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Abstract

This article considers a contest model of an n-team professional sports
league. The market areas in which teams are located may differ from one an-
other and each team may have different preferences for winning. In a general
asymmetric sporting contest, we demonstrate that under standard assump-
tions, there exists a unique non-trivial Nash equilibrium in which at least
two teams must be active in equilibrium. In addition, we prove that at the
non-trivial equilibrium, each team’s winning percentage and playing talent

are determined by its composite strength—market size and win preference.
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1 Introduction

The main purpose of this paper is to demonstrate the existence of pure-strategy Nash
equilibria in an “n” team sporting contest. Since the seminal papers of Szymanski
(2003, 2004) and Szymanski and Késenne (2004), the Nash equilibrium model has
been used in the analysis of professional team sports. However, many papers have
been restricted to a two-team league model (Chang and Sanders, 2009; Cyrenne,
2009; Dietl et al., 2009). Dietl et al. (2008) that is considered a more general
n-team league model; however, it is based on the assumption that all teams have
identical revenue generating potential and cost functions. Thus the sporting contest
is symmetric. These restrictions most probably apply to the Nash equilibrium model
in sports because of the difficulty in managing non-identical teams with respect to
their market size or drawing potential by conventional means, which treat the Nash
equiﬁbrium as a fixed point of the best response mapping. This entails working in
a dimension space equal to the number of teams. In the present study, we adopt an
alternative approach introduced in Cornes and Hartley (2003, 2005), which allows
us to work completely with functions of a single variable, considerably simplifying
the analysis. We will prove that there exists a unique non-trivial Nash equilibrium
in which at least two teams must be active in equilibrium.

In addition, this study demonstrates that at the non-trivial equilibrium, each
team’s winning percentage and playing talent are determined by its composite
strength, its market size and win preference. The findings’ implications are sig-
nificant for the premise of competitive-balance rules such as revenue sharing and
salary caps. It has been recognized that unrestricted competition between teams
will lead to a league dominated by a few large-market teams with strong-drawing
potential. In the theoretical literature on sports contests, however, this situation is
not self-evident. Szymanski and Késenne (2004, p. 169) demonstrated that if there
is no revenue sharing in equilibrium, a large-market, team will dominate a small one
in a two-team league. However, Késenne (2005, p. 103) observed that this result

does not necessarily hold in an n-team model. Moreover, Késenne (2007, pp. 54-55)



and Dietl et al. (2011) demonstrated that if team objectives maximize a combination
of profits and wins, as introduced by Rascher (1997), a large-market team will not
always dominate a small one in equilibrium, but these studies are restricted to two-
team models.! The contribution of the present study is in unifying and clarifying
the results of these studies by putting them into a more general n-team model.
The rest of the paper is organized as follows. Section 2 explains the basic model
and the assumptions. In Section 3, we establish the existence of Nash equilibria in
an n-team sporting contest. In this section, we also compare the winning percentage
and playing talent of teams of different market sizes and win preferences. Concluding

remarks are presented in Section 4.

2 The Model

We consider a professional sports league consisting of n(> 2) teams where each
team i(=1,--- ,n) independently chooses a level of talent, ¢;(> 0), to maximize the
objective function. Our analysis of the sports league is formulated as a simultaneous-
move game and the solution concept we use throughout the study is tflat of a pure-
strategy Nash equilibrium.

By assuming a competitive labor market and following the sports economics
literature, talent can be hired in the players’ labor market at a constant marginal

cost ¢ > 0; hence, the cost function can be written as
Ci(t;) = ct;. (1)
On the revenue side, the season revenue function of a team is defined as
R; = Ri(w). (2)

R; is total season revenue of team 3, w; is the winning percentage of the team. It is

common in the sports economics literature to assume the following.

Assumption 1. For all i, the function R; satisfies R;(0) = 0 and R;(w;) > 0 for
w; € (0,1]. Moreover, R; is twice differentiable and either satisfies R, > 0 and
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R, <0 forallw; € (0,1], or there ezists a w; € (1/n,1] such that if w; > w;, then

R! < 0; otherwise, R, > 0, and R; < 0 elsewhere.

This assumption reflects the uncertainty of outcome hypothesis (Rottenberg,
1956; Neal, 1964) that consumers in aggregate prefer a close match to one that is
unbalanced in favor of one of the teams.

The win percentage is characterized by the contest success function (CSF). The
most widely used functional form in sporting contests is the logit that can be written

as

Evti - ifti>0andT_i>0,
Wity -+ ,t) = § 2ETT (3)

0 otherwise,
where T; = 377, t;.> The factor n/2 results from the fact that winning percentages
must average to 1/2 within a league during any one year; that is, = >0 w; = 1/2.
Notice that for the two-team models, the logit CSF (3) does not place a restraint
on the teams’ choices. However, for the n-team models this is not the case with
the logit CSF (3). More precisely, the winning percentage can be larger than one if
a team holds more than 2/n per cent of total league talent (with normalization of

" . t; to one). To avoid this, we can define the winning percentage as
§=1"7

t;
wilts, -+ ) = min{gti — 1}. (4)

Consequently, the profit of team 4 is described by
mi(t1, -+ tn) = Ri(w;) — ct;. (5)

As in Rascher (1997), Késenne (2007, p.5), and Dietl et al. (2011), the objective
function of team ¢ is given by a linear combination of profits and wins, which can

be written as
ui(ty, - -+, tn) = m + vw;, (6)

where ; > 0 is the weight parameter that characterizes the weight team ¢ places on

winning in the objective function. Thus, the objective function allows teams to be
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more profit oriented or more win oriented because the weight parameter 7; can be
different for every team. The objective of each team is to maximize u; with respect
to ¢;. We refer to this objective function as the payoff function of team 3.

Finally, it is occasionally assumed that the total supply of talent is fixed in the
analysis of sports leagues. Researchers who have made this assumption have used
a non-Nash conjecture to reflect this scarcity in each team’s first-order condition
(Fort and Quirk, 1995; Vrooman, 1995). In this case and for a two-team league,
we have g% = —1. Indeed, although opinion is divided among sports economists

on this subject, we use the Nash conjecture in this study (see e.g., Eckard, 2006;
Szymanski, 2004, 2006).

3 Existence Analysis

We can now calculate the best response of team i. Assume first that 7; = 0 in order
that the other teams do not spend any resources on playing talent. Then, if ¢; > 0,
the payoff is negative in light of Assumption 1 and CSF (3). If team i sets t; = 0,
the payoff becomes zero. Therefore, this game always has a trivial equilibrium point
1=1t3=---=1, =0. Our concern is with non-trivial equilibria (i.e., Y 5, > 0)
and thus no further consideration is given to the trivial point.
If T ; > 0, it follows from payoff function (6) that we have
T .

0 n i
— oL tn) =(Ri(wy; i) ————— — .
Bt,- uz(tla 3 ) (Rz(w ) + 7 ) 9 (tz + T—i)2 c (7)
As the second-order condition we obtain
82 n T_.,; " y 2
8_t,i2Ui(t1’ o ne ,t,n) = Em(R,L (w,-)—(Ri(w,-) -+ "y,;) ti T T_i) < 0 (8)

Under Assumption 1, the second-order condition (8) is satisfied. Hence, it follows
from equation (7) that given T_; > 0, team ¢’s best response function #; = ¢;(7;)
is given by
0 if (R{(0)+ )52 —c <0,
¢i(T-;) = - (9)

z; otherwise,



where z; is the unique solution of the strictly monotonic equation

n_ T

(Ri(ws) + %)

Observe that because of Assumption 1, the left-hand side of equation (10) strictly
decreases and is continuous in x; and positive at z; = 0; therefore there is a unique
solution. It is well known that a strategy profile (¢}, - ,%%) is an equilibrium if and
only if for all 4, #; is the best response with fixed values of T*,.

Further, we can rewrite the best responses of the teams in terms of aggregate
talent, which we will denote by T'= Y- ; ¢;. From equation (9), we have

A LS CORAE RIS "

I; otherwise,

where Z; is the unique solution of the equation

g(R;(wi) + %) (1 - %)—CT =0. (12)

Following Wolfstetter (1999, p. 91), we call ®;(T) the inclusive reaction function of
team 7.> Note that in the second case of (11), the left-hand side of equation (12) is
positive at Z; = 0 and strictly decreasing, because it has a negative derivative given

by

0 n,, Z; _ n?R; (w;) iy no,,
(%i{g(Ri(wi) +%) (1 - f) —cT'} = T(l - 7)—ﬁ(Ri(wi) + 7)< 0,

where the sign comes from Assumption 1.

Rather than using the inclusive reaction function directly, we will examine the
properties of player i’s share function s;(T) = q’—’;@, proposed by Cornes and Hartley
(2003, 2005). It can be readily verified that Nash equilibrium values of T’ occur where
the aggregate share function equals unity. That is, )7 | s;(T*) = 1. Given T*, the
corresponding equilibrium (¢}, --- ,¢}) is found by multiplying 7* by each team’s
share evaluated at T™: t; = T*s;(T™). This result enables us to prove the existence
of a unique equilibrium by demonstrating that the aggregate share is equal to one

ti

at a single value of T. We define team i’s share value as 0; = % and Appendix 1

proves the following lemma.



Lemma 1. Under Assumption 1, there exists a share function: s;(T). s;(T) satis-

fies
] T = / i)
sy =40 Y 2 3:(R0) + %) (13)

o; otherwise,

where o; is the unique solution of
g(l — 03) (Ri(03) + )= cT. (14)
Proof. See Appendix 1. O

We may use this lemma to infer the crucial qualitative properties of the share
function derived under Assumption 1. The full details are set out in the following

lemma.

Lemma 2. Under Assumption 1, the share function s;(T) has the following prop-

erties:
1. 8(T) is continuous,
2. limp_o8:(T) =1,
3. s(T) is strictly decreasing where positive,

4. if Ri(0) < oo, (T) > 0 for 0 < T < Z(R\(0) + ) and s(T) = 0 if
T > 2(R{(0) + ), and

C

5. if R{(0) = oo, 8;(T) >0 for all T > 0 and s;,(T) — 0 as T — co.
Proof. See Appendix 2. O

For notational simplicity, we now define ' = 2 (R;(0) + ;). It follows from
Lemma 2 that if R;(0) is finite, the share function decreases continuously from one
to zero over the interval (0,7) beyond which it takes the value zero. Following
Cornes and Hartley (2005), we call 7' the dropout value of team 4. In light of
Lemma 2, it is interesting to note that if R.(0) = oo, the dropout value is infinite

and team ¢ invests strictly positive amounts in playing talent in any equilibrium.
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Recall that a Nash equilibrium 7™ corresponds to the solution to Y- | s;(7*) = 1.
It follows from Lemma 2 that the aggregate share function is continuous, exceeds
one for sufficiently small T, is less than one for sufficiently large T, and is strictly
decreasing when positive. Therefore, the equilibrium value is unique. Finally, recall
that a unique 7" implies a unique strategy profile (#},---,t*), and we have the

following result.

Proposition 1. Under Assumption 1, the sporting contest has a unique non-trivial

Nash equilibrium in pure strategies.

The approach to share function used in this study is also useful for deriving
certain properties of the equilibrium win percentage and playing talent of team .

We can establish the following results.

Proposition 2. Suppose Assumption 1 holds for all teams. Then at the non-trivial

Nash equilibrium, we have

] S wi 8] if and only if Rj(w})+v S Rj(w]) + ;.

Proof. See Appendix 3. - O

It follows from Proposition 2 that in the non-trivial equilibrium, the teams win-
ning percentages are determined by their composite strength—the marginal revenue
of the winning percentage (R;) and the weight parameter (7;)—. Following Quirk
and Fort (1992, p. 272), we define the marginal revenue of a win for team 3 as the
market size or drawing potential for the team. In line with most of the existing
literature, if R; > R(i # j) for any given win percentage, we will refer to team 3
as the large-market (or strong-drawing) team and team j as the small-market (or
weak-drawing) team.4

First, we consider a special case in which all teams are pure profit-maximizers.

Thus, the following corollary follows from Proposition 2.

Corollary 1. Suppose all teams are pure profit-mazimizers and satisfy Assumption

1. Then, at the non-trivial Nash equilibrium we have

w} [t7] ; w; [t]] i and only if Rj(w;) § R (w}).



This corollary implies that if all teams are assumed to be profit-maximizers, the
large-market team hires more talent than the small one in the non-trivial equilib-
rium. Thus, the large-market team will always dominate competition in a league
with (pure) profit-maximizing teams. This agrees with the result of Szymanski and
Késenne (2004, p.169) for a two-team model. Késenne (2005, p. 103) observed that
this result does not necessarily hold in an n-team model. However, it follows from
Corollary 1 that Szymanski and Késenne’s results still hold in the general n-team
setting. Therefore, Corollary 1 significantly extends the result of Szymanski and
Késenne.®

Second, in view of Proposition 2, it is interesting to note that weak-drawing
teams that are more win-oriented can dominate strong-drawing teams that are more
profit-oriented, as the following examples demonstrate.

Ezample 1. Suppose R; = m;w; with m; > 0. The parameter m; represents the
market size of team 4. Using Proposition 2, it is easily seen that w} ; w; it mi+
i § m; + ;. Thus, if m; > my, v; > v, and m; + v < my; +; (i # j), then the
small-market team j dominates the large-market team .

Ezample 2. Let R, = m;w; — gwf with m; > 0 and b > 0. The parameter b
characterizes the effect of competitive balance on team revenues. Then, in view of

Proposition 2, it can be easily demonstrated that in the non-trivial Nash equilibrium

wy § wi it m; — bwf + E mj — bw} + ;; clearly, this is equivalent to
wy ; wi iff m;+y § m; + 7;. Therefore, the result is same as given in

Example 1 above.

Késenne (2004) called this phenomenon the “good” competitive imbalance be-
cause sports will be much more attractive, at least for the neutral spectator, when
a small-market team succeeds in beating large-market teams. However, Examples 1
and 2 also suggest that if the win preference of large-market teams is larger than or
equal to that of the small-market teams, a good imbalance will not occur in a pro-
fessional sports league. This follows in general from the observation of Proposition

2.

Corollary 2. Suppose Assumption 1 holds for all teams. Then, if the win preference
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of the large-market team is larger than or equal to that of the small-market team,
the large-market team has a higher winning percentage than the small-market team

in the non-trivial Nash equilibrium.

Proof. See Appendix 4. |

Késenne (2004) called this scenario the “bad” competitive imbalance because
a few large-market teams with strong drawing potential dominate the competition
year after year. Competitive-balance rules, such as revenue sharing and salary caps,
usually attempt to prevent the bad type of imbalance. Although Késenne (2007,
pp. 54-55) and Dietl ef al. (2011) demonstrated Corollary 2 , these studies are
restricted to two-team models. Therefore, the results of Késenne and Dietl et al can

be extended to a more general n-team model by Corollary 2.

4 Conclusions

This study has proven that under general conditions, a unique non-trivial Nash
equilibrium exists in a contest model of an n-team sports league in which teams
maximize a linear combination of profits and wins. Further, we have demonstrated
that if the win preference of the large-market team is larger than (or equal to)
the small-market team, then the former will dominate the latter in the non-trivial
equilibrium. We also demonstrated that if all teams are pure profit-maximizers,
then at the non-trivial equilibrium, the large market team will always dominate
competition in a league.

Over the past few years, the Nash equilibrium concept has been used in the
analysis of professional team sports. A particularly great deal of attention has been
focused on revenue sharing’s effects on competitive balance. However, when the
number of teams exceeds by two, revenue sharing’s effects on the competitive bal-
ance are not clearly described. This study applies the share function approach to a
general n-team professional sports model, an approach that avoids the dimension-

ality problem associated with the best response function approach. We believe that
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the present study may serve as a basis for further research on the effects of the

revenue sharing policy.
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Appendix 1

Proof of Lemma 1

Using o; = t;/T, we can rewrite (12) as (14). Recall that a team’s winning
percentage in (3) is determined by the ratio of its talent to all the talent in the
league. Therefore, team i’s revenue can be written as a function of o;.

Let us denote the left-hand side of (14) by h;(o;) and the right-hand side by
zi(0;). An intersection of these two functions, if any, which is a solution of (14),
determines share values. The function h;(o;) is strictly decreasing if and only if
Assumption 1 holds. It is bounded from above (i.e., h;(0) = 2(R}(0) +;)> 0) and
below (i.e., h;(1) = 0). In contrast, the function 2;(0;) is a constant function whose
value remains the same (i.e., z; = ¢T") regardless of the value of o;. Thus, we may
conclude that there is a unique share value for any 7" > 0 which is zero if and only
if 2(R{(0) + )< cT.

This completes the proof.

Appendix 2

Proof of Lemma 2

First, note that the shares are continuous (indeed differentiable where positive)
by the implicit function theorem, establishing Part 1. Second, letting 7 — 0 on
both sides of (14) demonstrates that the share must approach one as T approaches
zero, giving Part 2. To justify Part 3, we investigate the slope of s;. The total
differential of (14) has the following form:

PR'1—5)— (R L~ -
(2Ri(1 ;) 2(R,+%))da, cdT.

We can then express the slope of s; as follows:
si(T) = c <0
' sRi(1—0i) = 3(Ri+m)

The inequality follows because the denominator is negative by Assumption 1. We

can deduce that the positive shares are strictly decreasing in 7', establishing Part
3. The fourth part is an immediate consequence of Lemma 1. Finally, suppose that

the marginal revenue R}(0) is unbounded. We rewrite the equation (14) as
n(l — Ji) _ T
2¢ Ri(o) 4+
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Then, an increase in 7' implies an increase in the right-hand side of the above
equation. However, the left-hand side of it is bounded above (i.e., 7). Hence, as
T — oo for (14) to be satisfied, we must have o; — 0.

This completes the proof.

Appendix 3

Proof of Propdsition 2

Take two teams ¢ and j(i # j). If of = 0, then o} < o; necessarily holds in
equilibrium. If o} = 1, then o} > o; necessarily holds. Now consider the case where
0 < 07,07 < 1. Then, in view of (14), the first-order conditions for teams i and j

are

g(l—cr;*)(R§+%-) = cT™*,and

n *
S -o))(B)+) = T,

respectively. Dividing the first equation by the second and rearranging the terms,

we get

*

1—-o] _R;-'i")’j
1—o* R;'F%-

«

(A1)

¥

From (Al), we can assert that o} § o} if and only if

Ri+7% S R, +1;.

The proof is completed by observing that w} = %o} in context to (3).

Appendix 4

Proof of Corollary 2.

Suppose that if the win preference of a large-market team i is larger than or equal
to that of a small-market team 7, then w} < wj in the non-trivial equilibrium. Then,
it must be true that R;(w}) + v < Rj(w}) + v; in light of Proposition 2. However,
if wi < wj, we know that Rj(w}) + v, is greater than R}(w}) + 7;, because the
marginal revenue curve for the large-market team, team i, lies above the marginal

revenue curve for the small-market team, team j, for any given win percentage.

Then w; > w} by Proposition 2. This is a contradiction, since we assumed the
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winning percentage of team j is larger than or equal to that of team 7 in the non-
trivial equilibrium. Therefore, if the win preference of a large-market team i is larger
than or equal to that of a small-market team j, then w} > w; in the non-trivial
equilibrium.
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l%ot?§hat Sloane (1971) was the first to suggest that the owner of a sports team actually
maximizes utility, which may include inter alia playing success and profits.

2The logit CSF was explicitly adopted in the seminal work of El-Hodiri and Quirk (1971). Groot
(2008, pp. 97-100) has expressed the season winning percentage as follows: w; = n—t_iT ( E;;l ﬁ)
Although this equation gives the correct relationship between winning percentage and team quality,
it considerably complicates the derivative of the marginal product of talent. We therefore choose
the simple approximation of the winning percentage (3).

3Szidarovszky and Yakowitz (1977) have adapted this function to prove that there exists a
unique equilibrium in the Cournot oligopoly game.

“Burger and Walters (2003) and Krautmann (2009) empirically found that the marginal revenue
of the win of a large-market team is larger than that of a small one in Major League Baseball.

SCorollary 1 will complement Késenne (2005)’s analysis of revenue sharing.
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