamic constraint (29) and given initial value ).0(x  

Although this is a typical dynamic optimization problem of single agent with one state 

variable ),(x  we can interpret that this is implicitly a kind of Stackerberg differential 

game in which the dominant large firm acts as the leader and fringe firms act as 

followers (cf. Asada and Semmler 2004).7 

  The current value Hamiltonian of this dynamic optimization problem can be written 

as 

  ),())(( ppxbpacpH −+−−−= µα          (31) 

where µ  is the costate variable corresponding to the dynamic constraint (29). A set of 

necessary conditions for optimality becomes as 

( i )  ,/ µ∂∂= Hx&  

( ii )  ,/ xHr ∂∂−= µµ&  

( iii )  ,HMax
p

 

( iv )  .0lim =−

∞→

rt

t
exµ                (32) 

  Solving Eq. (32) ( iii ) with respect to ,µ  we have ).( pµµ =  Substituting this 

relationship into equations ( i ) and ( ii ) in (32), we obtain the following two dimensional 

system of differential equations with single transversality condition, where the initial 

value of the state variable )0(x  is pre-determined, but the initial value of the control 

variable )0(p  is not pre-determined. 

( i )  ),(1 pxFx =&  

( ii )  ),(2 pxFp =&  

( iii )  0)(lim =−

∞→

rt

t
epxµ          (33) 

  Gaskins(1971) proved that the economically meaningful equilibrium point such that 

0== px &&  exists under some reasonable conditions, and it becomes a saddle point, 

namely, the (2☓2) Jacobian matrix of this system at the equilibrium point has one 

positive real root and one negative real root. This means that there exists only one 

initial value )0(p  that ensures the convergence to the equilibrium point corresponding 

                                                   
7 As for the exhaustive exposition of the theory of differential game, see Dockner, 
Jorgensen, Van Long and Sorger(2000). 
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to the given initial value ).0(x  Only the convergent path satisfies the transversality 

condition (33) ( iii ).  

  In sum, in Gaskins’ prototype model cyclical fluctuations do not occur but only the 

monotonic convergence to the equilibrium point occurs. 

 

3 3 3 3 –––– 2. Cyclical fluctuations in an extended Gaskins model of dynamic limit pricing 2. Cyclical fluctuations in an extended Gaskins model of dynamic limit pricing 2. Cyclical fluctuations in an extended Gaskins model of dynamic limit pricing 2. Cyclical fluctuations in an extended Gaskins model of dynamic limit pricing    

  It is possible to extend and develop Gaskins’ prototype model in several ways. For 

example, Judd and Petersen(1986) and Asada and Semmler(2004) extended Gaskins 

model by introducing the investment behaviors of firms. In particular, Asada and 

Semmler(2004) provided an example of the occurrence of cyclical fluctuations in such an 

extended model by means of numerical simulations. In this subsection, we shall present 

another simple extension of Gaskins model that can produce cyclical fluctuations, which 

is an example of the direct application of the analytical results summarized in section 2 

of this paper. 

  Instead of the dynamic constraint (29), let us adopt the following new formulation. 

  )( ppx e −=α&  ; α ＞0, p＞0,       (34) 

  )( ee ppp −= β&  ; β ＞0,           (35) 

where ep  is the expected price, which is the price expected by fringe firms. Eq. (35) 

means that the dynamic of expected price is governed by a formula of adaptive 

expectation hypothesis, and β  is the speed of adaptation that can be interpreted as 

the reciprocal of the average time lag of expectation adaptation.8 

  The dynamic optimization problem of the dominant large firm is to select the dynamic 

path of price )( p  that maximizes W  in Eq. (30) subject to two dynamic constraints 

(34), (35) with given initial values of two state variables )0(x  and ).0(ep  In this case, 

the current value Hamiltonian becomes 

  ),()())(( 21

ee ppppxbpacpH −+−+−−−= βµαµ       (36) 

where 1µ  and 2µ  are two costate variables which correspond to two state variables 

x  and ep  respectively. 

  A set of necessary conditions for optimality becomes 

( i )  ),(/ 1 ppHx e −=∂∂= αµ&  

( ii )  ),(/ 2

ee ppHp −=∂∂= βµ&  

( iii )  ,/ 111 cprxHr −+=∂∂−= µµµ&  

( iv )  ,)(/ 1222 αµµβµµ −+=∂∂−= rpHr e
&  

                                                   
8 In the appendix of this paper, we reinterpret this equation by means of a continuously 
distributed lag model of expectation formation. 



 14

( v )  ,HMax
p

 

( vi )  ,0lim 1 =−

∞→

rt

t
exµ  .0lim 2 =−

∞→

rte

t
ep µ           (37) 

  Now, let us turn to the condition (37) ( v ). The first order condition for the 

maximization of H  with respect to p  becomes9 

  .02/ 2 =++−+−=∂∂ βµbcxabppH         (38) 

Solving this equation with respect to ,p  we have 

  ).(
2

1
2βµ++−= bcxa

b
p            (39) 

Substituting Eq. (39) into Eq. (37) ( i ) – ( iv ), we obtain the following four-dimensional 

system of linear differential equations. 

( i )  );()( 1 αα ee pGppx ≡−=&  

( ii )  );,,(})(
2

1
{ 222 βµβµβ eee pxGpbcxa
b

p ≡−+−−=&  

( iii )  ),;,,()(
2

1
213211 βµµβµµµ rxGcbcxa

b
r ≡−++−+=&  

( iv )  ),,;,()( 214122 βαµµαµµβµ rGr ≡−+=&            (40) 

  Next, we shall consider the nature of the equilibrium solution *)*,*,*,*,( 21 µµppx e  

that satisfies .021 ==== µµ &&&&
epx  It is easy to see that we have 

  ppp e == ** ＞0.          (41) 

Other three equilibrium values are determined by the following linear system of 

equations. 

  

















−

−+

=

































+−

−

−

0

2

0

21

01

2

1 abc

abcpbx

r

br

µ
µ

βα
β

β

           (42) 

It is easy to see that the solution of this system of equations becomes 

  
)(

)2(
)(

)()2(
*

β
αβ

β
αββ

+
−−−=

+
−+−−

=
rr

p
bcpba

rr

prrbcpba
x   

     ＜ ,2 bcpba −−                 (43)  

r

p−
=*1µ ＜0,              (44) 

                                                   
9 Since bpH 2/ 22 −=∂∂ ＜0, the second order condition is always satisfied. 
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β

αµ
β

α
µ

+
=

+
−

=
rrr

p *

)(
* 1
2 ＜0.             (45) 

 

Proposition 2.Proposition 2.Proposition 2.Proposition 2.    

  We have *x ＞0 for all β ＞0 if the parameter a (upper limit of demand) is fixed at 

sufficiently large positive value and the parameter α (adjustment speed of entry) is 

fixed at sufficiently small positive value. 

 

[Proof.] 

  It is easy to see that we have *x ＞0 if and only if the inequality 

  αβββ prrbcpbaZ −+−−≡ )()2()( ＞0     (46) 

is satisfied. Incidentally, we have 

  ,)2()0( 2rbcpbaZ −−=             (47) 

  .)2()( αβ prbcpbaZ −−−=′           (48) 

Therefore, we have )0(Z ＞0 and )(βZ ′ ＞0 if a  is sufficiently large and α  is 

sufficiently small. In this case, we obtain )(βZ ＞0 for all β ＞0, which means that we 

have *x ＞0 for all β ＞0.  □ 

 

  Now, let us study the dynamic property of this model by assuming as follows. 

 

Assumption 1.Assumption 1.Assumption 1.Assumption 1.    

  The combination of the parameter values ),( αa  is at the level such that *x ＞0 for 

all β ＞0. 

 

  The Jacobian matrix of this system becomes 

  .

00
2

0
2

1
2

0
2

000
2























+−

−

−−
=

βα

β

β
β

β
α

r
b

r
b

bbJ         (49) 

We can write the characteristic equation of this system as 

  ,0)( 43

2

2

3

1

4 =++++=−≡∆ aaaaJI λλλλλλ        (50) 

where 

  rtraceJa 21 −=−= ＜0,         (51) 

  == 22 Ma sum of all principal second-order minors of J  
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βα

ββ
ββ

ββ
β

α

+−
+

+

−+
−

+
+

+−+−−=
r
b

r

br
brrr

bb
2

0
20

0

0

00

2

1
00

2

0
2

 

     ),(2 β
α

β −−+= r
b

r             (52) 

  −=−= 33 Ma (sum of all principal third-order minors of ),J      (53) 

  )(det
2

)(
det4 β

βαβ
J

b

rr
Ja ≡

+
== ＞0.         (54) 

  Since this dynamic optimization model with two state variables is only a particular 

case of the model that was explained in section 2, we can apply Theorem 2 in section 2 to 

this model. To this purpose, let us consider the following three relationships. 

  ),()(22

2 ββ
α

β Kr
b

rMK ≡−+−=−≡           (55) 

  JK det)2/()( 2 −≡Ω β  

   ],})(
2

1
{)(

2

1
[
2

2
223

b

r

b

r

b
r

b
r

α
β

αα
β

α
β

β
−−−+−+=        (56) 

  JKrK det)2/()2/()( 22 −+≡Ψ β  

   ].)4()(
2

1
[ 323 rr

bbb
r −−+−+= β

αα
β

α
ββ         (57) 

 

  Now, we can prove the following important results by applying Dockner and 

Feichtinger’s theorem (Theorem 2 in section 2). 

 

Proposition 3.Proposition 3.Proposition 3.Proposition 3.    

  Suppose that 0＜ r＜ .
b

α
 Then, we have the following properties ( i ) – ( ii ). 

( i ) The characteristic equation (50) has a pair of complex roots with positive real part 

and a pair of complex roots with negative real part for all sufficiently small values 

of β ＞0. 

( ii ) Eq. (50) has two positive real roots and two negative real roots for sufficiently large 

values of β ＞0. 

 

[Proof.] 

  Suppose that 0＜ r＜ .
b

α
 Then, the function )(βK  becomes a differentiable function 

that has the following property )( 1P  because of Eq. (55). 
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   ,0)0( =K  )(βK ′ ＞0 for all ),
2

/
,0[

rb −
∈

α
β  ,0)

2

/
( =

−′ rb
K

α
 )(βK ′ ＜0 for all 

),,
2

/
( ∞

−
∈

rbα
β  ,0)( =− r

b
K

α
 .)(lim −∞=

∞→
β

β
K       )( 1P  

 

On the other hand, the functions ),(det βJ  )(βΩ  and )(βΨ  become the differential 

functions which have the following properties )()( 42 PP −  because of the equations (54), 

(56) and (57). 

 

  ,0)0(det =J  )(det βJ ′ ＞0 for all ),,0[ ∞∈β  .)(detlim ∞=
∞→

β
β

J      )( 2P  

  ,0)0( =Ω  
b

r

2
)0(

2α
−=Ω′ ＜0, 

4

1)(
lim

4
=

Ω
∞→ β

β
β

＞0.      )( 3P  

  ,0)0( =Ψ  3)0( r−=Ψ′ ＜0.             )( 4P  

 

  These properties )()( 41 PP −  imply the following results.  

The combination )det,( JK  is located at the origin of Figure 1 when .0=β  As β  
increases from ,0=β  this combination moves to the north-east direction continuously  

until it reach the point ,
2

/ rb −
=
α

β  and the property )( 4P  implies that this 

combination is located at the region B  of Figure 1 for all sufficiently small values of 

β ＞0. After the point ,
2

/ rb −
=
α

β  this combination moves to the north-west 

direction continuously and indefinitely according as the further increase of .β  At the 

point r
b

−=
α

β  this combination is located at the vertical axis of Figure 1.  On the 

other hand, 
4

)(
lim

β
β

β

Ω
∞→

＞0 implies that )(βΩ  becomes positive for all sufficiently 

large values of β ＞0. This means that the combination is located at the region A  of 

Figure 1 for all sufficiently large values of β ＞0.  □ 

 

Proposition 4.Proposition 4.Proposition 4.Proposition 4.    

  Suppose that 0＜ r＜
b

α
 and r  is sufficiently small. Then, there exist the parameter 
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values )4,3,2,1( =jjβ  such that 0＜ 1β ＜
2

/ rb −α
＜ 2β ＜ r

b
−

α
＜ 3β ≦ 4β ＜∞  which 

satisfy the following properties ( i ) – ( iv ). 

( i )  The characteristic equation (50) has a pair of complex roots with positive real part 

and a pair of complex roots with negative real part for all ).,(),0( 321 ββββ ∪∈  

( ii )  Eq. (50) has four roots with positive real parts for all ).,( 21 βββ ∈  

( iii ) Eq. (50) has a pair of complex roots with positive real part and a pair of pure 

imaginary roots at two points 1ββ =  and .2ββ =  

( iv ) Eq. (50) has two positive real roots and two negative real roots for all ).,[ 4 ∞∈ ββ  

 

[Proof.] 

  Suppose that 0＜ r＜
b

α
. In this case, it follows from the method of the proof of 

Proposition 3 that there exist the parameter values )3,2,1( =jjβ  such that 0＜ 1β ＜

2

/ rb −α
＜ 2β ＜ r

b
−

α
＜ 3β  with the properties that ( i ) the trajectory of the 

combination )det,( JK  is located at the region B  in Figure 1 for all 

),,(),0( 321 ββββ ∪∈  ( ii ) it is located at the region D  in Figure 1 for all 

),,( 21 βββ ∈  and ( iii ) it crosses the curve C  at two points 1ββ =  and ,2ββ =  if 

and only if the inequality )
2

/
(

rb −
Ψ

α
＞0 is satisfied, where we have 

  23 )
2

/
)((

2

1
)

2

/
)[(

2

/
()

2

/
(

rb
r

b

rbrbrb −
−−

−−
=

−
Ψ

ααααα
 

                ])
2

/
)(4)(( 3r

rb
r

bb
−

−
−+

ααα
        (58) 

from Eq. (57). It follows from Eq. (58) that 

  4

0
)

2
(
2

9
)

2

/
(lim

b

rb

r

αα
=

−
Ψ

→
＞0,         (59) 

which means that we have )
2

/
(

rb −
Ψ

α
＞0 for all sufficiently small values of r＞0 by 

continuity.  This proves ( i ) – ( iii ) of Proposition 4. Proposition 4 ( iv ) directly follows 

from Proposition 3.  □ 

 

Proposition 5.Proposition 5.Proposition 5.Proposition 5.    
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Suppose that r≧ .
b

α
 Then, there exists a parameter value ),0(0 ∞∈β  that satisfy 

the following properties ( i ) – ( ii ). 

( i ) The characteristic equation (50) has a pair of complex roots with positive real part 

and a pair of complex roots with negative real part for all ).,0( 0ββ ∈  

( ii ) Eq. (50) has two positive real roots and two negative real roots for all 

).,[ 0 ∞∈ ββ   

 

[Proof.] 

  Suppose that r ≧ .
b

α
 Then, the differentiable function )(βK  has the following 

property .)( 1
′P  

 

  ,0)0( =K  ,0)0( =′K  )(βK ′ ＜0 for all β ＞0, −∞=
∞→

)(lim β
β

K  if ,
b

r
α

=  and 

  ,0)0( =K  )(βK ′ ＜0 for all β ≧0, −∞=
∞→

)(lim β
β

K if r＞ .
b

α
     )( 1

′P  

 

On the other hand, the properties )( 2P  and )( 3P  in the proof of Proposition 3 apply 

also in this case. 

  The properties )( 1
′P  and )( 2P  mean that the combination )det,( JK  is located at 

the origin of Figure 1 when ,0=β  and this combination moves to the north-west 

direction continuously and indefinitely as β  increases. The property )( 3P  implies 

that this combination is located at the region B  of Figure 1 for all sufficiently small 

values of β ＞0, and it is located at the region A  of Figure 1 for all sufficiently large 

values of β ＞0. This means that there exists a parameter value ),0(0 ∞∈β  that 

satisfy the property ( i ) of Proposition 5, and we have 

  ,0)( 0 =Ω β  ])(
2

1
)(2

2

3
[

2
)( 2

0

2

0
0

0
b

r

b
r

b
r

αα
β

α
β

β
β −−+−+=Ω′ ＞0.   (60) 

In other words, the switching of the regions AB →  (we call it ‘forward switching’) 

occurs at the point .0ββ =  Next, let us consider whether the ‘backward switching’ (the 

switching of the regions BA→ ) occurs according as the further increase of the 

parameter value .β  For this purpose, let us suppose tentatively that there exists 

another switching point ),(* 0 ∞∈ ββ  such that 

  ,0*)( =Ω β  ].)(
2

1
*)(2*

2

3
[

2

*
*)( 22

b

r

b
r

b
r

αα
β

α
β

β
β −−+−+=Ω′    (61) 



 20

Comparing equations (60) and (61), we can see that *β ＞ 0β ＞0 and r≧
b

α
 imply 

  *)(βΩ′ ＞ )( 0βΩ′ ＞0,              (62) 

which contradicts that the point *ββ =  is a ‘backward’ switching point, because at 

the ‘backward’ switching point the inequality )(βΩ′ ＜0 must be satisfied. This proves 

that the ‘backward switching’ cannot occur so that the property ( ii ) of Proposition 5 is 

satisfied in case of r≧ .
b

α
  □ 

 

  Figure 2 summarizes the results of Propositions 3 – 5. In the regions )(B  and at the 

points )(C  in this figure, the cyclical fluctuations occur. In the next section, we shall 

try to provide an interpretation of the analytical results obtained in this section. 

 

 

4. An interpretation of the analytical results4. An interpretation of the analytical results4. An interpretation of the analytical results4. An interpretation of the analytical results    

  Figure 2 provides us a convenient characterization of the solution of the extended 

dynamic limit pricing model that was presented in section 3 – 2. This figure shows that 

the characteristic equation of this system has two positive real roots and two negative 

real roots (regions )(A  in this figure) irrespective of the value of the rate of discount r

＞0 if the adjustment speed of adaptive expectation β ＞0 is sufficiently large (if the 

time lag of the expectation adaptation βτ /1=  is sufficiently small). In this case, the 

equilibrium point of the system becomes a real roots type saddle point, and the number 

of the positive roots is equal to the number of the not-pre-determined costate variables 

in a system of four-dimensional linear differential equations (40). This means that the 

dominant firm can select the initial values of the costate variables which ensure the 

monotonic convergence to the equilibrium point. If and only if the convergent path is 

selected, the transversality conditions (37) ( vi ) are satisfied. This situation is 

illustrated in Figure 3.10 It is worth noting that the solution path in Figure 3 is 

qualitatively the same as that of Gaskins’ (1971) original model of dynamic limit pricing 

that was explained in section 3 – 1, which can be considered to be the limit case of 

∞→β ).0( →τ  

  Figure 2 also shows that the characteristic equation of this system has a pair of 

complex roots with positive real part and a pair of complex roots with negative real part 

                                                   
10 Note that Eq. (39) means that the initial value of price )0(p  is determined if the 

initial value of a state variable )0(x  is given and the initial value of a costate variable 

)0(2µ  is selected. 
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(regions )(B  in this figure) irrespective of the value of r＞0 if β ＞0 is sufficiently 

small (if βτ /1=  is sufficiently large). In this case, the equilibrium point becomes a 

complex roots type saddle point, and also in this case the number of the roots with 

positive real parts is equal to the number of the not-pre-determined costate variables. 

Therefore, also in this situation the dominant firm can select the convergent path, 

which satisfies the transversality conditions. In this case, however, the cyclical 

fluctuations occur even if the dominant firm selects the convergent path. This situation 

is illustrated in Figure 4. 

  Case 1b of Figure 2 provides us an additional important information in case of the 

sufficiently small values of the rate of discount r＞0. In this case, the region of cyclical 

convergence )(B  is interrupted by the region ),(D at which the characteristic 

equation has four roots with positive real parts. If the parameter values are located at 

the region ),(D  it is impossible to satisfy the transversality conditions unless the 

initial values of two state variables are given at the equilibrium levels. In this case, a 

system of four-dimensional linear differential equations (40) fails to characterize the 

optimal solution. 

  Next, let us pay attention to two boundary points between the regions )(B  and )(D  

in Case 1b of Figure 2, namely the points 1β  and .2β  At these points, the 

characteristic equation has a pair of complex roots with positive real parts and a pair of 

pure imaginary roots. These points correspond to the (degenerated) Hopf Bifurcation 

points in a system of linear differential equations. Also in this case, the number of the 

roots with positive real parts is equal to the number of the not-pre-determined costate 

variables. Hence, the dominant firm can select the non-divergent dynamic path. In this 

case, however, the non-divergent path does not converge to the equilibrium point but it 

becomes a closed orbit around the equilibrium point. The combination ),( xp  continues 

to move along the closed orbit without becoming non-positive if the initial values of the 

state variables are not extremely far from the equilibrium point, and the dynamic path 

along the closed orbit satisfies the transversality conditions (37) ( vi ). This means that 

the closed orbit becomes the optimal path in this case. This situation is illustrated in 

Figure 5. 

  It must be noted that the Hopf Bifurcations in this model are ‘degenerated’ types 

because of the linearity of the dynamic system. This means that the probability of the 

occurrence of the closed orbit becomes ‘measure zero’ in the half line β  in Case 1b of 

Figure 2. Nevertheless, the (converging) cyclical fluctuations occur at the wide range of 

the parameter value β ＞0 in this extended dynamic limit pricing model. 
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AppendixAppendixAppendixAppendix    

  In this appendix, we reinterpret Eq. (35) in the text by means of a continuously 

distributed lag model of expectation formation following the procedure that was adopted 

by Shinkai(1970) and Yoshida and Asada(2007). Let us assume that the expected price 

is the weighted average of actual past prices, that is, 

  ∫ ∞−
=

t
e dsssptp ,)()()( ω           (A1) 

where )(sω  is a weighting function such that 

  )(sω ≧0, ∫ ∞−
=

t

dss .1)(ω            (A2) 

In particular, we assume that our model is described by means of the following ‘simple 

exponential distributed lag’(cf. Shinkai 1970 Chap. 6 and Yoshida and Asada 2007).11 

  ))(/1()/1()( stes −−= ττω ≧0 ; τ ＞0        (A3) 

Substituting (A3) into (A1), we obtain 

  ∫ ∞−
=

t
ste dsespetp .)()/1()( )/1()/1( ττ τ           (A4) 

Differentiating (A4) with respect to ,t  we obtain 

  )},()(){/1()( tptptp ee −= τ&          (A5) 

which is equivalent to Eq. (35) in the text if we write ./1 τβ =  We can interpret τ  as 

the average time lag of expectation adaptation. 

 

 

                                                   

11 We have ∫ ∫∞− ∞−

=
−∞=

−−−− ===
t t

ts

s

ststst eedseedse .1][)/1()/1( )/1()/1()/1()/1())(/1( τττττ ττ  
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