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1 Introduction
We study a mixed duopoly model with incomplete or partial information in
which one firm adjusts its quantity and the other firm its price but each firm
lacks knowledge of the rival firm’s strategic behavior (i.e., quantity or price
strategy). The mixed duopoly is an intermediate model between a pure Cournot
duopoly and a pure Bertrand model, which was first considered by Bylka and
Komar (1976) and then extended in various directions. Using a symmetric dif-
ferentiated duopoly proposed by Dixit (1979), Singh and Vives (1984) showed,
among others, that the quantity-adjusting strategy is more (less) profitable than
the price-adjusting strategy if the goods are substitutes (complements). Re-
cently Matsumoto and Szidarovszky (2008) constructed a n-firm differentiated
mixed oligopoly model with n > 2 showing that their result is sensitive to the
duopoly assumption. Szidarovszky and Molnár (1992) proved the equivalence of
the equilibrium to the non-linear complementarity problem and also proved the
existence and uniqueness of the Nash equilibrium in a general N -firm model.
These, only to name a few, are static studies. Matsumoto and Onozaki (2005)
and Yousefi and Szidarovszky (2005) modeled the dynamic process of mixed
duopolies with nonlinear demands and showed the birth of complicated fluctu-
ations.
In this paper we return to the duopoly model and assume uncertainty about

the type of strategic variable chosen by the rival firm. We call a situation in
which each firm has complete information about the behavior of the rival firm
and the market demand fully-informed and the one in which each firm has
incomplete information about the behavior of the rival firms but complete in-
formation about the market demand partially-informed. In the recent literature
it has been demonstrated that various phenomena may occur as a result of the
lack of information about the market demand. Bischi et al. (2004) construct a
Cournot duopoly in which Nash equilibrium is unique under perfect information
and find the emergence of self-confirming steady state and present a situation
in which global bifurcation of basin of attraction occurs when firms choose their
actions based on a misspecified market demand. Bischi et al. (2007) examine a
quantity adjustment process of a nonlinear duopoly model and show its stability
under incomplete information about the market demand, despite the fact that it
can generate complicated dynamics under complete information when the non-
linearities become stronger. In the existing literature, however, very little has
been done with respect to the effects caused by the behavioral uncertainty on
the equilibrium of the mixed duopoly and its dynamic process.
The main purpose of this study is to shed lights on these unknown effects.

In particular, we demonstrate three main results:

1) Incomplete information is chosen endogenously in the presence of exogenous
uncertainty about the rival’s behavior.

2) Incomplete information stabilizes the market which is unstable under full
information.
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3) Incomplete information makes Parete-improvement by increasing the profits
of both firms.

The remainder of the paper is organized as follows. In Section 2, we present
our mixed duopoly model. In the first half of Section 3, we analyze the optimal
behavior of the firms with full information in which the behavioral strategy of
the firms is common knowledge. Then, in the second half, we reexamine this
model with partial information in which the behavioral strategy of the rival firm
is unknown. In Section 4, we compare the two types of duopoly equilibria with
full information and with partial information. In Section 5, we construct discrete
dynamic models in the fully-informed and in the partially informed cases and
then show the main conclusions mentioned just above. Section 6 concludes the
paper.

2 Cournot-Bertrand Competitions

2.1 Mixed Duopoly Model

There are two firms in a market in which firm i produces good xi with a constant
unit production cost ci for i = 1, 2. The inverse demand function of firm i is

Pi = αi − βixi − γixj , (1)

where αi > 0 and βi > 0.
1 By introducing notation

pi =
Pi
βi
, Ai =

αi
βi
and θi =

γi
βi
,

we obtain the simplified inverse demand functions,

pi = Ai − xi − θixj . (2)

Here Ai denotes the maximum price to be attained when demand is zero and is
assumed to satisfy the followin conditions :

Assumption 1. (a) A1 = A2 = A; (b) A > max(c1, c2).

Assumption 1(a) is imposed on only for analytical simplicity and Assumption
1(b) is imposed to guarantee interior optimum in the profit maximization of the
firms.
The parameter θi in (2) denotes the degree of product differentiation. It is

the ratio of γi over βi where βi indicates the direct effect on price pi caused

1 It is shown in Singh and Vives (1984) that this linear structure of inverse demand is
obtained by maximizing the quadratic and strictly concave utility function

U(x1, x2) = α1x1 + α2x2 − (β1x21 + 2γix1x2 + β2x
2
2)−

2

i=1
Pixi.
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by a change in xi and γi shows the indirect effect caused by a change in xj . If
θi = 1, then both effects are the same and hence the inverse demand functions
for i = 1, 2 become identical, which imply demands for homogeneous goods. If
θi = 0, then there is no indirect effect. Thus the two goods are independent
and the duopoly market is divided into two monopoly markets. A positive or
negative θi implies that the two goods are substitutes or complements. In this
study we confine our analysis to the case in which goods are substitutes and the
direct effect dominates the indirect effect.2 To this end, we make the following
assumption:

Assumption 2. 0 < θi < 1.

Solving (2) with i = 1, 2 for x1 and x2 yields the direct demand of firm i,

xi =
1

1− θ1θ2
{(1− θi)A− pi + θipj} . (3)

Each firm is either quantity-adjusting or price-adjusting and maximizes its profit
by taking its rival’s behavior as given. In particular, firm i maximizes its profit

πi = (pi − ci)xi (4)

subject to either (2) if it is quantity adjusting or (3) if price-adjusting. With two
firms and two strategies, there are four possible types of duopoly competition
according to the strategy selection of the firms. In this study, we focus on
heterogeneous competition in which different firms take different strategies: in
Cournot-Bertrand (CB) competition, firm 1 is quantity-adjusting, and firm 2
is price-adjusting and in Bertand-Cournot (BC ) competition, firm 1 is price-
adjusting and firm 2 is quantity-adjusting.3

Since Bertrand-Cournot competition is dual to Cournot-Bertrand competi-
tion, we restrict our study only to the optimal behavior of firms in CB compe-
tition. As a benchmark, we start with the case with full information and then
proceed to the case of partial information. The optimal values of outputs, prices
and profits of the firms under full information are obtained in Section 2.2 and
those under partial information will be derived in Section 2.3.

2.2 Full Information Case

Under full information, firm 1 knows that its rival is price-adjusting, sets its
quantity x1, taking its rival’s strategic variable p2 as given. Setting i = 1 and
substituting (2) into (4) and then substituting x2 from the solution of (2) give
the profit of firm 1 in terms of x1 and p2 :

π1 = ((1− θ1)A− (1− θ1θ2)x1 + θ1p2 − c1)x1. (5)
2Changing the sign of θi from positive to negative, we can go from substitutes to comple-

ments. Yousefi and Szidarovszky(2005) exhibits emergence of complex dynamics in a nonlinear
differentiated duopoly when the indirect effect dominates the direct effect.

3The remaining two types are Cournot-Cournot competition in which the two firms are
quantity-adjusting and Bertrant-Bertrand competition in which the two firms are price ad-
justing.
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Firm 2 also knows that firm 1 is quantity-adjusting, charges its price p2 by
taking its rival’s strategic variable x1 as given. Solving (2) with i = 2 for x2
and then substituting it into (4) give the profit of firm 2 in terms of x1 and p2:

π2 = (p2 − c2)(A− θ2x1 − p2). (6)

Assuming interior optimum and solving the first-order conditions for profit max-
imization of πi yields the following forms of the best reply functions:

RCB1 (p2) =
θ1

2(1− θ1θ2)
p2 +

(1− θ1)A− c1
2(1− θ1θ2)

(7)

and

RCB2 (x1) = −
θ2
2
x1 +

A+ c2
2

. (8)

The superscript "CB" attached to functions and variables indicates that they
are given in a CB competition.
An intersection of these best reply functions is a solution of the simultaneous

equations, x1 = RCB1 (p2) and p2 = RCB2 (x1). In the (p2, x1) plane, the x1 =
RCB1 (p2) curve is positive-sloping and the p2 = RCB2 (x1) curve is negative-
sloping. Since both curves are linear, there is a unique solution. We call the
solution a CB equilibrium. The outputs at the equilibrium are

xCB1 =
2(A− c1)− θ1(A− c2)

4− 3θ1θ2
(9)

and

xCB2 =
(2− θ1θ2)(A− c2)− θ2(A− c1)

4− 3θ1θ2
. (10)

The corresponding equilibrium prices are

pCB1 =
−(2− θ1θ2)(A− c1)− θ1(1− θ1θ2)(A− c2) + (4− 3θ1θ2)A

4− 3θ1θ2
(11)

and

pCB2 =
−θ2(A− c1)− 2(1− θ1θ2)(A− c2) + (4− 3θ1θ2)A

4− 3θ1θ2
. (12)

Note that both are positive due to Assumption 2.4 Substituting the CB outputs
and prices into the profit functions presents the CB equilibrium profits:

πCB1 = (1− θ1θ2)
¡
xCB1

¢2
(13)

4The numerators of (11) and (12) are rewritten, respectively, as

c1(2− θ1θ2) + c2θ1(1− θ1θ2) +A(2− θ1)(1− θ1θ2) > 0

and
c1θ2 + 2c2(1− θ1θ2) +A(2− θ2(1 + θ1)) > 0.
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and
πCB2 =

¡
xCB2

¢2
, (14)

showing that the profits are positive at the CB equilibrium.
Before proceeding further, we introduce an alternative expression of the cost

ratio,

c =
A− c2
A− c1

,

which is positive by Assumption 1(b). Solving this definition for c2 gives

c2 = cc1 + (1− c)A

which implies that c2 = c1 if c = 1, c2 > c1 if c < 1 and c2 < c1 if c > 1. Clearly
c is closely related to the cost ratio. From (9) and (10), the nonnegativity
conditions for CB outputs are given as

θ2
2− θ1θ2

≤ c ≤ 2

θ1
. (15)

If the marginal cost, c1, of firm 1 is large enough to make the cost ratio exceed
the threshold value 2/θ1, then firm 1 chooses zero-production or exits the market
to avoid negative profit. By the same token, if the marginal cost, c2, of firm 2
is large enough to make the cost ratio smaller than the threshold value θ2/(2−
θ1θ2), then firm 2 chooses zero-production or exists the market. In either case,
duopoly competition turns into monopoly. Although it seems to be interesting
to consider the birth of monopoly through the duopoly competition with the
extreme cost ratio, we confine our analysis to the case when both firms stay in
the market.

2.3 Partial Information Case

In CB competition with partial information (CBp competition henceforth), it
is assumed that none of the firms have enough information to observe its rival’s
strategic behavior and therefore each firm determines its best choice, presuming
that its rival takes the same strategy. That is, firm 1 thinks that it is in a
Cournot competition and firm 2 believes that it is in a Bertrand competition.
The profit functions of the firms are therefore defined as follows. Substituting
(2) for i = 1 into (4) gives the profit of firm in terms of its strategic variable x1
and the believed strategic variable x2 of its competitor:

π1 = (A− x1 − θ1x2 − c1)x1.

Differentiating π1 with respect to x1 gives the first-order condition for the profit
maximization, which is then solved for x1 to obtain the best response of firm 1:

x1 =
A− c1 − θ1x2

2
. (16)
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Firm 2 thinks that it is in a Bertrand competition so its strategic variable is p2
and believes that its rival sets a price, p1. Substituting (3) for i = 2 into (4)
gives its profit:

π2 = (p2 − c2)
(1− θ2)A+ θ2p1 − p2

1− θ1θ2
.

Differentiating π2 with respect to p2 gives the first-order condition, which is
solved for p2 to derive the best response of firm 2:

p2 =
(1− θ2)A+ c2 + θ2p1

2
. (17)

Due to the partial information, each of expressions (16) and (17) depends on
the variable that the rival firm is supposed to choose. To express both best
response functions in terms of the decision variables, x1 and p2, of the firms, we
solve (2) with i = 2 for x2 and (3) with i = 1 for p1 to obtain

x2 = A− θ2x1 − p2

and
p1 = (1− θ1)A− (1− θ1θ2)x1 + θ1p2.

Substituting them into (16) and (17) provides the best response functions in
terms of the decision variables, x1 and p2:

R
CBp
1 (x1, p2) ≡

(1− θ1)A− c1 + θ1θ2x1 + θ1p2
2

(18)

and

R
CBp
2 (x1, p2) ≡

(1− θ1θ2)A+ c2 − θ2(1− θ1θ2)x1 + θ1θ2p2
2

. (19)

The superscript "CBp" is attached to functions and variables to indicate that
they are given in CBp competition.
The equilibrium point is defined by a pair of (x1, p2) such that x1 = R

CBp
1 (x1, p2)

and p2 = R
CBp
2 (x1, p2). Solving these equations simultaneously and using the

demand function expressions yield the equilibrium outputs

x
CBp
1 =

(2− θ1θ2)(A− c1)− θ1(A− c2)
4− 3θ1θ2

(20)

and

x
CBp
2 =

2(A− c2)− θ2(A− c1)
4− 3θ1θ2

, (21)

where the nonnegativity conditions for the outputs are given by

θ2
2
≤ c ≤ 2− θ1θ2

θ1
. (22)

Using (2) with i = 1 and i = 2, we have the equilibrium prices,

p
CBp
1 =

−2(1− θ1θ2)(A− c1)− θ1(A− c2) + (4− 3θ1θ2)A
4− 3θ1θ2

(23)
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and

p
CBp

2 =
−θ2(1− θ1θ2)(A− c1)− (2− θ2θ2)(A− c2) + (4− 3θ1θ2)A

4− 3θ1θ2
, (24)

both of which are positive. The equilibrium profits are given as

π
CBp
1 =

³
x
CBp

1

´2
(25)

and

π
CBp
2 = (1− θ1θ2)

³
x
CBp
2

´2
. (26)

Notice that both profits are positive at the equilibrium.

3 Information Difference
In this section, we compare the equilibrium strategies under full information
with those under partial information to show the effects caused by information
asymmetry.
We start with firm 1. The output difference is obtained by subtracting (20)

from (9),

xCB1 − xCBp1 =
(A− c1)θ1θ2
4− 3θ1θ2

> 0

and the price difference by subtracting (11) from (23),

pCB1 − pCBp1 =
(A− c1)θ1θ2
4− 3θ1θ2

(cθ1 − 1),

where cθ1 − 1 may be positive, negative or even zero.5 The profit difference is
given by subtracting (13) from (25),

πCB1 − π
CBp
1 =

³p
1− θ1θ2x

CB
1 + x

CBp
1

´³p
1− θ1θ2x

CB
1 − xCBp

1

´
,

in which the first factor is positive and the second factor can be rewritten as

(A− c1)
¡
1−
√
1− θ1θ2

¢
(
√
1− θ1θ2 − (1− cθ1))

4− 3θ1θ2
.

Since A− c1, 1−
√
1− θ1θ2 and the denominator are positive,

sign
h
πCB1 − π

CBp
1

i
= sign[

p
1− θ1θ2 − (1− cθ1)]. (27)

We will next show that πCB1 > π
CBp
1 under economically meaningful conditions.

5 If c ≤ 1 (i.e., firm 1 has a more efficient cost function), then pCB1 < p
CBp
1 .
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To determine the sign of the right hand side of (27), we first suppose c ≥ 1.
Then p

1− θ1θ2 − (1− cθ1) ≥
p
1− θ1θ2 − (1− θ1) > 0,

where the last inequality is due to relation
√
1− θ1θ2 >

√
1− θ1 > 1 − θ1 for

0 < θi < 1. Therefore we have πCB1 > π
CBp

1 for c ≥ 1. Next suppose that c < 1.
The πCB1 = π

CBp

1 locus is negative-sloping in θ1 and defined by

θ2 = c(2− cθ1),

which implies that πCB1 > π
CBp
1 if θ2 < c(2 − cθ1) and πCB1 < π

CBp

1 if θ2 >
c(2 − cθ1). Returning to the nonnegativity condition of xCB2 and solving it for
θ2 yields that the xCB2 = 0 locus is

θ2 =
2c

1 + cθ1
.

Subtracting this equation from the equal-profit locus yields

c(2− cθ1)−
2c

1 + cθ1
=
c2θ1(1− cθ1)
1 + cθ1

> 0,

since 0 < θ1 < 1 and 0 < c < 1. This shows that the πCB1 = π
CBp

1 locus is
located in the region in which xCB2 < 0. Alternatively, πCB1 > π

CBp

1 in the
feasible region in which xCB2 ≥ 0 for c < 1. Combining this observation with
the last result implies that πCB1 > π

CBp

1 in the feasible region of Θ in which
xCB2 > 0.
We now compare the equilibrium strategies of firm 2 in CB competitions

with both full and partial informations. As in the case of firm 1, the output
difference and price difference are obtained as follows:

xCB2 − xCBp2 = −(A− c2)θ1θ2
4− 3θ1θ2

< 0

and

pCB2 − pCBp

2 =
(A− c1)θ1θ2
4− 3θ1θ2

(c− θ2),

where c − θ2 may be positive, negative or zero.6 The profit difference is given
by

πCB2 − π
CBp
2 =

³
xCB2 +

p
1− θ1θ2x

CBp
2

´³
xCB2 −

p
1− θ1θ2x

CBp

2

´
,

where the first factor is positive and the second factor can be rewritten as

(A− c2)
¡
1−
√
1− θ1θ2

¢
(c(1−

√
1− θ1θ2)− θ2)

4− 3θ1θ2
.

6 If c > 1 (i.e., firm 2 has a more efficient cost function), then pCB2 > p
CBp
2 .
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Since A− c2, 1−
√
1− θ1θ2 and the denominator are positive,

sign
h
πCB2 − π

CBp
2

i
= sign[c(1−

p
1− θ1θ2)− θ2]. (28)

We can also show that πCB2 < π
CBp

2 under economically meaningful conditions.
To determine the sign of the right hand side of (28), we first suppose that

c ≤ 1. Then

c(1−
p
1− θ1θ2)− θ2 ≤ 1− θ2 −

p
1− θ1θ2 < 0,

since
√
1− θ1θ2 >

√
1− θ2 > 1− θ2 for 0 < θi < 1. Therefore, πCB2 < π

CBp

2 as
c ≤ 1. Next suppose that c > 1. The πCB2 = π

CBp
2 locus is negative-sloping in

θ1 and defined by
θ2 = c(2− cθ1),

which implies that πCB2 < π
CBp
2 if θ2 < c(2 − cθ1), and πCB2 > π

CBp
2 if θ2 >

c(2− cθ1). Returning to the nonnegativity condition of xCBp1 and solving it for
θ2 implies that the x

CBp

1 = 0 locus is

θ2 =
2− cθ1
θ1

.

Subtracting it from the equal profit locus yields

c(2− cθ1)−
2− cθ1
θ1

=
(2− cθ1)(cθ1 − 1)

1 + cθ1
> 0.

The last inequality is due to cθ1 − 1 > 0 which is shown as follows. The
x
CBp
1 = 0 locus crosses the horizontal line θ2 = 1 at θ11 =

2
1+c , which implies

that the feasible domain of the xCBp1 = 0 locus is an interval [θ11, 1). For θ1 > θ11,

1 <
2c

1 + c
< cθ1.

The direction of the inequality implies that the πCB2 = π
CBp
2 locus is located in

the region in which xCBp1 < 0. Alternatively, πCB2 < π
CBp
2 in the feasible region

in which xCB1 ≥ 0 for c > 1. Combining this observation with the last result
implies that πCB12 < π

CBp
2 in the feasible region of θ1 and θ2, in which x

CBp
1 > 0.

We can summarize the above result as follows:

Theorem 1 In the feasible parameter region in which xCBp1 > 0 and xCB2 > 0,
the quantity-adjusting firm earns more profit in the fully informed case than
in the partially informed case (i.e., πCB1 > π

CBp
1 ) while the price-adjusting

firm earns more profit in the partially informed case than in the fully informed
case(i.e., πCB2 < π

CBp

2 ) .
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In comparing the equilibrium strategies under full information with those
under partial information, an interesting phenomenon can be noticed: the equi-
librium strategies under partial information are the duals of the equilibrium
strategies under full information. Comparing the equilibrium output levels (9)
and (10) with (20) and (21), the equilibrium prices (11) and (12) with (23)
and (24), and the equilibrium profits (13) and (14) with (25) and (26), we can
see that they are identical if we interchange the two firms (i.e., xCBi = x

CBp
j ,

pCBi = p
CBp

j and πCBi = π
CBp
j for i, j = 1, 2 and i 6= j). Since the CBp

competition is dual to the BC competition (πCBp

1 = πBC1 and π
CBp

2 = πBC2 ),
Theorem 1 can be alternatively summarized as πCB1 > πBC1 and πCB2 < πBC2 ,
which is the result shown by Singh and Vives (1984). Although the equilibrium
values are the same, it does not necessarily imply that the dynamic processes
are also identical. We will now turn our attention to the analysis of the dynamic
processes.

4 Stability Analysis
In this section, we investigate the stability of the CB equilibrium and that
of the CBp equilibrium. If the firms have naive expectations and the time
scale is discrete, then the best reply discrete dynamics under full information is
constructed as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1(t+ 1) =
θ1

2(1− θ1θ2)
p2(t) +

(1− θ1)A− c1
2(1− θ1θ2)

p2(t+ 1) = −
θ2
2
x1(t) +

A+ c2
2

.

(29)

This is a two dimensional linear system with Jacobi matrix

JCB =

⎛⎜⎜⎜⎝
0

θ1
2(1− θ1θ2)

−θ2
2

0

⎞⎟⎟⎟⎠ .
The eigenvalues of the associated characteristic equation are

λ1,2 = ±i
1

2

r
θ1θ2

1− θ1θ2
,

which are inside the unit circle if and only if

θ1θ2 <
4

5
. (30)

In addition to this stability condition, we need to take the nonnegativity con-
straints (15) on the outputs, xCB1 and xCB2 , into account, to obtain the proper
condition for the stability of the CB equilibrium point:
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Theorem 2 In a CB competition with full information, the unique CB equilib-
rium is feasible and stable if the degrees of the product differentiation, θ1 and
θ2, and the cost ratio, c, are in the following set:

ΘCB =

½
(θ1, θ2, c) ∈ Θ | θ1θ2 <

4

5θ2
,

θ2
2− θ1θ2

≤ c ≤ 2

θ1

¾
.

We now continue with examining the stability of the CBp competition. As-
suming naive expectations again, the best reply discrete dynamics under partial
information is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1(t+ 1) =
θ1θ2
2
x1(t) +

θ1
2
p2(t) +

(1− θ1)A− c1
2

p2(t+ 1) = −
θ2(1− θ1θ2)

2
x1(t) +

θ1θ2
2
p2(t) +

(1− θ1θ2)A+ c2
2

.

(31)

This dynamic system is also two-dimensional and linear with Jacobi matrix

JCBp =

⎛⎜⎜⎜⎝
θ1θ2
2

θ1
2

−θ2(1− θ1θ2)

2

θ1θ2
2

⎞⎟⎟⎟⎠ .
The characteristic equation is quadratic in λ,

λ2 − θ1θ2λ+
θ1θ2
4

= 0.

It is easy to verify that its eigenvalues are inside the unit circle since the stability
conditions of this two dimensional system are satisfied under Assumption 2:

1− detJCBp = 1− θ1θ2
4

> 0

and

1± trJCBp + detJCBp = 1± θ1θ2 +
θ1θ2
4

> 0.

In addition to these conditions, the outputs xCBp1 and xCBp

2 are subject to
the nonnegativity conditions (22). Hence our second stability result can be
summarized as follows:

Theorem 3 In a CB competition with partial information, the unique CBp
equilibrium is feasible and stable if the degrees of the product differentiation, θ1
and θ2, and c are in the following set:

ΘCBp =

½
(θ1, θ2, c) |

θ2
2
≤ c ≤ 2− θ1θ2

θ1

¾
.

12



The parameter region in which equilibrium outputs are non-negative under
CB and CBp competitions is defined by

Θ =

½
(θ1, θ2, c) |

θ2
2− θ1θ2

≤ c ≤ 2− θ1θ2
θ1

¾
.

It can be divided into two parts by the θ1θ2 = 4/5 locus,

Θ = Θs ∪ΘU

with

Θs =

½
(θ1, θ2, c) ∈ Θ | θ1θ2 <

4

5

¾
and ΘU =

½
(θ1, θ2, c) ∈ Θ | θ1θ2 ≥

4

5

¾
.

As Figure 1 shows, the lighter-gray region is Θs, the darker-gray region is ΘU
and one or two non-negativity conditions are violated in the white regions.
Comparing these stability conditions with those under partial information,

we first notice that less information improves stability since the fully-informed
dynamic process is unstable while the partially-informed process is stable if
(θ1, θ2, c) ∈ ΘU . We then notice that collecting information on the rival’s strat-
egy by both firms to change the partially informed competition to fully informed
competition is advantageous for firm 1 since πCB1 > π

CBp

1 and disadvantageous
for firm 2 since πCB2 < π

CBp
2 , regardless of whether the CB equilibrium is stable

or unstable.

Figure 1. Division of the feasible region by the stability condition

As a result of profit maximizing behavior of the firms, it may be reasonable
to assume that firm 1 will collect information about the bahavioral strategy of
its rival, make it known to firm 2 as well as fully its own behavioral strategy
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to the competitor in order to change a partially informed oligopoly into the
fully informed case. However there is no guarantee that firm 2 will believe and
trust firm 1 in this message, so the price adjusting frim will continue believing
that it is in a partially informed mixed oligopoly. Hence CB competition with
asymmetric information endogenously emerges. In this casae, firm 1 has the best
reply function RCB1 (p2) and firm 2 has RCBp

2 (x1, p2). An intersection of these
best reply functions is an equilibrium state under asymmetric informatition and
is denoted by (xCBa1 , pCBa2 ) with

xCBa1 =
(2− θ1θ2)(A− c1)− θ1(A− c2)

(4− θ1θ2)(1− θ1θ2)
(32)

and

pCBa2 = A− θ2(A− c1) + 2(A− c2)
4− θ1θ2

. (33)

Similarly to (29) and (31), the discrete dynamic system with naive expectations
is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1(t+ 1) =
θ1

2(1− θ1θ2)
p2(t) +

(1− θ1)A− c1
2(1− θ1θ2)

p2(t+ 1) = −
θ2(1− θ1θ2)

2
x1(t) +

θ1θ2
2
p2(t) +

(1− θ1θ2)A+ c2
2

with Jacobi matrix

JCBa =

⎛⎜⎜⎜⎝
0

θ1
2(1− θ1θ2)

−θ2(1− θ1θ2)

2

θ1θ2
2

⎞⎟⎟⎟⎠ .
The CBa equilibrium is asymptotically stable, since the stability conditions are
satisfied:

1− detJCBa > 0 and 1± trJCBa + det JCBa > 0
where

detJCBa =
θ1θ2
4

and trJCBa =
θ1θ2
2
.

We summarize this result as follows:

Theorem 4 In a CB competition with asymmetric information, the unique
CBa equilibrium is feasible and stable if (θ1, θ2, c) ∈ Θ.

This stability result implies that even if firm 1 has full information and firm 2
has only partial information, they can still arrive at the CBa equilibrium. Since
this holds for (θ1, θ2, c) ∈ ΘU , we find again that less information stabilizes the
otherwise unstable market under full information.
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The equilibrium values of the other variables are

pCBa1 =
−2(A− c1)− θ1(A− c2) + (4− θ1θ2)A

4− θ1θ2
(34)

and

xCBa
2 =

−θ2(A− c1) + (2− θ1θ2)(A− c2)
(4− θ1θ2)(1− θ1θ2)

. (35)

We can also obtain the equilibrium profits of the two firms under asymmetric
information:

πCBa1 =
1

1− θ1θ2
(xCBa
1 )2 (36)

and
πCBa2 =

1

1− θ1θ2
(xCBa
2 )2. (37)

Then we have the following results concerning profit comparisons:

Theorem 5 Equilibrium profits obtained at the CBa equilibrium are larger than
the profits obtained at any other equilibria:

πCBa1 > πCB1 and πCBa2 > π
CBp
2 .

Proof. Using (9), (10), (32) and (35), it can be shown that

xCB1 − xCBa1 = − θ21θ2
(4− 3θ1θ2)(4− θ1θ2)(1− θ1θ2)

xCB2 ≤ 0

and

x
CBp

2 − xCBa2 = − θ21θ2
(4− 3θ1θ2)(4− θ1θ2)(1− θ1θ2)

x
CBp

1 ≤ 0,

where the inequalities are due to the non-negativity conditions of xCB2 and xCBp1 .
Based on Assumption 2, the following profit ratios are greater than unity

πCBa1

πCB1
=

1

(1− θ1θ2)

Ã
x
CBp
1

xCB1

!2
> 1 and

πCBa
2

π
CBp
2

=
1

(1− θ1θ2)

Ã
xCBa2

x
CBp
2

!2
> 1.

Since πCB1 > π
CBp
1 and π

CBp
2 > πCB2 have been already shown in Theorem 1,

this completes the proof.

5 Concluding Remarks
In this study we constructed mixed duopoly models with full information and
with partial information in which one firm is quantity-adjusting and the other
price-adjusting but each firm has uncertainty about the rival firm’s behavioral
strategy. If the competition starts with partial information, firm 1 finds it
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profitable to collect information on the rival’s strategic behavior (i.e., quantity-
adjusting or price-adjusting), tells this knowledge to the competitor as well as
informs it about its own strategic behavior to change the partially informed
oligopoly into a fully informed competition. If firm 2 does not trust its ri-
val in this message, it may continue believing that the oligopoly is still par-
tially informed. In consequence a CB competition with asymmetric information
emerges.
Our main conclusions are summarized as follows:

1) CB competition with asymmetric information is a natural consequence in
the presence of exogenous uncertainty about the rival firm’s behavior.

2) Asymmetric information stabilizes the market in the sense that the CBa
equilibrium is stable even if (θ1, θ2, c) ∈ ΘU .

3) Asymmetric information makes Pareto-improvement since both firms can
make larger profits at the CBa equilibrium than at any other equilibria.
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