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Abstract

Dynamic monopolies are investigated with discrete and continuous
time scales by assuming general forms of the price and cost functions.
The existence of the unique pro�t maximizing output level is proved. The
discrete model is then constructed with gradient adjustment. It is shown
that the steady state is locally asymptotically stable if the speed of ad-
justment is small enough and it goes to chaos through period-doubling
cascade as the speed becomes larger. The non-negativity condition that
prevents time trajectories from being negative is derived. The discrete
model is converted into the continuous model augmented with time de-
lay and inertia. It is then demonstrated that stability can be switched
to instability and complex dynamics emerges as the length of the delay
increases and that instability can be switched to stability as the inertia
coe¢ cient becomes larger. Therefore the delay has the destabilizing e¤ect
while the inertia has the stabilizing e¤ect.
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1 Introduction

The literature on monopolies and oligopolies plays a central role in mathematical
economics. The existence and uniqueness of the equilibrium were the research
issues in early stage and then dynamic extensions become the main topic of re-
searchers. Linear models were �rst examined, where local asymptotical stability
implies global stability. Each model is based on a particular output adjustment
scheme. In applying best response dynamics, global information is needed about
the pro�t function while in the case of gradient adjustments only local infor-
mation is needed to assess the marginal pro�t. The early results on static and
dynamic oligopolies are summarized in Okuguchi (1976) and their multiproduct
generalization are discussed in Okuguchi and Szidarovszky (1999). During the
last two decades an increasing attention has been given to nonlinear dynamics.
Bischi et al. (2010) gives a comprehensive summary of the newer development.
As a tractable case many authors have examined dynamic monopolies. Bau-
mol and Quandt (1964) have investigated cost-free monopolies, the dynamic
extensions of which were examined in both discrete and continuous time scales.
Their adjustment scheme resulted in convergent processes. Puu (1995) assumed
cubic price and linear cost functions and considered only discrete time scales.
Naimzada and Ricchiuti (2008) assumed cubic price and linear cost functions,
and their model was generalized by Askar (2013) with a general from of the
price function keeping the linearity of the cost function. It is shown in these
studies that chaotic dynamics arises via period doubling bifurcation.
In this paper, we reconsider monopoly dynamics in three di¤erent points of

view. First, we generalize the model of Askar (2013) by introducing more general
types of the cost function and study local and global stability with the non-
negativity condition that prevents time-trajectories from being negative. The
discrete-time model is converted into the continuous-time model by introducing
a time delay and an inertia in the direction of output change. Second, after
examining the stability with continuous time scale, we reveal that the discrete
model is less stable than the continuous model. Lastly, we numerically and
analytically show that the continuous model gives rise to complex dynamics
involving chaos due to delay and inertia.
The paper is organized as follows. In Section 2, the discrete-time model is

presented, conditions are derived for local asymptotic stability. In Section 3,
the continuous-time model is constructed from the discrete-time model. Sta-
bility with respect to time delay and inertia is considered. In the �nal section,
concluding remarks are given.

2 Discrete Time Model

In this section we construct a discrete time dynamic model of a monopoly,
after determining the pro�t maximizing output. Consider a monopoly, where
q is its output, p(q) = a � bq� the price function (a; b > 0; � � 1) and
C(q) = cq� (c > 0; � � 2) its cost function. The pro�t of the monopoly is given
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as
�(q) = (a� bq�)q � cq� :

By di¤erentiation
�0(q) = a� b(�+ 1)q� � c�q��1 (1)

and
�00(q) = �b�(�+ 1)q��1 � c�(� � 1)q��2 < 0:

So �(q) is strictly concave in q, and since �0(0) = a > 0 and limq!1 �
0(q) = �1;

there is a unique positive pro�t maximizing output, �q; which is the solution of
the �rst-order condition

b(�+ 1)q� + c�q��1 = a: (2)

The left hand side is strictly increasing, its value is 0 at q = 0 and converges
to in�nity as q !1, therefore the unique positive solution can be obtained by
simple computer methods (see, for example, Szidarovszky and Yakowitz 1978).
In the numerical considerations to be done below, we always use the following
speci�cation of the parameters,

a = 4; b = 3=5 and c = 1=2

which are also used by Naimzada and Ricchiuti (2008) and Askar (2013). Equa-
tion (2) is depicted by the roughly-meshed surface shown in Figure 1 where the
black dots on the surface represent the values of �q for integer values of � and �
in interval [2; 8]. It can be seen that the pro�t maximizing output is decreasing
in � and �:

Figure 1. Determination of the
optimal q
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In applying gradient dynamics it is assumed that the monopoly adjusts its
output level in proportion to the marginal pro�t,

q(t+ 1)� q(t) = k�0(q(t))

where k > 0 is the speed of adjustment. Substituting equation (1) results in the
following adjustment equation of output:

q(t+ 1) = q(t) + k
�
a� b(�+ 1)q(t)� � c�q(t)��1

�
: (3)

If � = 1 and � = 2; then this equation is linear with uninteresting global
dynamics. So will assume that either � > 1 or � > 2 or both occur. So
under this assumption, equation (3) is a nonlinear di¤erence equation, the local
asymptotic stability of which can be examined by linearization. Equations (2)
and (3) imply that the steady state of this system is the pro�t maximizing
output �q. Linearization of the right hand side around �q results in the linear
equation

q�(t+ 1) =
�
1� k

�
b�(�+ 1)�q��1 + c�(� � 1)�q��2

��
q�(t)

with q�(t) = q(t)� �q. Let

A = b�(�+ 1)�q��1 and B = c�(� � 1)�q��2;

then we have
q�(t+ 1) = (1� k(A+B)) q�(t):

The steady state of (3) is locally asymptotically stable if

j1� k(A+B)j < 1

and locally unstable if
j1� k(A+B)j > 1:

Thus we have the following result on local stability:

Theorem 1 The steady state of system (3) is locally asymptotically stable if
k < kS and locally unstable if k > kS where

kS =
2

A+B
:

If we write di¤erence equation (3) in function iteration form, then it becomes

q(t+ 1) = '(q(t))

where
'(q) = q + k

�
a� b(�+ 1)q� � c�q��1

�
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with

'0(0) =

8>>>><>>>>:
1 if � > 1 and � > 2;

1� kc�(� � 1) if � > 1 and � = 2;

1� kb(�+ 1)� if � = 1 and � > 2

and
lim
q!1

'0(q) = �1 and '00(q) < 0:

Since the right hand side of di¤erence equation (3) takes a unimodal pro�le,
the steady state could proceed to chaotic �uctuations via the period-doubling
bifurcation if '(q) has strong nonlinearities and its steady state is locally un-
stable. Naimzada and Ricchiuti (2008) numerically con�rm the generation of
complex dynamics under � = 3 and � = 1. Later Askar (2013) extends their
analysis to the case with � � 3: We also conduct numerical simulations on
global behavior in the more general case of � � 1 and � � 2: Figure 2 is a
bifurcation diagram with � = 4 and � = 2 in which the steady state loses
stability at k = kS(' 0:154): It is seen that the trajectories exhibit periodic
and aperiodic �uctuations and are economically feasible (i.e., non-negative) for
k < kN (' 0:228): In Appendix we consider the non-negativity condition that
guarantees the non-negativity of the trajectories for all t � 0 and determine the
value of kN : The main result obtained there is summarized as follows:

Theorem 2 There is a positive kN such that R(qm(kN ); kN ) = qM (k
N ) and

the non-negativity condition

R(qm(k); k) � qM (k)

holds for k � kN where, given k; R(q; k) = '(q); qm(k) maximizes '(q) for
q � 0 and qM (k) solves '(q) = 0:
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Figure 2. Bifurcation diagram of (3) with
respect to k

3 Continuous Time Model

In this section we consider continuous-time dynamics based on the discrete-time
model. Notice �rst that the discrete system can be rewritten as

[q(t+ 1)� q(t)] + q(t) = '(q(t)):

There are many ways to transform a discrete-time model into a continuous-time
model. One of the simplest ways is to replace the di¤erence, q(t+1)�q(t); with
the derivative _q(t);

_q(t) = �q(t) + '(q(t))

or
_q(t) = k�0(q(t)):

Since �00(q) < 0; this continuous-time model is always locally asymptotically
stable. Furthermore, its trajectory cannot be negative.1 Another simple way in
obtaining a corresponding continuous model is the following. We �rst assume
delayed adjustment (i.e., '(q(t� �))) and second, an inertia in the direction of
output change (i.e., q(t+1)�q(t) = � _q(t)) to get the delay di¤erential equation

� _q(t) = �q(t) + '(q(t� �))
1When it goes to negative from positive, the trajectory has to go through zero where

_q(t) = ka > 0: So the trajectory turns back to the positive region.
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or

� _q(t) = �q(t) + q(t� �) + k
�
a� b(�+ 1)q(t� �)� � c�q(t� �)��1

�
(4)

where � > 0 is a constant and � > 0 is the delay.2 It is clearly seen that the delay
di¤erential equation (4) reduces to the di¤erence equation (3) in discrete time
step � if � = 0. This suggests that the evolution in discrete time might describe
well the evolution in continuous time if � is small enough. In the following, we
pursue a possibility that the delay contiuous-time model gives rise to complex
dynamics when its discrete version also generates complex dynamics and shed
light on the condition under which this is a case.
The linearization with respect to q(t� �) results in the linear equation

� _q�(t) = �q�(t) + (1� k(A+B)) q�(t� �):

In order to get the characteristic equation, assume that q(t) = e�tu; then

��+ 1� (1� k(A+B)) e��� = 0: (5)

We �rst show that the roots of the characteristic equation (5) are single. On
the contrary, suppose that � is not single. Then � is a root of its derivative

� + (k(A+B)� 1)e��� (��) = 0

from which
(k(A+B)� 1)e��� = �

�
:

Substituting this relation into equation (5) gives

��+ 1 +
�

�
= 0

where the only multiple eigenvalue can be

� = �1
�
� 1

�
:

Consequently all pure complex roots are single.
If � = 0; then

� = �k
�
(A+B) < 0:

Hence the steady state is locally asymptotically stable if there is no delay (i.e.,
� = 0) regardless of the value of the speed of adjustment. If � = 0; then the
continuous system is reduced to the discrete system and its stability depends
on the value of the speed of adjustment as con�rmed in Theorem 1. Our main
concern in this section is placed on two issues: one is whether a positive delay
destabilizes the stable steady state and the other is whether a positive inertia

2For this transformation, see Berezowski (2001) where the logistic map is connected with
some physical process of de�nite inertia.

7



stabilizes the unstable steady state. The remaining part of this section is divided
into two parts, the �rst issue is considered in the �rst part and so is the second
issue in the second part. Before proceeding, Figure 3 depicts a bifurcation
diagram of the delay di¤erential equation (4) with respect to k similarly to
Figure 2. For each value of k the equation is simulated for 2000 times where
� = 2 and � = 0:1. The data for 1900 < t < 2000 are plotted vertically
above the value of k: There are similarities and dissimilarities between this
�gure and Figure 2. For relatively smaller values of k, the continuous system is
stable and thus trajectories converge to the stationary state. For values greater
than the threshold value of kS1 ; a limit cycle appears with period-doubling and
then bifurcates to a period-8 limit cycle with two-times doubling at the second
threshold value of kS2 . For even larger values of k, dynamic behavior of output
is very aperiodic. So we will look more carefully into how the delay a¤ects this
bifurcation process.

Figure 3. Bifurcation diagram of (4) with
respect to k

3.1 Delay E¤ect

In order to �nd stability switches in the case of � > 0; we assume that � =
i! with ! > 0. Substituting it into equation (5) yields

�i! + 1� (1� k(A+B)) (cos!� � i sin!�) = 0:

By separating the real and imaginary parts, we get two equations for the two
unknowns � and !:

1� [1� k(A+B)] cos!� = 0;

�! + [1� k(A+B)] sin!� = 0;
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which can be written as

cos!� =
1

1� k(A+B) ;

sin!� = � �!

1� k(A+B) :
(6)

Adding the squares of the two equations and arranging the terms, we have

[1� k(A+B)]2 = 1 + (�!)2

or

!2 =
[1� k(A+B)]2 � 1

�2
: (7)

If j1� k(A+B)j < 1; then there is no positive solution of !, therefore there
is no stability switch, that is, the steady state is locally asymptotically stable
with arbitrary length of the delay. This is the case, when

k < kS =
2

A+B
:

Notice that this is the stability condition in the discrete model. This follows
the general understanding that a continuous-time model is more stable than a
discrete-time model in the sense that the former stability region in the parameter
space is larger than the latter�s.

Lemma 1 If the discrete-time model (3) is locally asymptotically stable, then
so is the continuous-time model (4).

Assume next that k > kS or 1�k(A+B) < �1. Then from (7) the solution
for ! is

�! =

q
[1� k(A+B)]2 � 1

�
: (8)

Since 1� k(A+ B) is negative, equations (6) imply that sin!� is positive and
cos!� is negative, so �=2 + 2n� � �!� < � + 2n� and

�n =
1

�!

�
� � sin�1

�
��!

k(A+B)� 1

�
+ 2n�

�
for n = 0; 1; 2; ::: (9)

We will next examine the direction of the stability switches. By selecting �
as the bifurcation parameter, we verify how the change in the length of the delay
a¤ects the real parts of the roots of the characteristic equations. Considering �
as the function of � ; � = �(�); and implicitly di¤erentiating the characteristic
equation (6), we have

�
d�

d�
� (1� k(A+B))e���

�
�d�
d�
� � �

�
= 0:
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For the sake of analytical convenience, we solve for (d�=d�)�1,�
d�

d�

��1
= � �

�(��+ 1)
� �

�
(10)

where the relation ��+ 1 = (1� k(A+B)) e��� from (5) is used to obtain the
form at the right hand side. Substituting � = i! with ! > 0 into equation (10)
and then taking the real part represent

Re

"�
d�

d�

��1#
= Re

�
�(�! + i)

!(�! � i)(�! + i)

�

=
�2

(�!)2 + 1
> 0:

The last inequality implies that increasing � induces the crossing of the imagi-
nary axis from left to right. So stability is lost at the critical delay with n = 0 in
equation (9),

�0 =
�q

[k(A+B)� 1]2 � 1

 
� � sin�1

 s
1� 1

[k(A+B)� 1]2

!!
: (11)

and stability cannot be regained later. In short, we summarize the results as
follows:

Lemma 2 In the case of k > kS ; the continuos model (4) is locally asymptoti-
cally stable if � < �0:

Lemmas 1 and 2 together imply the following:

Theorem 3 Given k > 0; the delay di¤erential equation (4) is locally asymp-
totically stable and delay is harmless if either

k < kS

or
k > kS and � < �0:

We now numerically examine global dynamics when the stability of the
steady state is lost. Figure 4(A) depicts the downward-sloping partition curve
described by equation (11) with � = 3 and � = 1:3 The curve divides the
(k; �) plane into two regions. The steady state is locally unstable in the region
above the curve and locally asymptotically stable in the yellow region below the
curve. This stable region is further divided into two by the vertical dotted line

3Needless to say, speci�ed values of � and � do not a¤ect the qualitative aspects of the
results to be obtained below.
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at k = kS : In the region left to the line, k < kS holds and thus the steady state
is locally stable regardless of the length of delay. Such a delay is often called
harmless. In the region right where k > kS ; we select the value k0 (= 0:29)
and depict the vertical dotted-real line at k = k0 crossing the partition curve at
� = �0: Lemma 2 implies that the steady state is locally asymptotically stable
for � < �0: On the partition curve, the real part of one eigenvalue is zero and its
derivative with respect to � is positive. If � becomes larger than �0 by crossing
the dotted vertical line at �0 from left to right, then one pair of complex eigenval-
ues changes the sign of their real part from negative to positive. Thus increasing
� > �0 destabilizes the model and the steady state bifurcates to a limit cycle as
shown in Figure 4(B). At � = �1; another pair of eigenvalues does the same. In
consequence, a new limit cycle emerges from the existing limit cycle with dou-
bling the period of the cycle.4 So period-doubling bifurcation occurs. In addition
to this, carefully observing Figure 4(B) indicates the emergence of another new
limit cycle for �1 < � < �2.5 Thus the period of the limit cycle is more than
double. At the next critical value, � = �2; a new pair of eigenvalues changes real
part from negative to positive again and the existing cycle bifurcates to a new
limit cycle with doubling period and another new limit cycles are born. In this
way the bifurcation proceeds. If �k�1 < � < �k; then exactly k pairs have posi-
tive real parts and if � !1; then k !1; so by increasing the values of � ; the
dynamics of the system becomes more and more complex generating complex
dynamics involving chaos. This is well illustrated in the bifurcation diagram in
Figure 4(B) in which we call such bifurcation quasi period-doubling because the
period is increased to more than double. Global behavior with respect to � is
summarized as follows:

Proposition 1 Given k; the steady state loses stability at � = �0 and bifurcates
to chaos via the quasi period-doubling cascade as � increases.

4The values of � i for i = 1; 2; :::; 5 are determined by a rule of thumb.
5The same phenomeon is often observed in a delay di¤erential equation. However, it is not

clear yet why the new cycles arise suddenly.
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(A) Partition curve (B) Bifurcation diagram

Figure 4. Delay e¤ect

3.2 Inertia E¤ect

In the same way as in the previous section, we can detect the e¤ect caused by a
change in � on dynamics. We �rst deal with the benchmark case of � = 0: The
characteristic equation is

1 + (k(A+B)� 1) e��� = 0:

If � = �+ i� with � > 0; then it is written as

1 + (k(A+B)� 1) e��� (cos�� � i sin��) = 0:

Notice that stability depends on the sign of �: Separating real and imaginary
parts yields two equations

1 + (k(A+B)� 1) e��� cos�� = 0 (12)

and
(k(A+B)� 1) e��� sin�� = 0: (13)

sin�� = 0 is de�nitely determined from (13). On the other hand, the sign of
cos�� in (12) is not determined unless the sign of k(A+B)� 1 is speci�ed,

if k(A+B)� 1 < 0, then cos�� > 0 implying cos�� = 1

and
if k(A+B)� 1 > 0, then cos�� < 0 implying cos�� = �1:
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So from (12),

1 + (k(A+B)� 1) e��� (+1) = 0 if k(A+B)� 1 < 0;

1 + (k(A+B)� 1) e��� (�1) = 0 if k(A+B)� 1 > 0:

Then

e��� = � 1

k(A+B)� 1 according to sign[k(A+B)� 1] = �

Since double-sign is in the same order, � > 0 if and only if either

(i) k(A+B)� 1 < 0 and k(A+B)� 1 < �1

or
(ii) k(A+B)� 1 > 0 and k(A+B)� 1 > 1:

Condition (i) cannot occur as A > 0 and B > 0. It is therefore shown that the
real part � is negative if k < kS and positive if k > kS : Hence, the stability
condition in the continuous model with � = 0 is the same as the one in the
discrete model:

Theorem 4 The dynamic equation (4) with � = 0 is locally asymptotically
stable if k < kS and locally unstable if k:kS :

Now we proceed to the case of � > 0: If � is given, then the critical values
of � can be obtained from equations (8) and (9),

�n =
�

q
[k(A+B)� 1]2 � 1

(2n+ 1)� � sin�1
�q

1� 1
[k(A+B)�1]2

� : (14)

They are the partition curves in the (�; �) space. Largest �n occurs at n = 0:
�n decreases in n and converges to zero as n!1: To verify whether stability
switch takes place on the partition curve, we suppose that � = �(�): Implicitly
di¤erentiating the characteristic equation yields

�
d�

d�
+ �� (1� k(A+B))e���

�
�d�
d�
�

�
= 0

implying that �
d�

d�

��1
= ��(��+ 1)

�
� �
�
:

If � = i! with ! > 0; then the real part is

Re

"�
d�

d�

��1#
= Re

�
��(�!

2 � i!)
!2

�

= ��� < 0:
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That is, when the value of � crosses a critical value from left to right, then one
pair of complex eigenvalues changes sign of real part from positive to negative.
Let �0(�) and �0(�) denote the right hand sides of equations (9) and (14) with
n = 0: Both functions are strictly increasing. Assume that the value of � is
�xed and assume that � > �0 = �0(�): Then � = �0(�0) < �0(�); so Lemma 2
implies the local asymptotic stability of the continuous model with parameters
� and �: When the value of � crosses �0 from right to left, then one pair of
eigenvalues changes real part from negative to positive. Then at �1; another
pair does the same, at �2 a new pair changes the sign of their real part from
negative to positive, and so on. At each �n the number of eigenvalues with
positive real parts increases by two when the value of � crosses �n from right
to left. So if �n < � < �n�1; then exactly n pairs of eigenvalues have positive
real parts, that is, at any � > 0 there are only �nitely many such eigenvalues
and as � decreases, their number increases. Furthermore this number tends to
1 as � ! 0: This is the reason of the "chaotic" behavior for small � values as
shown in the bifurcation diagrams of Figure 5(B). As � increases, the number of
eigenvalues with positive real parts decreases making the dynamics of the model
more simple. This is also illustrated in Figure 5(B).

Proposition 2 Given � ; dynamics becomes simple from complex via quasi-
period halving cascade as � increases to �0 where stability is gained and never
lost for � > �0:

(A) Partition curve (B) Bifurcation diagram

Figure 5. Inertia e¤ect

In summary we have the following result:

Theorem 5 The steady state of the continuous model (4) is locally asymptoti-
cally stable when the inertia does not a¤ect stability if either

k < kS

14



or
k > kS and � > �0:

4 Concluding Remarks

A discrete and corresponding continuous dynamics of a monopoly were examined
with general price and cost functions. First the existence of the unique pro�t
maximizing output was proved and then stability conditions were derived for
the dynamic extensions. The discrete system is locally asymptotically stable
if the speed of adjustment is su¢ ciently small, in which case the continuous
system is also locally asymptotically stable with any length of the delay. It was
shown that the continuous system may become stable even in cases when the
discrete system is unstable with selecting su¢ ciently small length of the delay.
In examining global behavior we have seen a similarity between the depen-

dence from the delay � and the inertia coe¢ cient �: The same quasi period
doubling phenomenon occurs with increasing values of � and with decreasing
values of �: This interesting fact was analytically proved and illustrated with
numerical studies.
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Appendix

In this Appendix, we consider the non-negativity condition for the trajecto-
ries. It is assumed that � � 1 and � � 2 where � > 1 or � > 2 or both. The
dynamic equation is given by

q(t+ 1) = R(q(t); k)

where
R(q; k) = q + k(a� b(�+ 1)q� � c�q��1) (A-1)

with
R(0; k) = ka and lim

q!1
R(q; k) = �1:

Furthermore

R0(q) = 1� k(b(�+ 1)�q��1 + c�(� � 1)q��2): (A-2)

Notice that R(q) is strictly concave.

Result 1 Given k > 0; there is a unique qM (k) such that R(qM (k)) = 0:

Proof. Equation (A-1) implies that qM is the solution of the equation

b(�+ 1)q� + c�q��1 = a+
1

k
q (A-3)

where the left hand side is denoted by f(q): At q = 0; the left hand side of
equation (A-3) is f(0) = 0 and is less than the right hand side. As q goes
to in�nity, f(q) converges to 1 faster than the right hand side. So there is
at least one solution. Since f(q) is strictly convex and the right hand side
is linear, the solution is unique. Furthermore R(q; k) > 0 if q 2 (0; qM ) and
R(q; k) < 0 if q > qM :

It is veri�ed from (A-3) that

lim
k!0

qM (k) =1, lim
k!1

qM (k) = �q (A-4)

and

q0M (k) = �
q=k2

f 0(qM )� 1=k
> 0

where the inequality is due to the fact that at q = qM ; the left hand side crosses
the right hand side from below. In the same way we have the following.

Result 2 Given k; there is a unique qm(k) that maximizes R(q; k) for q � 0:
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Proof. At any interior maximum,

b(�+ 1)�q��1 + c�(� � 1)q��2 = 1

k
: (A-5)

Let g(q) denote the left hand side, which strictly increase in q and tends to 1
as q !1. Notice that

g(0) =

8>>>><>>>>:
b(�+ 1)� if � = 1 and � > 2;

c�(� � 1) if � > 1 and � = 2;

0 otherwise.

If g(0) < 1=k, then there is a unique solution qm(k) of equation (A-5). Fur-
thermore, g(q) < 1=k as q < qm(k) and g(q) > 1=k as q > qm(k), so qm(k) is
the unique maximizer. If g(0) � 1=k, then g(q) > 1=k for all q > 0 implying
that @R(q; k)=@q < 0; therefore qm(k) = 0 is the unique maximizer.

Notice that qm(k) satis�es the following limit relations:

lim
k!0

qm(k) =1.

This is clear if g(0) < 1=k from equation (A-5), which becomes the case if k is
su¢ ciently small. Furthermore

lim
k!1

qm(k) = 0

which is also a simple consequence of equation (A-5) for interior maximum,
otherwise qm(k) = 0 for large enough values of k. Notice also that qm(k) strictly
decreases in k if it is positive and therefore solution of equation (A-5).

Result 3 qM (k) > qm(k) for any k > 0.

Proof. Since R(0; k) > 0 and R(q; k) � 0 as q � qM ; the maximizer qm has to
be less than qM ; so we have qM (k) > qm(k) for all k > 0:

If g(0) > 0; then there is a k1 such that g(0) = 1=k1 and if k < k1; then
g(0) < 1=k, and if k � k1; then g(0) � 1=k. So for k � k1; qm(k) = 0 and if
k < k1; then qm(k) is interior. If g(0) = 0; then qm(k) is interior for all k > 0;
so we may select k1 =1 in this case.

Result 4 R(qm(k); k) takes a U -shaped pro�le with respect to k and the qm(k)
curve passes through its minimum point.

Proof. Assume k < k1; then qm(k) is interior. Di¤erentiating R(qm(k); k) with
respect to k gives

dR

dk
=
@R

@q

����
q=qm

dqm
dk

+
@R

@k

����
q=qm
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where the �rst term on the right hand side is zero at q = qm: So

dR

dk
= a� b(�+ 1) (qm(k))� � c� (qm(k))��1

=
1

k
(R(qm(k))� qm(k))

where equation (A-1) evaluated at q = qm(k) is used at the second step. The
pro�t maximizing output �q is determined by f(�q) = a and independent from
k: Since qm(k) is strictly decreasing in k while positive, limk!0 qm(k) =1 and
limk!1 qm(k) = 0; there is a unique threshold value �k such that qm(�k) = �q: In
consequence, since qm(k) > �q for k < �k, we have R(qm(k); k) < qm(k) that
then leads to dR=dk < 0: In the same way, since qm(k) < �q for k > �k, we have
R(qm(k); k) > qm(k) that then leads to dR=dk > 0: Therefore the R(qm(k); k)
curve takes the U -shaped pro�le for k < k1 and the qm(k) curve passes the
minimum value.

From Results 1-4, we have the following condition for the non-negativity of
the trajectory which is given earlier in Theorem 2.

Result 5 There is a positive kN such that R(qm(kN ); kN ) = qM (kN ) and the
non-negativity condition

R(qm(k); k) � qM (k)

holds for k � kN :

Proof. For k < �k;
R(qm(k); k) < qm(k) < qM (k):

For k > �k; R(qm(k); k) is increasing in k and converges to 1 as k ! 1 while
qM (k) is decreasing. Thus there is a unique kN > �k where R(qm(kN ); kN ) =
qM (k

N ) such that

R(qm(k); k) � qm(k) < qM (k) for k � �k

R(qm(k); k) < qM (k) for �k < k < kN

and
R(qm(k); k) > qM (k) for k > kN :
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