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Abstract

This study sheds light on statistical properties of chaotic economic dynamics. To this
end, it builds a simple Cournot dynamic model in which reactions functions are non-
linear and goods are complements. When nonlinearities get strong enough, the output
adjustment process generates ergodic chaos. It is analytically as well as numerically
demonstrated that for both firms, a long-run average profit taken along a chaotic tra-
jectory can be higher than a profit taken at a stationary point. This result implies that
chaotic dynamics can be beneficial from the long-run point of view.
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1 Introduction

In the last two decades, the research in nonlinear economic dynamics has remarkably
advanced its role in analyzing complex phenomena. See, for example, Rosser [12]
and Majumdar, Mitra and Nishimura [8] for overview of the development of nonlinear
dynamic theory in economics. In the existing literature, much effort has been devoted
to show the existence of chaotic dynamics in various economic models. Further, Boldrin
and Montrucchio [2] reveal a qualitative aspect of chaotic dynamics, namely, they show
the efficiency of chaotic fluctuations in a discounted dynamic optimization model. In
consequence, it is confirmed that deterministic nonlinear dynamic models may explain
various erratic fluctuations observed in many economic variables. However, only limited
effort has been devoted to discover the statistical properties of such chaotic fluctuations
in the long run, and many results obtained are verified in a one-dimensional dynamic
model.

The main purpose of this study is to explore the possibility that chaotic dynamics
may be profitable from the long-run perspective even in a two-dimensional dynamic
model. For this purpose we use a Cournot dynamic model in which firms produce
complementary goods and their reaction functions are nonlinear. We demonstrate an-
alytically as well as numerically that chaotic fluctuations may be favorable phenomena
in the long-run although the existing studies have not settled this question once and
for all.!

Rand [11] has shown that a Cournot duopoly model with unimodal reaction func-
tions can give rise to chaotic dynamics of output. Since then a Cournot dynamics is
extended in various directions. Dana and Montrucchio [3] generalize Rand’s model
to infinite horizon game models and shows that firms’ intertemporal optimal strate-
gies (i.e., Markov-perfect equilibria) can be chaotic. Puu [10] and Kopel [7] present
two possible but distinct microeconomic foundations which support unimodal reaction
functions. In the former study, it is shown that the profit maximization with the hy-
perbolic market demand and the linear cost function lead to the unimodal reaction
function. In the latter, it is shown that the profit maximization with linear market
demand and the nonlinear cost function involving production externalities of the rival’s
production activities also result in the unimodal reaction function.

In both analyses, goods involved are assumed to be perfect substitutes. It is,
however, often observed in real economy that two goods are connected and affect
each other but are not perfect substitutes. The complementary relationship between
software and hardware in the computer industry is a typical example. Therefore, in
our study, in order to move one step forward and to extend their studies, we consider
the case in which goods are complements. In short, we investigate statistical properties
of chaotic fluctuations in a two-dimensional Cournot dynamic process in which goods

'Huang [5] shows that perpetual fluctuations in a simple cobweb model may be preferable to a
stationary equilibrium. On the other hand, Kopel [6] shows the inferiority of chaotic dynamics to
equilibrium in a simple model of evolutionary dynamics. Further, Matsumoto [9] shows that in a
simple exchange model with two agents and two goods, the long-run average profit taken along a
chaotic trajectory can be more than the equilibrium profit for one agent but less for the other agent.



involved are complementary and microeconomic underpinnings for chaotic fluctuations
are provided.

This paper is organized as follows. Section 2 constructs an inter-market model of
complementary goods. Section 3 examines the existence and stability of stationary
points. Section 4 considers the long-run behavior of firms to highlight asymptotic
features of the market interaction. Section 5 gives concluding remarks.

2 Model

Consider a two-market economy with complementary goods, x and y. On the demand
side of the economy, inverse demands in two markets are given by

pi(z,y) = af — Bz + (my)?
(1)

p2(x,y) = a3 — Boy + (121)?,

where p; and p, are the market prices of z and y, respectively, and «;, 5; and 7; (i =1, 2)
are non-negative constant. It can be seen that the inverse demand is downward sloping
with respect to its own product and upward sloping with respect to the other firm’s
product because x and y are assumed to be complements. Since the sales possibilities
of one firm are positively influenced by the production choice of the other firm, it can
be said that a positive sales externality arises in terms of the market demand. Further
it should be noted that the cross effect on the market price p; caused by a change in
expected production y¢ is not necessarily equal to the cross effect on p, (i.e., v1 # 72).
This is because we consider an asymmetric case while the traditional arguments are
limited to the symmetric case in which v, = 7».

On the supply side, there are two monopolistic firms; firm 1 produces goods x in
the first market, and firm 2 produces goods y in the second market. To make its
decision, each firm forecasts the other firm’s choice and faces production externalities;
it is assumed that the production possibilities of one firm is influenced by the choice of
the production level by the other firm in terms of the cost function.? Although there
are various ways to introduce production externalities, we confine our analysis to a
simple case in which the production cost linearly depends on not only its own output
but also the other firm’s output in the following way,

Cl(xa y) = ayx and Cg(y,l') = 1Y, (2)

where ¢; (i = 1,2) are nonnegative. Since the marginal cost of each firm increases
with the level of the other firm’s output, it can be said that each firm has a negative
production externality.

We thus consider a situation involving double externalities: positive externality via
the market demand and negative externality via the cost function. As a result, the

2We follow the spirit of Kopel [6] in this respect.



profit of one firm depends not only on its own output but also on the other firm’s
output. The profit functions of the two firms are accordingly,

(2, y) = pr(2, y)r — cryx
(3)

(2, y) = p2(x, y)y — cowy.

Firm 1 maximizes I1; (z, y) with respect to x, and so does firm 2 Ily(z, y) with respect
to y. The condition for the profit maximization is the equality between the marginal
revenue and the marginal cost. Solving the condition for its own output, each firm
derives its reaction function. Let r; (i = 1,2) be the solution for firm 4,

r(y) = arg max IT; (x, ),
ro(x) = argmax [y (z, y),
y

where r; is a reaction function of firm i,

of — ey + (my)?
26, ’

r(y) =

(5)
a3 — cox + (91)?

2[5

As can be seen, the reaction function takes on various shapes depending on the rel-
ative magnitude between the sales externality and the production externality. Roughly
speaking, when the sales externality is smaller (i.e., 7; is much smaller than ¢;), the
reaction curve becomes linearly downward sloping due to the dominance of the produc-
tion externality. When on the other hand, the production externality is smaller (i.e.,
¢; is much smaller than +;), it becomes quadratically upward sloping due to the domi-
nance of the sales externality. For the medium values of ¢; and ~;, the reaction function
takes on a U-shaped profile because the sales externality is dominate for smaller values
of ¢, and the production externality is dominate for larger values.

The U-shaped reaction curve shows a sharp contrast to not only the traditional
reaction curve, either downward sloping or upward sloping but also the mound-shaped
reaction curve that is often considered in the nonlinear oligopoly setting, see Puu
[10] and Kopel [7]. What is the source of such a sharp contrast ? Due to Bulow,
Geanakoplos and Klemperer [1], firms strategies are said to be strategic substitutes or
strategic complements according to whether their reaction curves are downward sloping
or upward sloping. Thus the mound-shaped reaction curve indicates the case in which
the firms changes their strategic profile from being strategic complements to strategic
substitutes. In this study, we extend the analysis by considering the case in which the
firms changes their strategic profile in the reversed order that is, from being strategic
substitutes to strategic complements.

ro(x) =



Maintaining the characteristics of the convexity of the reaction functions, we set
the values for the parameters as followings,

¢ = 205, (6)

71 = «aand y =0, (7)
1

oy = a—l,agzland31232:§. (8)

From (6)-(8), the reaction functions, (9) and (10), now have simple forms,

ri(y) = (ay—a+1)? (9)
ro(x) = (Br—1)? (10)

both are U-shaped and have critical values for which the best response is zero output. It
can be checked that (6) makes the form of the reaction function to be perfect square,
the convenient form for analytical considerations; (7) implies the asymmetric sales
externalities; (8) is set only for the analytical simplicity. Under these parametric
specifications, the marginal costs of production are (o —1)ay for firm 1 and Sz for firm
2. Then, it is further required to be e > 1 and f > 0 for nonnegative marginal costs.

We are interested in studying dynamic interactions between the two firms. To
consider the dynamic process, we lag the variables, assuming the naive expectation
formation, that is, zf = z;,_; and y; = y;_1 where the superscript, “e”, means the
expected value. At each period, one firm expects that the other firm is going to continue
to keep its output at the level of production in the previous period and decides the
best response to the expectation. The other firm can reason the same way and decides
its best output. In consequence, the dynamic process is governed by the iterations of
the following two dimensional inverted logistic map.

Ty = (o — a+ 1),
H(xtayt) : (11)
Y1 = (B — 1)

3 Stationary Points

In this section, we verify the existence conditions of the stationary points and then
the stability conditions. Before proceeding, we restrict the domain of the parameters
in order to eliminate economically meaningless cases. (9) indicates that the reaction
curve of firm 1 is U-shaped with respect to y°; it takes the value (o — 1)? for y¢ = 0,
zero for y¢ = O‘T’l and unity for y¢ = 1. It maps the unit interval into itself if o < 2.
(10) indicates that the reaction curve of firm 2 is also U-shaped with respect to x¢; it
starts at unity, produces zero output at z¢ = + and increases to (8 — 1)? for 2¢ = 1.
It also maps the unit interval into itself if 5 < 2. Therefore, when the combination of

parameters is restricted to the set,

A={(a,f) |1 <a<2and 0 <3 <2}, (12)
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H is a two-dimensional transformation of the unit set, [0,1] x [0,1]. It will be shown
shortly that such parameter restriction prevents a trajectory generated by H from
being divergent.

3.1 Existence of Stationary Point

A fixed point of H is a stationary point of the dynamical process (11). Graphically it is
the intersection of the reaction functions, r;(y) and ry(x).> It can be also constructed
through a fixed point of a one-dimensional map by combining one reaction function
with the other. Let I’ be a combined one-dimensional map from the unit interval into
itself,

F(z) =ri072(z) = (1+ afz(fz - 2))% (13)

Since F is a fourth-order polynomial, it possesses at most four roots (i.e., fixed points),

xi = F(x}) for j = 1,2,3,4. Accordingly, H has four fixed points,

S; = (x},y;) such that z7 = F(x7) and y; = ra(z}). (14)

For convenience, we assume 7 < x5 < x3 < xj when roots are real and distinct. As
illustrated in Figure 1, the number of real roots changes from two to four depending
on the specified values of the parameters.*

The general outline of F'is W-shaped for a > 1. F' generates two real roots when
its center hump is below the diagonal, as illustrated in Figure 1(a), and four when it
is above, as in Figure 1(c) and Figure 1(d). Consequently there is a boundary case, as
illustrated in Figure 1(b), in which the center hump just gets tangential to the diagonal.
There, F' has a multiple root, * = x3 = xj. Since F'(z*) lies on the diagonal, it must
satisfy the two conditions at z*, namely F'(z*) = 2* and F'(2*) = 1. To find such a
point, we differentiate F' and set the resultant expression to unity which we solve for
T,

4af(Br —1)(a(fz —1)* = (a — 1)) = L. (15)
We denote a solution of (15) with the negative second derivative (i.e., " < 0) by
2(a, 8).° Using the solution, we can divide the parameter set A into following three
subsets:

A=A\ (42U Ay),
Ay = {(a, B) € A | F&(a, ) = i(a, B) and F'(2(a, §)) = 1}, (16)

Az = {(a, ) € A| F(i(a, B)) > i(a, ) and F'(#(ev, §)) = 1}.

3We suppress the time subscript “¢” for a while only for notational simplicity.

4We can show that given a > 1, F((r) = z always has two distinct real roots, 7 and x}, such that
0 <z} <1,and z} z 1 according to 3 ; 2. In Figure 1(a), 1(b) and 1(c), z} is greater than unity so
that it is not depicted.

®(15) is a cubic equation that has at most three roots. The shape of F' indicates that one root has
a negative second derivative while the other two have positive second derivatives. Since the graphs
of F' gets tangential to the diagonal from below, two roots with positive second derivative can not
satisfy the two conditions just mentioned.
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Figure 1: Determinations of fixed points of F'(z).



We summarize these results in the following theorem.

Theorem 1 In the unit interval, F(x) has one real root, x73, for (o, B) € Ay, two real
roots, xi and xy = x}, for (a, B) € Ag, three real roots, xi, x5 and x% for (o, f) € Az
but B < 2 and four real roots, x5, x5, x5 and x} for a = = 2.

3.2 Stability and Bifurcation of Stationary Points

To investigate the stability of each stationary point, we return to the two dimensional
map, H, and linearize it to obtain its Jacobi matrix, J,

ory
0
=1 g dy |, (17)
TZ 0
ox

where an asterisk is attached to a derivative to imply that it is evaluated at the sta-
tionary point. Eigenvalues A; and A of the characteristic equation satisfy

)\1 + )\2 - 0,

Aoy — ory or; (18)
MR 0y 0
Let A = Ay = —\,. Then a stationary point is locally stable if eigenvalues are less than
unity in absolute value,
ory or;

N = |22 <L 19
= |G (19
By definition of F, F' = %—2%. The stability condition (19) indicates that if the

derivative of F' is less than (greater than) unity in absolute value, the fixed point is
stable (unstable). We can see that S, as well as Sy is unstable for all («, 5) € A because
the slope of F' at stationary point x} as well as zj is steeper than unity as illustrated
in Figure 1(c) as well as Figure 1(d). On the other hand, the slope at z} as well as 3
can be either greater or less than unity, so that S; as well as S3 can be either of stable
or unstable depending on the parameter combination of («, f3).

We first construct the sets of («, 3) for which S is stable. By Theorem 1, for
(a, B) € Ay, only Sy exists. We can divide A; into following two subsets according
whether the slope of F' is greater than unity in absolute value or not,

By = {(a, f) € Ay | [F'(z7)| < 1},
(20)
By = {(a, ) € Ay | [F'(x7) > 1},

where S is stable for (a, ) € B; and unstable for («, 3) € Bs. Since S3 emerges for
(o, B) € As, it is possible to divide A3 into two according to, again, whether the same



condition holds or not, but the derivative is evaluated at x3.

Bz = {(a, ) € As | [F'(x3)| < 1},
(21)
By = {(a, f) € As | [F'(x3)| > 1},

where Sj is stable for (a, 8) € Bs and unstable for («, ) € By. Then the above
discussions are summarized in

Theorem 2 (i) If (o, 5) € By, Sy is stable.
(i1) If (a, B) € Ba, Sy is unstable.
(ii1) If (o, B) € Bs, Sy is unstable and S is stable.

(iv) If (o, B) € By, neither Sy nor Ss is stable.

Even if a stationary point loses its local stability, the trajectories in the unit interval
are always meaningful, being always bounded, that is, divergence cannot occur in the
chosen parameter range. Figure 2(a) illustrates the parameter set A which is divided
into four subsets, By (k = 1,2,3,4).%° Figure 2(b) presents a two-parameter bifurcation
diagram that is a picture of bifurcation response of the adjustment process to changes in
the parameters.” It is produced using a 250 x 450 grid of o and 8 where 1 < o < 2 and
0.2 < 8 < 2. Different colors indicate different regions of stable, periodic or aperiodic
behavior. In the black-colored region, either S; or Ss is stable. That is, the black
triangular-like region in the lower-left, and the band-like region in the upper-right part
of Figure 2(b) correspond to B; and Bs of Figure 2(a) respectively. Complex dynamics
involving chaos occurs for («, ) in the white region. To see how dynamics change,
suppose first that the parameters are such that S; is stable (i.e., (o, 3) € By). Then
the bifurcation diagram implies that if either a or [ increases enough, S; becomes
unstable and chaotic dynamics occur after a sequence of period-doubling bifurcations.
When the pair (a, §) is in the black band-like regions in Bs, the stationary point Ss
becomes stable and attracts trajectories. For other parameter values in Bs, it can be
seen that there are regions of bistability. The periodicity tongues entering region Bj
from B, demonstrate that for such parameter values there are at least two attractors:
the stationary point and a stable cycle. In fact, the initial condition used to perform
the Figure 2(b) converges to the cycle, and we know from the stability analysis that
in that region, Sy is stable.® If the parameters increase further, a trajectory starts
oscillating again and goes through a regime of period doublings into the chaotic state.

6Tgnore the vertical dotted line for now.

"To draw the bifurcation diagram, we set the initial condition on firm 2’s reaction curve such as
xo =z and yo = ro(x) where z is the local minimum of F'.

8Each attractor has initial-condition dependency. if an initial condition is such as zo = # and
yo = r2(Z) where T is the local maxmimum of F, it converges to Ss.
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Figure 2: Stability and bifurcation of stationary points

4 Long-run Average Profit

In this section, we investigate the asymptotic behavior of the market interactions in the
long-run. We calculate the profit at a stationary point as a reference point, and then
the long-run average profit taken along a chaotic trajectory. We compare one with the
other to find whether a firm can benefit from chaotic fluctuations or not. In Section
4.1 and Section 4.2, we focus on the case with & = 8 = 2 in which we can analytically
calculate the long-run average profit. In Section 4.3 we extend our investigation to
other cases in which o« # 2 and / or 8 # 2. We perform numerical simulations to
evaluate the long-run average profits of the two firms.



4.1 Stationary Profit

We calculate the profit of each firm at a stationary point (henceforth, stationary profit)
when a = 8 = 2. The reaction functions for this case are reduced to

ri(y) =4y(y — 1) + 1 and ry(z) = 4z(x — 1) + 1. (22)
These intersect at four distinct points as illustrated in Figure 3,
S1 = (s1,53), S2 = (52,52), S3= (s3,51) and Sy = (54, 54) (23)

where
3—5 1
S1 = ) P
8 4
It can be checked that s, = 2] = y3, s2 = 25 = vy5, s3 = 25 = yj and s, = x; =
yi. Substituting these stationary values into the profit functions (3), we obtain the

Sy = —, S3 and sy = 1. (24)

_3+45
8

Sy

@)

Figure 3: Reaction functions with o = 5 = 2.
stationary profits,

7—3v5 7+3V5

H% = GT and H% = 64 at 51,
H2 = H2 == i at SQ
1 2 32 ’
(25)
7+ 3V5 7—3V5
64 64

1
H% = H% == 5 at 54,

where H{ indicates the profit for firm 7 at the stationary point S; (1 = 1,2 and j =
1,2,3,4). It is observed in Figure 3 that S, and S, are located on the diagonal while
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S; and S3 are off the diagonal but symmetric with respect to it. Accordingly, the
stationary profits are the same for both firms at S, as well as S;. The stationary profit
at Sj is larger than the one at S; for firm 1 while the ordering is reversed for firm 2.
It can be seen that a firm makes larger profit when it produces larger output,

I} > 113 > 112 > 11},
(26)
IT; > 115 > 113 > TI3.

4.2 Ergodic Chaos

To consider the long-run behavior, we first briefly review the basic properties of ergodic
chaos in the one-dimensional logistic map, §(z) = 4x(1—x), defined on the unit interval
and introduce the mean ergodic theorem to investigate the statistical properties of
ergodic chaos. Then, based on the results obtained in the one-dimensional map, we
proceed to our analysis of the two-dimensional map, H.

It has been demonstrated that the logistic map, , exhibits chaos. Chaotic dynamics
has two salient features, irregularity of trajectories and extreme sensitivity to the initial
conditions. The former implies that a trajectory fluctuates so erratically that it is
difficult to distinguish chaotic behavior of a deterministic process from truly random
behavior of a stochastic process. The latter implies that even a slightly different choice
of initial conditions can drastically alter the whole future (particularly, long-term)
behavior of trajectories. Each chaotic trajectory moves in such a complicated way
that there is no simple way to characterize its behavior. However, the frequencies of
a trajectory {z;}:°, generated by the logistic map can converge to a unique stable
density function, p(z),

1
o) = — s 27)
which has the same properties as that of a stochastic process, ¢(x) > 0 for all x and
fl @(x)dx = 1. Once the explicit form of a density function is constructed, it is possible
to calculate the long-run average taken along the chaotic trajectory using the following
mean ergodic theorem.?

Theorem 3 Since the dynamical system 0(x;) = 4x4(1 — x;) is chaotic and ergodic,
the time average of a function f(z) associated with a chaotic trajectory, {Ti}i=o12..,
equals to the space average,

i 3 10" (a) = [ 1@pte)ds

T—oo T T

where o is an initial point, 0' = 0'=1 -0, 6° is an identical map, f € C', and I is the
support of density function .

9See for example, Chapter 8 of Day [4] for derivation of the explicit form of density function ¢(z)
and an assertion of the following Theorem 3.
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The dynamic process H (x4, y;) is a two-dimensional map while the equality between
the time average and the space average in Theorem 3 is confirmed only in a one-
dimensional map. In spite of this, we can apply Theorem 3 to analyze the long-run
dynamics generated by H. Since optimal behavior of each firm can be described by
iterating the composite one-dimensional map, r; o r;, each firm behaves as if it moves
one after the other in a iteration process. In particular, suppose that a trajectory of
the output adjustment starts on firm 1’s reaction curve (i.e., (2, y0) = (r1(v0), yo)) in
period zero. The point is mapped to a point, (x1,y1) = (o, r2(z0)), on firm 2’s reaction
function in period one. In period two, the point is mapped again on the firm 1’s reaction
curve and then the iteration process repeats. Along the trajectory, the iterated point is
on firm 1’s reaction curve at every even period and on firm 2’s reaction function at every
odd period. That is, (o, yor) = (r1(y2r), Y2r) and (Tops1, Yor+1) = (Tops1), r2(T2k11))
for k =0,1,.... Thus the average profit of firm 7 over M = 2N periods is

1« 1

(2, ) = N {Mi(wo, yo) + (w2, y2) + -+ - + Hi(xn—2, ynr—2)]
t=0

[\

(I ( xlayl +H(I3,y3)+"'+H'($M—1,?JM—1)]}

[(
1 1
NZH 1 (Yak), Yor) NZH (Tok41, T2(Tok41))
=0

k=0
N-1
= 5 { an T y2k+1 y2k+1)}-
k=0

Transition from the first line to the second is carried out in the following way.
Assume now that the trajectory starts on firm 2’s reaction curve. Then at every even
period, it is on firm 2’s reaction curve and firm i’s profit is written as IT;(xox, 72(22k)).
On the other hand, at every odd period, the trajectory is on firm 1’s reaction function
and thus firm i’s profit is written as IT;(r;(y2k41), Y2k+1)). The same reasoning applies
to the transition from the first to the third. Therefore, as shown above, the average
profit over M periods is the average of the sum of the average profits taken along these
reaction curves.

When a trajectory is chaotic, the average profit is the limiting value of the finite
average,

o= 4

2

-1

I (wok, o (war)) +
—0

==
==

li — H
Ml_f)noo Z xta yt

N—oo N

N-1 N-1
1
= 3 { lim —ZH 1 (Yak ), Yor)) + hm —ZH 5U2k+177"2($2k+1))}- (28)

The reaction functions defined in (22) can be transformed to logistic maps, 4z(1 — z)
by applying a shift map 2 =1 — x or 2 = 1 — y. According to Theorem 3, each term
in the brace in (28) can converge to its space average which is the limiting value of the

12



finite average.

N—

lim %kz:[]ni(ﬁ(y%);y%) :/0 I (r1(y), y)e(y)dy,

(29)

N-1

1 '
Aim kz:U i (@1, r2(Tor41)) = /0 Ii(, ra(z)) () dx
where ¢(+) is the invariant density function defined in (27). Summing up our findings,
we have

Theorem 4 For the profit function I1;(z,y) (i = 1,2), the average profit of firm i
taken along a trajectories equals to the average of the sum of the average profit taken
along each reaction curve,

jim_ - %_;m(xt,yt) = [ e+ [ e

M—oo M .

where r1(y) = 4y(y — 1) + 1, ry(z) = dx(x — 1) + 1 and o(u) = ——— (u = z,y).

my/u(l—u)

Applying Theorem 4, we can calculate the average profit of firm 1 as well as firm
2. For a = 8 = 2, the long-run average profits of both firms are the same and given by

_ 1
11; lim — Z Hi(ﬂﬂt, yt)

{/1 (L—2u)' [ (@ - 8ut 1) u)du}
0 2my/u(l —u) 0 2my/u(l — u)

. i=1,2.

1
2
1
8

By (26), the orderings of the stationary profits and the long-run average profit for firms
1 and 2 are _
I} > 113 > 10, > 112 > 11},
(30)
13 > I > I, > 112 > 1135
Since stationary point S, is special in the sense that it can emerge if and only
if @« = f = 2, we eliminate this point for the time being. Then (30) indicates that
stationary point Ss is the best for firm 1 but the worst for firm 2 while stationary
point S; is the best for firm 2 but the worst for firm 1. The long-run average profit
is the second-best for both firms. A question which we naturally raise is whether this
ordering can be held when parameters are not equal to 2. We are able to construct an
explicit form of chaotic density only in the case of @« = f = 2 and not for any other
cases. In consequence, the mean ergodic theorem is not applicable for any other cases.
In order to answer this question, we perform numerical simulations in the following.

13



4.3 Numerical Simulations

In this subsection we consider the long-run average behavior in cases in which neither
a nor 3 is equal to 2. Figure 4 shows the results of numerical simulations along the
dotted line in Figure 2(a). In these simulations, we fix @ = 1.1 and increase [ in steps
of 0.01 from 1.5 to 2.0. Figure 4(a) illustrates the one parameter bifurcation diagram
and Figure 4(b) illustrates the loci of the long-run average profits of firm 1 (i.e., II;)
and firm 2 (i.e., ITy) as well as the stationary profits (i.e., II! and I1}).1° The loci of the
stationary profits are slightly downward sloping while the loci of the long-run average
profit exhibit upward tendency with many ups and downs. As a result, the locus of
the long-run average profit crosses the locus of the stationary profit for each firm. As
confirmed in Theorem 1, only stationary point S; can emerge along the dotted line.
We observe in Figure 4(b) that given o = 1.1, the long-run average profits of firm 1
is higher than the corresponding stationary profit when the value of /3 is larger than
about 1.7 and the long-run average profit of firm 2 is higher when f§ is larger than
about 1.8.

IT
X
1 0.15 11,
08
: g
056 ot ﬁi
0.4
005
0.2
16 17 18 19 2 16 17 18 19 2 b
(a) bifurcation cascade (b) variation of the average profits

Figure 4: An example of beneficial chaos (o = 1.1).

This numerical example indicates the possibility that the long-run average profits
for both firms can be larger than the stationary profits for larger values of 5. We perform
further numerical simulations in order to confirm whether the finding is robust. The
simulations proceed as follows. We first set o = 1.01, then increase J from 0.2 to 2 in
steps of 0.01 and calculate stationary profits at all possible stationary points as well as
the long-run average profits for both firms,'!' and compare the stationary profits with
the long-run profit and determine the ordering of those profits for each value of 5. We
increase o by 0.01 and repeat the same procedure until o« became 2. The results are
illustrated in Figure 5. White-colored regions corresponds to subsets of the parameter
set A in which the average profit is larger than or equal to any possible stationary

10Tn these figures, we set zo = 0.4 and yo = 72(0.4).
"o calculate the long-run average profits, we use the same initial condition as used in Figure 4.
We will have the same calculation result if the initial condition is on either of the two reaction curves.
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profits, and gray-colored regions to subsets in which one of the stationary profits is
higher than the long-run average profit. Comparing Figure 5(a) with Figure 5(b), we
find the following:

2 2
1.75 1,75
15 15
1.25 1.5
© ©
b 3
1 1
0.75 0.75
05 05
0.25 0.25

12 14 16 18 2
Alpha

12 14 16 18 2
Alpha

(a) Firm 1 (b) Firm 2

Figure 5: Long-run average profits.

(i) In the triangular-like white regions at the bottom-left, the long-run average con-
verges to the stationary value because stationary point S is stable.

(ii) The white-colored region for firm 1 in the middle of Figure 5(a) is much larger
than the one for firm 2 in the top-left corner of Figure 5(b).

(iii) In both Figure 5(a) and 5(b), there exists a common set of parameters for which
the long-run average profit is strictly larger than the stationary profit.

The simulation result (iii) is particularly noteworthy and shows a sharp contrast
with the results in the traditional economics where a chaotic fluctuation is considered
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to be an unfavorable phenomenon as they do not converge to a stationary point. Our
results show the possibility that the long-run average profit of both firms can be higher
than stationary profits. Returning to (1) and (6)-(8), we find that « is the cross effect
on price of x caused by a change in output y, and [ is the cross effect on price of y
caused by a change in output x. Therefore, this finding implies that chaotic dynamics
can be favorable from the long-run point of view when a strong asymmetry exists
between the cross effects.

5 Concluding Remarks

In this paper, we have constructed a Cournot model in which goods are complementary
and reaction functions are non-linear. We have demonstrated analytically as well as
numerically the following two main results. The first result is that the double external-
ities, that is positive sales externality via the market demand and negative production
externality via the cost function, can be sources of chaotic output fluctuations in com-
plementary goods markets. The second is that the long-run average profit of each firm
can be strictly higher than the stationary profit when the sales externality of firm 1
is small and of firm 2 is large (i.e., smaller « and larger ). These results imply that
firms producing complementary goods and facing chaotic fluctuations of the output
adjustment possibly have higher average profits in the long-run when asymmetry on
the positive sales effect is strong.
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