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Abstract

This paper discusses delay dynamics of monopoly with discrete time
scales. It is assumed that a monopoly has delayed and limited informa-
tion on demand. Such a boundedly rational monopoly forms the demand
expectations using past observed data and adopts the gradient of the mar-
ginal pro�t to determine its output adjustments. In the case of one-step
delay in which the expectation is equal to output produced in the previous
period, it is shown that the steady state undergoes a period-doubling cas-
cade to chaos. In the cases of two and three delays where data at one, two
and three previous time periods are available, it is shown that the steady
state undergoes to complex dynamics through either a period-doubling
or a Neimark-Sacker bifurcation, depending on the speci�ed values of the
parameters. Numerical examples illustrate the theoretical results. Fi-
nally the case of geometric delay is also analyzed to show the birth of the
period-doubling bifurcation.
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1 Introduction

Most dynamic models examined in the mathematical economics literature as-
sume the existence of simultaneous information about the markets as well as
about the competitors. However in real economies there is always a time-lag
because �nding optimal decisions and implementing them always result in time
delays. In many cases the �rms are willing to react to an average of past data
instead of following sudden market changes and �uctuations. If continuous
time scales are assumed, then time lags can be modeled with �xed delays or
by assuming continuously distributed delays. A comprehensive summary of the
relevant mathematical methodology can be found, for example, in Bellman and
Cooke (1956) and Cushing (1977). Continuous-time dynamic monopoly with a
single or two �xed delays is examined in Matsumoto and Szidarovszky (2011a),
the cases of continuously distributed delays are discussed in Matsumoto and
Szidarovszky (2011b).
In the cases of discrete time scales it is usually assumed that the delays are

integer multiples of the unit step, so delayed models can be rewritten as higher
order discrete systems. This is the approach that is followed in this paper,
which can be considered as the discrete time counter part of our earlier papers
mentioned above.
This paper is a straightforward extension of the delay monopoly model with

bounded rationality considered by Agiza et al. (2001) and reconsidered later
by Sun (2011). When demand information is uncertain or incomplete, the mo-
nopolistic �rm bases its expectations on past observed data. It is customary to
assume naively expected demand that is equal to the output actually produced
in the previous period. Since naive expectation formed at the current period
is based on the past data obtained at one period before, we say that there is a
one-step delay in the naive expectation formation. In Agiza�s model, the one-
step delay is replaced with a two-step delay where expectation is a weighted
average of the past outputs at one period and two periods before. Then it is
shown that the two-step delay increases stability in comparison to the one-step
delay in a sense that it enlarges the stability region of a monopoly equilibrium.
Sun�s model examines stability of Agiza�s model by introducing a three-step
delay de�ned in the same way and unveils that a multi-delay destabilizes the
monopoly equilibrium more than a single-delay model. These results are also
numerically demonstrated. In addition, it is numerically veri�ed that compli-
cated dynamics can be born in a single-delay as well as in multi-delay models
when the monopoly equilibrium loses stability. Adopting the delay structure in
these monopoly models, we extend their results in the following way:

(1) We analytically re-examine stability of the delay monopoly model with
multiple delays and present complete stability analysis.

(2) We show the existence of two di¤erent routes to complex dynamics in-
volving chaos, one via a period-doubling bifurcation and the other via a
Neimark-Sacker bifurcation.
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This paper is organized as follows. In Section 2, we construct a basic model
with one-step delay (i.e., naive expectation) and show that the dynamic equation
is conjugate to the logistic map when the gradient method is assumed. In Section
3, we study monopoly dynamics with two-step delay and deduce a double routes
to chaos. In Section 4, we proceed to monopoly dynamics with three-step delay
and demonstrate that it can generate a wide spectrum of dynamics ranging from
simple periodic cycles to chaotic oscillations.

2 Dynamic Monopoly with One-Step Delay

We construct a basic delay monopoly model with bounded rationality, following
Agiza et al. (2001). Let q be the output of a �rm. The price function is assumed
to be linear,

p = a� bq
and the production cost function to be quadratic,

C(q) = cq2

where a; b and c are positive constants. It is assumed that a monopolistic �rm
has only partial knowledge of the demand function and determines its output
decision on basis of a gradient of the marginal expected pro�t. That is, the
�rm increases or decreases output according to whether the marginal pro�t is
positive or negative. Taking expected demand qe given, the expected marginal
pro�t is assumed to have the form,

d�(qe)

dqe
= a� 2(b+ c)qe:

The level of output at period t+1 is determined in such a way that the output
growth rate is proportional to the expected marginal pro�t

q(t+ 1)� q(t)
q(t)

= �
d�(qe(t+ 1))

dqe(t+ 1)

where � > 0 is an adjustment coe¢ cient. The output adjustment process is
rewritten in the form,

q(t+ 1) = q(t) + �q(t) fa� 2(b+ c)qe(t+ 1)g : (1)

The time evolution of the monopolistic �rm depends on the formation of the
expected demand. We start dynamic analysis with a benchmark case where the
expected demand at time t+ 1 is equal to the quantity actually realized in the
previous period,

qe(t+ 1) = q(t): (2)

This formation is usually called a naive expectation. Since there is one-step
delay in the naive expectation, we call it one-step delay. Substituting (2) into
(1) yields a �rst-order di¤erence equation,

q(t+ 1) = q(t) + �q(t) [a� 2(b+ c)q(t)] : (3)
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It has two steady states; a trivial (zero) solution and a non-trivial (positive)
solution. The trivial solution is eliminated from further considerations. The
non-trivial solution, which will be called a monopoly equilibrium, is given by

qM =
a

2(b+ c)
:

The monopoly equilibrium is locally asymptotically stable if the slope of the
dynamic equation (3) evaluated at qM is less than unity in absolute value,����dq(t+ 1)dq(t)

���� = j1� a�j < 1:
With a� > 0; the derivative is always less than unity. If a�� denotes the
threshold value for which the derivative is �1; then the stability condition is

a� < a�� = 2:

It can be shown that the dynamic equation (3) is conjugate to the logistic map1

and the con�nement condition is a� � 3. Therefore if a� increases from 2 to 3,
then the monopoly equilibrium is destabilized through a period-doubling (PD
henceforth) bifurcation in which stability is replaced with a 2-periodic cycle
which is then further replaced by a 4-periodic cycle, and so on. We summarize
this result as follows:

Proposition 1 If the quantity expectation is formed with one-step delay, then
the monopoly equilibrium qM is locally asymptotically stable for a� < a��, loses
stability for a� = a�� and undergoes a PD cascade to chaos when a� increases
from a�� to 3 where a�� = 2.

3 Two-Step Delay

We now proceed to a two-step delay case where the expected demand for period
t+ 1 is a weighted average of the outputs at periods t and t� 1,

qe(t+ 1) = !0q(t) + !1q(t� 1) (4)

where !i � 0 for i = 0; 1 and !0 + !1 = 1: The coe¢ cient !0 is the weight of
the one-step delay and !1 is the weight of the two-step delay in the expectation
formation. Inserting (4) into the dynamic equation (1) yields a second-order
di¤erence equation

q(t+ 1) = q(t) + �q(t) fa� 2(b+ c) [!0q(t) + !1q(t� 1)]g (5)

which is rewritten as a two-dimensional �rst-order system in the form

x(t+ 1) = q(t);

q(t+ 1) = q(t) + �q(t) fa� 2(b+ c)[!0q(t) + (1� !0)x(t)]g :
1Transformation is possible by a variable change, x(t) = q(t)=�q with �q = (1+a�)=2�(b+c):
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Notice that the monopoly equilibrium qM is the positive stationary state of this
system. The coe¢ cient matrix of the linearized system is�

0 1
�a�(1� !0) 1� a�!0

�
and its characteristic equation is transformed into a quadratic equation

�2 + a1�+ a2 = 0

where a1 = �(1 � a�!0) and a2 = a�(1 � !0): The su¢ cient and necessary
conditions that a quadratic equation has roots inside the unit cycle are given
by relations2

1 + a1 + a2 = a� > 0;

1� a1 + a2 = 2� a�(2!0 � 1) > 0;

1� a2 = 1� a�(1� !0) > 0:

(6)

The inequality of the �rst condition always holds implying that the characteristic
equation does not have a unit root. The directions of the other two conditions
depend on the parameter values to be speci�ed and thus are ambiguous.
To consider the e¤ects caused by the two-step time delay, we �rst examine

two boundary cases. In one case with !0 = 1 and !1 = 0; the two-step delay
is reduced to the one-step delay, which is already considered in the previous
section. In the other boundary case with !0 = 0 and !1 = 1, the expected
demand at time t+ 1 is equal to the output realized at period t� 1;

qe(t+ 1) = q(t� 1):

This special expectation formation is called an extreme two-step delay with
which the dynamic equation (5) is reduced to a second-order di¤erence equation

q(t+ 1) = q(t) + �q(t) fa� 2(b+ c)q(t� 1)g : (7)

The second condition of (6) is satis�ed under !0 = 0: Destabilization occurs only
by violating the third condition from which we obtain the following threshold
value denoted by a���,

a��� = 1:

When a� = a���; the monopoly equilibrium changes stability through a pair
of complex conjugate roots. As a� becomes larger, stability is replaced with
a periodic cycle, which is then replaced with a quasi-periodic cycle. Such a
stability change is called a Neimark-Sacker (NS henceforth) bifurcation. Since
a�� < a���; this special two-step delay has a stronger destabilizing e¤ect than
the one-step delay. Our second result of delay dynamics is the following:

2See, for example, Okuguchi and Szidarovszky (1999) and Bischi, et al. (2010).
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Proposition 2 If the quantity expectation is formed with an extreme two-step
delay, then the monopoly equilibrium is locally asymptotically stable if a� <
a���; loses stability if a� = a��� and is locally unstable through a NS bifurcation
if a� > a��� where a��� = 1.

We now turn attention to a general two-step delay with !0 > 0 and !1 > 0:
The second condition of (6) is satis�ed when !0 � 1=2 and leads to a PD
boundary de�ned for !0 > 1=2;

a�IPD =
2

2!0 � 1
: (8)

A PD bifurcation occurs when the monopoly equilibrium crosses this boundary
on which one of the eigenvalues is equal to �1. Since !0 < 1, the third condition
of (6) is not necessarily true either. Replacing the inequality with the equality
and solving it for a� yields the NS boundary de�ned by

a�INS =
1

1� !0
> 1: (9)

On this curve the characteristic equation has purely imaginary roots. A NS
bifurcation arises when the monopoly equilibrium crosses this boundary. The
partition curve de�ned by

a� = min[a�INS ; a�
I
PD]

divides the (!0; a�) plane into two parts: the monopoly equilibrium is locally
asymptotically stable in the region below this curve and locally unstable in
the region above. A two-parameter bifurcation diagram for 0 < !0 < 1 and
0 < a� < 4 is illustrated in Figure 1 where the upward-sloping convex curve is
the NS boundary, the downward-sloping convex curve is the PD boundary and
the two curves intercept at !0 = 3=4. The monopoly equilibrium is locally stable
in the red region. Di¤erent color indicates di¤erent period of cycles up to 16. In
the gray region periodic cycles have periods longer than 16 or aperiodic cycles
are born. The solution becomes infeasible for the parameter values selected
from the white region. The following two observations can be made:

(i) The general two-step delay leads to lesser stability in the monopoly equilib-
rium than the one-step delay for 0 < !0 < 1=2 as a�INS < a�

�:

(ii) The general two-step delay leads to greater stability in the monopoly equi-
librium than the one-step delay for 1=2 < !0 < 1 as min[a�INS ; a�

I
PD] >

a��.

Notice also that the stability intervals in the two boundary cases can be
found in Figure 1, namely, (0; a��) at !0 = 1 and (0; a���) at !0 = 0: The
third results generated by the delay dynamics can be mentioned as follows:
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Proposition 3 If the quantity expectation is formed with a general two-step
delay, then the (!0; a�) plane is divided by the partition curve

a� = min[a�INS ; a�
I
PD]

and the stability of the monopoly equilibrium is replaced with a periodic or ape-
riodic oscillation through a NS bifurcation if it loses stability at a� = a�INS for
0 < !0 � 3=4 whereas it goes to chaos via a PD bifurcation if it loses stability
at a� = a�IPD for 3=4 < !0 < 1:

Figure 1. Bifurcation diagram with a general two-step delay

4 Three-Step Delay

In this section, we extend our analysis to a three-step delay where the expecta-
tion at time t+ 1 is formed as a weighted average of the past outputs at three
di¤erent periods of time, t; t� 1 and t� 2;

qe(t+ 1) = !0q(t) + !1q(t� 1) + !2q(t� 2) (10)

where !i � 0 and !0 + !1 + !2 = 1: There are seven cases depending on the
number of positive !i values:

(1) !0 > 0; !1 > 0 and !2 > 0;

(2-k) !k = 0 and !i > 0 for i 6= k (k = 0; 1; 2)
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and
(3-k) !k = 1 and !i = 0 for i 6= k (k = 0; 1; 2):

We call case (1) a general three-step delay and con�ne our attention to this
case. The following three cases with !2 = 0 are already considered: (2-2) !0 >
0; !1 > 0 and !2 = 0 (i.e., the general two-step delay), (3-0) !0 = 1 and
!1 = !2 = 0 (i.e., the one-step delay) and (3-1) !1 = 1 and !0 = !2 = 0 (i.e.,
the extreme two-step delay). In Figure 2, points A and B correspond to (3-0)
and (3-1). A line connecting points A and B corresponds to (2-2): Notice that
the one-step delay is a boundary case of the two-step delay and the two-step
delay is a boundary case of the three-step delay. The remaining three cases, (2-
0), (2-1) and (3-2), are also boundary cases where !2 is always positive. Since
they can be discussed similarly to those given in this paper, we omit the further
considerations to avoid repeating similar discussions.
Substituting (10) into the output dynamic equation (1) yields a third-order

di¤erence equation

q(t+ 1) = q(t) + �q(t) fa� 2(b+ c) [!0q(t) + !1q(t� 1) + !2q(t� 2)]g : (11)

This can be written as a three-dimensional �rst-order dynamic system in the
form,

x(t+ 1) = y(t);

y(t+ 1) = q(t);

q(t+ 1) = q(t) + �q(t) fa� 2(b+ c) [!0q(t) + !1y(t) + (1� !0 � !1)x(t)]g ;

where qM is the positive stationary point of this system. The coe¢ cient matrix
of the linearized dynamic system evaluated at the stationary point is0@ 0 1 0

0 0 1
�a�(1� !0 � !1) �a�!1 1� a�!0

1A :
Its characteristic equation is reduced to a cubic equation,

�3 + a1�
2 + a2�+ a3 = 0 (12)

where
a1 = a�!0 � 1;

a2 = a�!1;

a3 = a�(1� !0 � !1):
The monopoly equilibrium is locally asymptotically stable if all eigenvalues of
(12) are less than unity in absolute value. As it has been proved in Farebrother
(1973) and Okuguchi and Irie (1990), the most simpli�ed form of the su¢ cient
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and necessary conditions for the cubic equation to have roots only inside the
unit cycle is

1 + a1 + a2 + a3 = a� > 0;

1� a1 + a2 � a3 = 2� a�(1� 2!1) > 0;

1� a2 + a1a3 � a23 = '(!0; !1; a�) > 0;

a2 = a�!1 < 3;

(13)

where

'(!0; !1; a�) = 1� a�(1�!0)� (a�)2
�
2!20 � 3!0(1� !1) + (1� !1)2

�
: (14)

The �rst condition of (13) always holds as a > 0 and � > 0 are assumed. The
other three conditions depend on the speci�cation of the parameter values.

4.1 General Three-Step Delay

Under the conditions !i > 0 for i = 0; 1; 2, the second condition of (13) is always
satis�ed for !1 � 1=2 and leads to a PD boundary for !1 < 1=2;

a�IIPD =
2

1� 2!1
> 2: (15)

From the third condition of (13), a NS boundary is de�ned by '(!0; !1; a�) = 0
and its shape depends on the sign of the multiplier of (a�)2 in equation (14).
So let A = 2!20 � 3!0(1� !1) + (1� !1)2, which can be rewritten as

A = 2(!0 � (1� !1))
�
!0 �

1

2
(1� !1)

�
: (16)

We �rst consider the case of A = 0 in which either of the following two relations
of !0 and !1 holds;

!0 = 1� !1
or

!0 =
1

2
(1� !1):

The �rst relation implies !2 = 0. As already mentioned, the boundary cases
with !2 = 0 are already examined. Therefore, we can assume the second case
only when !0 < 1=2 and the third condition of (13) has the special form

1� a�(1� !0) > 0;

or
a� < a�INS :
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An alternative form of the NS boundary in terms of !0 can be de�ned over the
interval (1=4; 1=2) by substituting the relation of the second case into equation
(15),

a�IIPD =
2

4!0 � 1
:

The last condition of (13) holds if

a� <
3

!1
=

3

1� 2!0
:

Notice that

a�IIPD � a�INS =
3(1� 2!0)

(4!0 � 1)(1� !0)
> 0;

furthermore
3

!1
=

3

1� 2!0
> a�INS for !0 <

1

2
:

Hence the a� = a�INS boundary separates the stability region from the insta-
bility region.

Proposition 4 If 0 < !1 < 1 and !0 =
1

2
(1 � !1), then a� = a�INS is a

partition curve below which the monopoly equilibrium is locally asymptotically
stable and above which it is destabilized through a NS bifurcation where

a�INS =
1

1� !0
for 0 < !0 <

1

2
:

.

Suppose next that A 6= 0: Solving '(!0; !1; a�) = 0 for a� gives explicit
forms of the two NS boundaries

a�(+) =
�(1� !0) +

p
D

2A
(17)

and

a�(�) =
�(1� !0)�

p
D

2A
(18)

where D is the discriminant de�ned by

D = 5 + 9!20 � 4!1(2� !1) + 2!0(6!1 � 7):

Solving D = 0 yields two threshold values of !0;

!
(+)
0 =

7� 6!1 + 2
p
1� 3!1

9

and

!
(�)
0 =

7� 6!1 � 2
p
1� 3!1

9

10



!
(+)
0 and !(�)0 are distinct for !1 < 1=3 (i.e., 1=2 � !

(�)
0 < 5=9 < !

(+)
0 < 1);

identical for !1 = 1=3 (i.e., !
(+)
0 = !

(�)
0 = 5=9) and D = 0 has no real solution

if !1 > 1=3:
The divisions of the (!1; !0) plane are given in Figure 2. The unit square is

divided by the !0 = 1�!1 line into the gray region and the white region which is
eliminated from further considerations because !2 < 0 there. The former region
is further divided by the !0 = (1 � !1)=2 line into two smaller triangles. It is
clear that A < 0 in the upper triangle shaded with light-gray and A > 0 in the
lower triangle with medium-gray. D < 0 is inside the half-oval region shaded
with dark-gray in the upper triangle. It can be checked that the lower part of the
D = 0 curve (i.e., !0 = !

(�)
0 ) is downward-sloping for 0 < !1 < 1=4; upward-

sloping for 1=4 < !1 < 1=3 and takes the minimum value 1=2 at !1 = 1=4: The
upper part of the D = 0 curve (i.e., !0 = !

(+)
0 ) is downward sloping and below

the !0 = 1 � !1 line. The discriminant is always positive (i.e., D > 0) for
!1 > 1=3 and the second condition of (13) is satis�ed for !1 > 1=2:

Figure 2. Division of the (!1; !0) plane

We �rst examine stability of qM in the lower triangle where A > 0; D > 0
and !0 < 1=2: Both denominators of a�(+) and a�(�) are positive for A > 0.
Concerning the sign of the numerators, it is able to check that

(1� !0)2 �D =
n
(1� !0) +

p
D
on
(1� !0)�

p
D
o

= 8(1� !0 � !1)
�
!0 �

1

2
(1� !1)

�
< 0:

(19)
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The factorization in the �rst line of (19) and the inequality in the second line
lead to that �(1 � !0) +

p
D > 0: As a direct result, the numerator of a�(+)

is positive while that of a�(�) is negative. In consequence, a NS boundary is
given by the a� = a�(+) curve. On the other hand, the PD boundary is already
de�ned in equation (15) and is shown to be greater than 2. Since it can be
con�rmed that 2 > a�(+) for !0 < 1=2;3 we have the following relation in this
case with A > 0:

a�(+) > a�
II
PD:

In addition
a�(+) < 2 <

3

!1

So, we have the following:

Proposition 5 If !0 < 1
2 (1 � !1) and !1 < 1; then a� = a�(+) is a partition

line below which the monopoly equilibrium is locally asymptotically stable and
above which it is destabilized through a NS bifurcation.

We next devote a little more space to examining the upper triangle with
A < 0. The PD boundary is the same as the one given in (15). Although the
NS boundaries are given in (17) and (18), their shapes in the (!0; a�) plane are
sensitive to a choice of !1: We need to look more closely at them. Due to the
de�nition of the upper triangle, the feasible interval of !0 has the lower bound
!L0 and the upper bound !

U
0 ;

!L0 =
1� !1
2

and !U0 = 1� !1:

When !1 < 1=3; !
(�)
0 and !(+)0 are well-de�ned. Substituting !(�)0 and !(+)0 ,

respectively, into a�(+) (or a�(�)) yields two threshold values of a�;

a�M =
9(1 + 3!1 +

p
1� 3!1)

2 + 3!1 + 9!21 + 2
p
1� 3!1(1 + 3!1)

;

a�m =
9(1 + 3!1 �

p
1� 3!1)

2 + 3!1 + 9!21 � 2
p
1� 3!1(1 + 3!1)

and

a�m � a�M = �2
p
1� 3!1

!1(1 + !1)
< 0:

3By de�nition of a�(+);

2� a�(+) =
1

2A

n
4A�

p
D + (1� !0)

o
:

By (16) and (19), we have 4A = D� (1�!0)2 which is substituted into the expression in the
parentheses to obtain np

D � (1� !0)
onp

D � !0
o
> 0

where the inequality is due to
p
D > (1� !0) and 1� !0 > !0 if !0 < 1=2:
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Notice that a�(+) = a�(�) = a�m at !0 = !
(�)
0 and a�(+) = a�(�) = a�M at

!0 = !
(+)
0 . As seen in Figure 3, it is further possible to show that

a�IIPD < a�m < a�M if !1 < 1=4;

a�m < a�
II
PD < a�M if 1=4 < !1 < 5=16;

a�m < a�M < a�IIPD if 5=16 < !1 < 1=3.

It is also clear that the curve 3=!1 is above the curves a�M ; a�m and a�IIPD
if !1 � 1=3: If 1=3 < !1 < 3=8; then the PD boundary is below the 3=!1 line,
and if !1 > 3=8; then the opposite holds. They intercept at !1 = 3=8:

Figure 3

Three boundaries with three di¤erent values of !1 are illustrated in Figure
4 in which the a� = a�(+) curve is colored in red, the a� = a�(�) curve is
colored in blue and the PD boundary is a dotted horizontal line. The function
'(!0; !1; a�) is de�ned and the third stability condition of (13) with positive
discriminant is satis�ed in the (darker or lighter) gray-colored regions and so
is the stability condition with negative discriminant in the white region. The
second stability condition of (13) is satis�ed below the PD boundary. The last
condition is satis�ed if a� < 3=!1; where the PD boundary is below the 3=!1
line. In Figure 4(A) where we take !1 = 0:29 < 1=3, there are two distinct
real roots, !(�)0 < !

(+)
0 . Since the speci�ed value of !1 satis�es the inequalities

1=4 < !1 < 5=16(= 0:315); it �rst implies that a�m < a�IIPD < a�M and
second that the red curve is connected with the blue curve at point (!(�)0 ; a�m)
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or (!(+)0 ; a�M ): That is, the two curves consist of one NS boundary in interval
(!L0 ; !

(�)
0 ] and the other NS boundary in interval [!(+)0 ; !U0 ): For !0 such that

!
(�)
0 < !0 < !

(+)
0 ; we haveD < 0 so that neither of the NS boundaries is de�ned

in this interval where stability is determined by the PD boundary. In Figure 4(B)
where we take !1 = 1=3; D = 0 has a single root, !(�)0 = !

(+)
0 = 5=9 = !

(�)
0 and

so a�m = a�M = 9=2 = a�mM < a�IIPD as seen in Figure 3. The a� = a�(+)
curve is depicted in red, convex-increasing for !0 < !

(�)
0 , convex-decreasing for

!0 > !
(�)
0 and has a kink at !0 = !

(�)
0 : The stable region below the red-NS

boundary is colored in light-gray. The a� = a�(�) curve is depicted in blue,

convex-decreasing for !0 < !
(�)
0 ; convex-increasing for !0 > !

(�)
0 and has a kink

at !0 = !
(�)
0 : The PD boundary crosses this NS boundary at two points. The

stable region is above the blue-NS boundary and below the PD boundary. The
two stability regions have one common point (!(�)0 ; a�mM ). In Figure 4(C), we
take !1 = 0:34 > 1=3: Since D > 0 and A < 0 lead to that a�(�) > a�(+): The
a� = a�(+) curve is mound-shaped and colored in red while the a� = a�(�)
curve is U -shaped and colored in blue. The two gray regions are separated each
other. As in Figure 4(B), the real PD boundary divides the darker-gray region
into two subregions. If !1 > 3=8; then the a�IIPD line has to be replaced by the
a� = 3=!1 line. The results of our investigation are summarized as follows;

Proposition 6 If 1
2 (1 � !1) < !0 < 1 � !1 and 0 < !1 < 1; the stability

region is de�ned by

S =

�
(!0; a�) j !L0 < !0 � !U0 ; a� < min

�
2

1� 2!1
;
3

!1

�
and '(!0; !1; a�) > 0

�
and its shape depends on a speci�ed value of !1

(A) !1 < 1=3 (B) !1 = 1=3 (C) !1 > 1=3

Figure 4. NS boundaries with three di¤erent values of !1

4.2 Numerical Examples

We perform numerical simulations to con�rm the analytical results obtained
in Propositions 5 and 6. Assume �rst that D < 0. Then A < 0 as well, so
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'(!0; !1; a�) is a convex parabola, and therefore the third condition of (13)
holds for all a�. If D = 0; then this condition holds for all a�, except for

a�(+) = a�(�) = �
1� !0
2A

:

Solving '(!0; !1; a�) = 0 with a� = 2=(1 � 2!1) for !0 yields two points of
intersection at which the PD boundary crosses the NS boundary,

!a0 =
1

2
and !b0 =

5

4
� 2!1:

It can be shown that for !1 < 1=3;

!a0 < !
(�)
0 and !(+)0 < !b0

since
!
(�)
0 � !a0 =

1

18
(2
p
1� 3!1 � 1)2 > 0

and
!b0 � !

(+)
0 =

1

36
(4
p
1� 3!1 � 1)2 > 0:

It is also able to check that !b0 is larger than !
U
0 if !1 < 1=4 and smaller if the

inequality is reversed. In order to detect the destabilizing e¤ect caused by the
general three-step delay, it is convenient to divide the general three-step case
into the following four distinct subcases depending on the value of !1:

(A) 0 < !1 � 1=4 (where the second inequality is written as !U0 � !b0)

(B) 1=4 < !1 � 1=3 (where the �rst inequality is written as !b0 < !U0 )

(C) 1=3 < !1 < 1=2 (a�IIPD is de�ned)

(D) 1=2 < !1 < 1 (a�IIPD is not de�ned)

Case A 0 < !1 �
1

4

When !1 < 1=4; as shown in Figure 3, we have

a�IIPD < a�m < a�M :

These inequalities imply that the PD boundary crosses the a� = a�(+) curve
at two points, !a0 and !

b
0. Since !

U < !b0 for !1 < 1=4, the domain of !0 is
an interval (0; 1� !1): Thus the stability region is bounded by the NS and PD
boundaries de�ned over this interval;

a� = a�(+) if 0 < !0 � !a0

a� = a�IIPD if !
a
0 < !0 < 1� !1:
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Taking !1 = 1=5 , we illustrate the piecewise continuous partition curve by
the thick black curve in Figure 5(A) where the blue points are the intersections
of the NS and PD boundaries and a�(�) = a�(+) holds at the red points.4

The monopoly equilibrium undergoes either PD or NS bifurcation according to
whether it crosses the PD or the NS boundary. The two-parameter bifurcation
diagram is presented in Figure 5(B) where the color has the same meaning as
in Figure 1. The partition curve shifts upward and !U0 decreases as !1 becomes
larger. Proposition 5 describes dynamics for !0 < !L0 and so does Proposition
6 for !0 > !L0 :

Proposition 7 For 0 � !1 < 1=4; the stability region of the monopoly equilib-
rium is given as

SAI =
�
(!0; a�) j 0 < !0 � 1� !1 and a� < min

�
a�(+); a�

II
PD

�	
if D > 0;

and
SAII =

�
(!0; a�) j 0 < !0 � 1� !1 and a� < a�IIPD

	
if D � 0:

(A) Partition curve (B) Bifurcation diagram

Figure 5 Dynamics for 0 < !1 � 1=4

Case B
1

4
< !1 �

1

3

Increasing !1 from 1/4 leads to !U0 > !
b
0: As seen in Figure 3, the inequality

relation a�m < a�IIPD holds always but the ordering between a�M and a�IIPD
depends on the value of !1,

a�m < a�
II
PD � a�M if 14 < !1 �

5
16 ;

a�m < a�M < a�IIPD if
5
16 < !1 �

1
3 :

4a�M is not depicted in Figure 4 as it is larger than the upper bound of the �gure.
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As a result, the shape of stability region is a¤ected in two ways: in one way,
the '(!0; !1; a�) = 0 curve de�ned over the interval [!

(+)
0 ; !U0 ) can be the NS

boundary; in the other way, the NS boundary de�ned over (!L0 ; !
(�)
0 ] becomes

bent backwardly. We take !1 = 0:32 > 5=16 (= 0:3125) in Figure 6(A)5 where
the thick curve is the partition curve which is piecewise continuous having three
parts with the two kinks at the blue points. The two parameter bifurcation
diagram is presented in Figure 6(B). Let CL and CR denote the union of the
a�(+) and a�(�) curves for !0 � !(�)0 and for !0 � !(+)0 respectively. Then the
third condition of (13) holds if the point in the (!0; a�) space is between these
curves.

Proposition 8 For 1=4 < !1 < 1=3; the stability region of the monopoly
equilibrium is bounded by the curves CL; CR, and the horizontal line a� = a�IIPD
if D < 0 and is below the a� = a�NS curve if D > 0:

(A) Partition curve (B) Bifurcation diagram

Figure 6 Dynamics for 1=4 < !1 � 1=3

Case C
1

3
� !1 <

1

2

When !1 = 1=3; the a� = a�(+) curve becomes continuous and so does the
a� = a�(�) curve, as shown in Figure 4(B). Further the two curves have one

common point (!(�)0 ; a�mM ). Notice that D > 0 and none of a�m; a�M ; !
(�)
0

and !(+)0 is de�ned for !1 > 1=3. Increasing !1 from 1=3 shifts the a� = a�(+)
curve downward and the a� = a�(�) curve upward and then forms two separate
regions satisfying the stability conditions of (13). One is

SCI = f(!0; a�) j 0 � !0 � !U0 ; a� < a�(+)g
5Even in the case of !1 < 5=16; the partition curve has essentially the same shape.
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and the other is

SCII = f(!0; a�) j !a0 � !0 � !b0; a�(�) < a� < a�IIPDg:

We �rst show that the steady state is stable in SCI . If A > 0; then SCI
has been shown to be a stability region in Proposition 5. A < 0 is assumed
henceforth. Using (17) and (18), '(!0; !1; a�) can be factored,

'(!0; !1; a�) = �A(a�� a�(+))(a�� a�(�)):

It can be veri�ed by subtracting (17) from (18) that 0 < a�(+) < a�(�) if A < 0.
In consequence

'(!0; !1; a�) > 0 for 0 < a� < a�(+) (20)

which means that the third condition of (13) is satis�ed. Subtracting (15) from
(17) yields

a�(+) � a�IIPD =
(1� 2!1)

p
D � (1� !0)(1� 2!1)� 4A
2A(1� 2!1)

(21)

where the denominator is negative. From (16) and (19), we have

(1� !0)2 �D = �4A > 0 (22)

which leads to 1 � !0 �
p
D > 0: After substituting the left hand side of (22)

for �4A of (21), the numerator of (21) can be factored,

(1� 2!1)
p
D � (1� !0)(1� 2!1) + (1� !0)2 �D

=
�
2!1 � !0 +

p
D
��
1� !0 �

p
D
�
> 0

where the inequality is due to 2!1�!0 > 0 and 1�!0�
p
D > 0 under A < 0.

Therefore a�(+) < a�IIPD implying that the second condition of (13) is also
satis�ed for any a� < a�(+): Lastly subtracting 3=!1 from (17) yields

a�(+) �
3

!1
=
!1
p
D � (1� !0)!1 � 6A

2A!1
(23)

where the denominator is negative. Further substituting the left hand side of
(22) into the numerator of (23) gives

!1
p
D � (1� !0)!1 +

3

2

�
(1� !0)2 �D

	
=
3

2

�
1� !0 �

2

3
!1 +

p
D

��
1� !0 �

p
D
�
> 0

where the inequality is due to 1� !0 � 2!1=3 > 0 and 1� !0 �
p
D > 0 under

A < 0: Therefore a�(+) < 3=!1; consequently the fourth condition of (13) is
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also satis�ed for any a� < a�(+):We have shown that all conditions of (13) are
satis�ed for (!0; a�) 2 SCI :
We now draw attention to SCII : It has been shown that solving a�(�) =

2=(1� 2!1) yields two solutions of !0; one is !a0 and the other is !b0: They are
equal when !1 = 3=8 and

!a0 < !
b
0 if

1

3
< !1 <

3

8

and
!a0 > !

b
0 if

3

8
< !1 <

1

2
.

It has been shown and illustrated in Figure 3 that

a�IIPD Q
3

!1
according to !1 Q

3

8
:

Given !1 < 3=8; for (!0; a�) 2 SCII ; we have 0 < a� < a�IIPD; '(!0; !1; a�) > 0
and a� < 3=!1: Since all conditions of (13) are satis�ed, SCII is also a stability
region if !1 < 3=8: However, the following arguments indicate that SCII is not
stability region if !1 > 3=8:
Subtracting 3=!1 from (18) presents

a�(�) �
3

!1
= � (1� !0)!1 + !1

p
D + 6A

2A!1
(24)

Since Proposition 5 deals with the case of A > 0; we con�ne attention to the
case of A < 0 henceforth. Substituting the left hand side of (22) for A; the
numerator of (24) can be rewritten and factored as follows:

(1� !0)!1 + !1
p
D � 3

2

�
(1� !0)2 �D

	
=
3

2

�p
D + 1� !0

��p
D �

�
1� !0 �

2

3
!1

��
where the �rst factor is positive. The second factor can be further rewritten as

p
D �

�
1� !0 �

2

3
!1

�

=

�
!0 �

1

12

�
9� 8!1 �

p
3
p
3� 8!1

���
!0 �

1

12

�
9� 8!1 +

p
3
p
3� 8!1

��
which is positive if !1 > 3=8: Since the denominator of (24) is negative and the
numerator is positive, we have

a�(�) >
3

!1
for !1 >

3

8
:
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The �rst inequality implies that the third condition of (13) is satis�ed (i.e.,
'(!0; !1; a�) > 0) for a� > a�(�) but the fourth condition is violated (i.e.,
a� > 3=!1) while the fourth condition is satis�ed for a� < 3=!1 but the third
condition is not. Therefore the stability conditions of (13) do not hold simulta-
neously if !1 > 3=8: That is, SCII shrinks as !1 increases from 1=3 and disappears
when it arrives at 3=8: When !1 is larger than 1=3; then the two stability re-
gions, SCI andSCII ; become disjoint as depicted in Figure 7(B) where we take
!1 = 0:34 < 3=8(= 0:375): The mound-shaped red region is SCI and the isolated
(or �ying) cup-shaped red region is SCII .

Proposition 9 For 1=3 < !1 < 1=2; the stability region of the monopoly equi-
librium is de�ned by

SCI [ SCII with SCI \ SCII = ? if !1 < 3=8

and only
SCI if !1 > 3=8:

(A) Partition curve (B) Bifurcation diagram

Figure 7 Dynamics for 1=3 < !1 � 1=2

Case D
1

2
< !1 < 1

In the same way as shown in case C, we can prove the following proposition.
A numerical example is given in Figure 8.

Proposition 10 For 1=2 < !1 < 1; the stability region of the monopoly equi-
librium is de�ned by

SD = f(!0; a�) j 0 � !0 � !U0 ; a� � a�(+)g:
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Figure 8. Bifurcation diagram with !1 = 0:5

5 Geometric Delay

As a special case of distributed delay, we consider geometric delay with which
the expected output is formed based on the whole sequence of the past output
values,

qe(t+ 1) =

1X
�=0

!(1� !)�q(t� �)

with the sum of the weighting coe¢ cients being equal to unity

1X
�=0

!(1� !)� = 1:

Delaying one unit period of the expected output and multiplying (1 � !); we
take a di¤erence between qe(t+ 1) and (1� !)qe(t) to have

qe(t+ 1) = (1� !)qe(t) + !q(t):

Substituting the right-hand side into the dynamic equation (1) yields a two
dimensional system in the form

q(t+ 1) = q(t) + �q(t) fa� 2(b+ c) [!q(t) + (1� !)qe(t)]g

qe(t+ 1) = !q(t) + (1� !)qe(t):
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The positive equilibrium qM is the only positive steady state of this system.
The coe¢ cient matrix of the linearized equation is

J =

�
1� a�! �a�(1� !)
! 1� !

�
and its characteristic equation is quadratic,

�2 � [2� (1 + a�)!]�+ (1� !) = 0:

The condition for locally asymptotically stability of qM is con�rmed to be

a� <
2(2� !)
!

which is a simple consequence of relation (6). It is also con�rmed that the
monopoly equilibrium is destabilized only through the PD bifurcation.

Proposition 11 When the expected output has geometric delay, then the sta-
bility region of the monopoly equilibrium is

S = f(!; a�) j 0 � ! � 1; a� < a�IIIPDg

where a�IIIPD is a period-doubling boundary de�ned by

a�IIIPD =
2(2� !)
!

:

Figure 9. Bifurcation diagram with
geometric delay

22



6 Concluding Remarks

In this paper dynamic monopolies were examined with discrete time scales and
time delays in demand expectations. For mathematical simplicity linear price
and quadratic costs were assumed. The cases of one, two, three and geometric
delays were considered. The stability regions were determined in all cases and
when the steady state loses stability, period-doubling or Neimark-Sacker bifur-
cation occurs depending on the number of delays and model parameters. The
stability region is either a connected set in the (!0; a�) space or a union of two
mutually exclusive connected sets. Numerical examples illustrated the theoret-
ical �ndings, and the computed bifurcation diagrams supported very well the
theory.
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