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Abstract

Single-product oligopolies are examined with uncertain isoelastic price
functions and linear cost functions. Each firm wants to maximize its ex-
pected profit and also wants to minimize its uncertainty by minimizing
the variance. This multiobjective optimization problem is solved by the
weighting method, where the utility function of each firm is a linear com-
bination of the expectation and variance of its profit. The existence and
uniqueness of the equilibrium of the resulting n-person game is proved
and an efficient algorithm is suggested to compute the equilibrium. The
asymptotic behavior of the equilibrium is also investigated. Complete
stability and bifurcation analysis is presented. The theoretical results are
verified by computer simulation.
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1 Introduction

In an earlier paper [2] single-product oligopolies without prodnct differentiation
under uncertain price functions were investigated. It was assumed that each
firm wants to maximize its expected profit and minimize the variance of the
profit. We showed the existence and uniqueness of the equilibrium arising from
the nse of the weighting method under the usual differentiability and concavity
conditions (see for example, [3] or [4]), when the best response functions of the
firms are monotonic.

Isoelastic price functions were introduced into oligopoly theory in [5], how-
ever the special model here does not satisfy the usual assumptions on the con-
cavity of the profit functions and the best responses are no longer monotonic.
In this paper we revisit our earlier work [2] and investigate the existence and
uniqueness of the equilibrium as well as suggest a simple procedure for the com-
putation of the equilibrium in the isoelastic case. We also examine the dynamic
extensions of the model, and perform stability analysis.

2 The Mathematical Model

Consider n firms that produce identical goods or offer the same service to a
homogeneous market. This simple economic situation is known as a single-
product oligopoly without product differentiation. Let g; be the output of firm
7, Q5= Z,i# gi and Q@ = 37 | ¢; denote the output of the rest of the industry
and the total industry output, respectively. Assume that the inverse demand
(or price) function is hyperbolic, f(Q) = A/Q, and the cost functions are linear:
C;(g;) = cjg; +d;. Each firm j believes that the price function is f(Q) + 7;,
where 7; is a white noise with zero mean and given variance o7, We also assume
that each firm wants to maximize its expected profit and also to minimize the
uncertainty in its profit by minimizing variance. The profit of firm j has the
form

A
=g | ———+m;| — (0 +d; 1
=0 e 4] (e + ) )
with expectation "
E(I1;) Qjm—(chj+dj) (2)
and variance
Var(Il;) = q;"-’ag ) (3)

It is assumed that firm j uses the weighting method to find its best response by
maximizing a linear combination of the two objectives:

B(Il;) - %Vﬂr(ﬂj) (4)

where o; shows the importance of reducing risk compared to maximizing ex-
pected profit. Expression (4) is also known as the certainty equivalent of the
random outcome (1).



3 Best Responses

The first order conditions in maximizing the composite objective function (4)
are as follows:

L0 ifg;=0
AQ; 2 - /
>3 — (¢ +j9;075) (5)
CIR L)

The second order conditions

—ﬂ — ;0 <0
Qi +¢;)? ’
are clearly satisfied. The left hand side of (5) is strictly decreasing in g; with
fixed values of @, its value is A/Q; — ¢; at g; = 0 and it converges to —oo
as g; — +oo by assuming that both «; and UJ? are positive. Therefore if
@j = A/c;, then the best response of firm j is zero, otherwise it is the unique

positive solution of the equation
AQj — (¢j + a3903)(Q; + g;)* = 0. (6)

For & given value of @, this is a cubic equation for g;. Therefore in order to
obtain a closed-form representation of the best response we consider Qj as a
function of g;, which requires only the use of the quadratic formula, so that

At \/A2 —4Ag;(cj + cqujaj?)

Q= % !
! 2(cj + ajg0%) ? @
Introduce the simplifying notation
2
Q03 Cj
;= dé; =
i A ane o a_.,-ajni
to have i
_ 1£+/1-4g;v(g +65)
Q= NP -gj- 8)
2 (QJ + J)
Let next x; = g; + d;, then ¢; = z; — J;, so
1 /1 —dy,(z5 — &)z,
T —T;+6;.
Q; 27, Tj + 0; 9)
In order to have a real solution, we must have
4‘7‘7'{1:? - 46_,"ij_7' -1 § 0. (10)

The left hand side has two real roots for z;, one is positive and the other is
negative. Let z} denote the positive root of (10). The vertex of the left hand
side of (10) is at z; = %i. In order to have nonnegative solution for g; we need
z; 2 §;. Notice that at x; = d;, the left hand side of (10) is negative, so (10)
holds with nonnegative g; if and only if z; € [4;, zi] Moy = z}, then we have
a unique solution for @, and if §; < z; < x, then there are two solutions.



Consider first the larger root
@ _ 1+V1-du(e—d)z o I
Q; 27i%; Tj +0;5. (11)
2
Notice first that at z; = d;, Q( ) = e 6 ,and at z; =z,
T;+0; < —— L < !
2v;T; 20505

1
Q) = —
’YJIJ
Q@ — 1 — 2,z (x} — ;) S 1= iz (xj — ;) _ 0
I 2v;z} 2y}
Furthermore with increasing value of z;, the numerator of (11) decreases and

and

. 2
the denominator increases, so Q§- ) strictly decreases in z;

Consider next the smaller root
) _ 1—\/1 vz —
Q=
2v;z;

(12)

0% _ o 1 G,
v J -

Notice that at x; = d;, Q_gl) =0, and at z; = z7,
1 * *

(13)

A simple calculation shows that
3)Z5) — 28 5;

o = Zl - VI du(z; 0
I 1+ \/1 - 4'Yj(mj - Jj)xj

which implies that for z; € (d;,x}), Q;l) strictly increases in z;. The relation
between ¢; and Q; can be obtained by simple transformation g; = z; — §;. In
addition notice that
1 1 A
== (14)
Cj

8:vi ¢
i Yi ,_-TJ”;I _.7_
The resulting relation between g; and @Q; is shown in Figure 1 where we see

that the best reply with respect to Q; has the form
1) . m
[ Q" ifo<Q;<QT,

@ rom e 2
Ri(Q) =4 % HQP=Q<on

TP
G5

\
= R;(Q7') = Q7. Notice that g; is strictly

where Q7' := z} — d; and ¢}
increasing if Q; < QT', strictly decreasing in @; if Q7" < Q; < A/c;, and thus
the 45 degree black 11ne passes through the vertex (QJ ,qT) of the blue curve
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We can also consider g; as the function of the total production level Q =
Qi+gq; Q> ci;_, then g;(@) = 0, otherwise g; is the unique solution of

equation (6) which now reads
—Ag; + AQ — (¢ + o.'jqjorj?)Q2 =0

implying that
_ AQ - Cj Q2
A+o; 032-Q2
which is clearly positive if 0 < Q < A/c;.
Notice that ¢;(Q) satisfies the relations

g;(0)=0

7(Q) (15)

and

_A(e0iQ? + 2¢,Q - 4)

(4 +a;02Q7)2 (16)

7;(Q) =
This derivative is positive if
0307Q% + 2¢;Q — A < 0. (17)

The left hand side of (17) has two roots, one is positive and the other is negative.
The positive root equals

2 2
QP — —CG 4G+ Aajo; B (¢} + Aajo?) - ¢ - A

- b
@;0; 0:_7'0'12- [Cj + C? + Aaja'?] 2CJ

and for 0 < Q@ < @®) (17) holds, so g; is increasing in . Clearly, derivative
(16) is negative if QP) < Q < A/c;. Notice also that ¢;(0) =1 and q,-(Q(P)) =
Q™) /2. Since g;(Q) strictly decreasing in @, the function g is strictly concave
in the interval (0, A/c;) . The graph of function ¢;(Q) is shown in Figure 1 where
the best reply with respect to @ has the form

4@ H0<Q<2,
Cj

where Q) is a maximizer and Q")/2 is the maximum. Notice that g;(0) = 0,
7;(0) = 1, ¢;(Q) < 1 for 0 < @ < A/c;, the function g; increases until Q =
Q)| decreases afterwards, becomes zero at Q = A/c; and remains zero for all
Q > A/c;. Notice also that QT = Q(P) /2.

4 Existence and Uniqueness of Equilibrium

The equilibrium industry output is the solution of the equation

HQ) =) g(Q-Q=0. (18)

Jj=1
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Figure 1: Graphs of ¢; as a function of Q; (blue curve) and as a function of @
(red curve)

Notice that @) = 0 is clearly a solution. Since this trivial equilibrium has no
economic meaning, we assume that () > 0 and have the following result:

Proposition 1 There etists a unique industry equilibrium output, and e unique
Nash equilibrium.

Proof. (1) Eristence of the equilibrium: Since ¢;(0) = 1 for all j, for sufficiently
small values of @) the left hand side of (18) is positive, and if @ > max; {CA;_},
then ¢;(Q) = 0 for all 7, so the left hand side becomes negative. Since it is
continuous, there is at least one solution.

(2) Uniqueness of the equilibrium: Suppose that equation (18) can have
multiple positive solutions, that is, there is a @ > 0 such that H(Q) < 0 and
H'(Q+) > 0, since for sufficiently small positive values of @, H(Q) > 0. Let K
denote the set of firms such that g;(Q) > 0. Then

AQ—c]Q 3<0
J%I:(A+a9 2Q? —Qs

implying that

Z A+a_7 2Q2 = <1
Furthermore
_ A? —2c,AQ — o;02AQ?
H, _ 3 _.7 J _
(@+) ,%::« A+ 0;0207)2
(A- cJQ)
< -1
J%[; A+ a;02Q?)?
2
< (el -1s0 (19)
JEE A+ 0j05Q

which is an obvious contradiction. Hence the uniqueness of the equilibrium is
proved.
(3) From the unique value of @, the individual equilibrium output of firm j

is R;(Q). =



We note that the proof of this proposition suggests a simple computer
method to find the equilibrium by solving the single-variable equation (18) for Q,
and then the equilibrium outputs of the firms are g; = RJ-(Q) forj=1,2,...,n
by using equation (15).

5 Best Response Dynamics

We have already seen that the best response R;(Q;) of each firm j is unique.
If Q; = A/c;, then it is zero, otherwise it is the unique positive solution of
equation (6) for g;. By implicit differentiation of (6) we have

A-— ajo'Jz-QzR;- —(cj + o:jajz-q_.,-)QQ(l + R;) =0

implying that
¢ A=2(c; +ajg;0))Q

i aja?Qz + 2(0_1' + ajqjajz.)Q'

By using equation (6) again, this can be simplified to

_ Al — Q)
7~ a;02Q8 + 24Q;

This relation has two important consequences:

1. Since g; — Q; = 2¢; — @, the derivative R;- is nonpositive if and only if
g; < %, that is, firm j is not producing more than half of the industry
output.

2. Clearly,
B> —U.5aja_,,'“-’Q3 —AQJ' _ 1
F = 0(_1'0']2-Q3 + 2AQ] -y

~

)

In the absence of a dominant firm all derivatives R;- are nonpositive and
greater than or equal to -1/2 at the equilibrium. Therefore the local asymptotic
stability conditions of discrete and continuous best response dynamics (see The-
orems 2.1 and 2.2 of [1]) can be directly applied. However in the presence of a
dominant firm there is the possibility of complex eigenvalues and so the general
results cannot be applied. The asymptotic properties of the equilibrium might
become more complex.

6 The Semi-Symmetric Case
Assume that n > 2 and consider now an oligopoly with n— 1 identical firms with

parameter values o, o2 and ¢z, and assume that firm n has different marginal
cost ¢, with the same a and o2 values. From equation (16) we have

_ AQ_CzQ2
%) = L racie

for =1,2,...,n-1, and
_AQ—c,@?

0 (Q) = A+ a0?Q?
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by assuming interior best responses. Then equation (18) has the form

(n—1)AQ — (n — 1)c,Q? + AQ - ¢, Q?

A+ ac?Q? Atoozgz 270
which can be rewritten as
ar?@®+ Q((n—1)e; +¢,) —(n—1)A=0. (20)

Firm n is dominant when ¢, (Q) > % which is equivalent to (17) with ¢; replaced

by ¢y, which occurs if and only if @ < Q,(IP). Since the left hand side of (20) is a
convex parabola with a positive and a negative root, this is the case if and only
if

ao?QP? + QP ((n - 1)ey + cy) — (n—1)A>0.

That is, when

2
—cy + /2 + Aac? —cy + /2 + Aag?
2 v +((n-1)ctey)—— Y —(n-1)A >0

ao
ac? aoc?

which can be reduced to the simple relation

Cg > (n— 2)00214 +ey(—cy + cg + Aac?) = (n—2)4 = . (21)
(n—1)(—cy + 1/ + Aag?) (n— 1)Q$,P) n—1

Assume that the first n — 1 firms select identical speeds of adjustment and
identical initial outputs. Then their entire trajectories are also identical. Let
K and K, denote the speeds of adjustment of the first n — 1 firms and firm n,
respectively, and z(¢) and y(¢) the corresponding outputs.

Continuous-time Model
With continuous time scales we have the best response dynamics

(1) = Kz[Rs((n — 2)2(t) + y(2)) — z(t)), (22)

9() = Ky (By((n - )a(8)) - y(2). (23)
The Jacobian of this system has the form
( Ki[(n—2)R.-1] K.R. )
Km-DR, — -K,

where R; and R; are the derivatives of the best response functions at the
equilibrium. The characteristic polynomial, after rearranging terms, is

det(J. — M) = A2 + o)A + K. K,q

Je =

where
=Kz + K, — K;(n—2)R,,

g=—R., [(n— 2)+ (n— l)R;,] + 1.

8



We have that R, < 0, and only R; can be positive if the single last firm is
dominant. So p > 0. Since R/, is negative, we have

@ >-r|m-2)- 251

, n—3
=— 1.
R!, 2 +
This is positive if n > 3. If n = 2, then
- R! 1
g>1+-=2>1-- .
g1+ 2 >1 4>0

So q is always positive. Therefore we have the following result.

Proposition 2 The equilibrium is locally asymptotically stable in the contin-
uous time system (22) and (23).

Discrete-time Model

In the case of discrete time scales the dynamic equations (22) and (23) are
modified to read

z(t+1) = o(t) + Kz [Re((n — 2)2(2) + y(t)) — =(t)] , (24)

y(t+1) = y(t) + Ky [Ry(n — Da(t)) — y(t)]. (25)
The Jacobian of this system has the form
( 1+ K [(n - 2)R, — 1] K, R. )
Jq =
Ky(n—-1)R, 1-K,
with characteristic polvnomial
det(Jz — AI) = A2 4+ pA + ¢, (26)
where the coefficients are given by
p=K;+Ky—2— Kz(n—2)R,
and
¢ =K,K,[-Ri(n—2)- RiRi(n—1)+1] — K, — K, + KR\, (n — 2) + 1.
It is well known that the eigenvalues are inside the unit circle if and only if
g<land +p+qg+1>0.
1. Consider first the condition q < 1; this occurs when

KKy [-Ry(n—2) ~ RLR,(n—1)+1] — K, — Ky + K,R!,(n — 2) <(2c;.)



The multiplier of KK, is g, which is positive, so this relation can be
rewritten as

Ky(-14 K;7) < K¢(1 — R (n - 2)).
The right hand side is positive. If K; < 1/g, then this inequality must
hold, otherwise it is valid if

KB
K. _ 2
where B = 1 — Rl (n — 2). Notice that (28) is a hyperbola. Figure 2
illustrates the set of points (K, K,) such that g < 1.

32

Ky

i L T I

32

o
-
)
=

K

Figure 2: The feasible region for ¢ < 1 is shaded

2. Consider nezt the condition p + q + 1 > 0; this is the case when

K K, [-R,(n—2)— R,R,(n—1)+1] > 0. (29)

We have already seen that the multiplier of KK, is g, so this relation is
always satisfied.

3. The last condition is —p + g+ 1 > 0; this now has the form

K.K,j— 2K, +4—2K,B >0, (30)

This relation can be rewritten as

Ky(K,g—2) > —4+ 2K, B. (31)

Notice that § = B — Ry R; (n — 1).

Assume first that R} > 0. Then 7 > B, so

<

QN
SIS
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If Kz < 2/g, then both the coefficient of K, and the right hand side of (31) are

negative, so (31) holds if
—2BK, +4

2— Ko
If K; = 2/g, then (31) holds with arbitrary K, > 0. If 2/ < K, < 2/B,
then (31) holds since the left hand side is positive and the right hand side is
nonpositive. If 2/B < K, then (31) holds if
2BK; -4
-2+ K,q’

K, < (32)

K,> (33)

Figure 3(a) shows the region satisfying (32) and (33).
If Ry, = 0, then B = g, so (31) has the form
K, (Kzq—2) > 2(K.q — 2),

which holds if either 9
Kz < = and Ky <2

Q

or

[\~

K; > —and K, > 2.
q

Figure 3(b) shows the stability region in this case.
Assume next that R, < 0. Then B > g, so

2 > 2

g~ B
If K, < 2/B, then (32) is the condition. If 2/B < K; < 2/, then no
solution exists, since the left hand side of (31) is negative and the right hand
side is nonnegative or the left hand side is nonpositive and the right hand side is
positive. If K > 2/g, then the condition is (33). Figure 3(c) shows the stability
region in the case of R, < 0.

. .
S " B
(a) Ry >0 (b) Ry, =0 (c) Ry <0

Figure 3: The feasible regions of —p + ¢ + 1 > 0 are shaded

In summary, the system (24) and (25) is locally asymptotically stable if point
(Kz, Ky) is inside the feasible regions of Figure 2 and Figure 3(a) (for R;, > 0),
Figure 3(b) (for R, = 0) or Figure 3(c) (for R}, < 0). The equilibrium is locally
asymptotically stable if the speeds of adjustment K, and K, are sufficiently
small. We can formally state this result as follows.

11



Proposition 3 The equilibrium is locally asymptotically stable in the discrete
time system (24) and (25) if

0< K, < % or (26) is satisfied

and any one of the following conditions holds:

() R, > 0 and either K; < % and (32) holds or 2 < Ky < & or K, > % and (39) holds,
(¢4) Ry, =0 and either K; < 2 and Ky <2 or K, > 2 and K, > 2,
(i) R, < 0 and either Ky < % and (82) holds or K, > % and (33) holds.

Example

For notational simplicity we assume that & = o = 1. Let z(¢) and y(t) be
the output of firm j (1 < j < n—1) and firm n, respectively. Then the outputs
of the rest of the industry are Q; = (n—2)z+y and Q, = (n— 1)z, respectively.
The marginal costs are denoted by ¢, and ¢,. The best response of firm z is
given by

0 Q22
Ra(Qs) = “ (34)
z* otherwise,

where z* is the unique positive solution of the equation AQ;—(cz+z)(Qz+z)? =
0 and by the Cardano formula it has the form

1 1
oo () () e

with .
0 = —3(ca - Qz)?,

2
7

== (5) +(3)"

Furthermore the best response of firm y is

ba: = Cxp — Qz)3 - AQ:!:,

0 Q22
Ry(Qy) = Y (35)
y* otherwise,

where y* is the unique positive solution of equation AQ, — (¢, +)(Qy+y)? =0
and has the form

1
Ty +2Qy

12



with .
Ay = _g(cy - Qy)za

2
by = 2_7(09; - Qy)3 — AQy,

_ (b ? ay)?
v = (?) +(3)
The equilibrium can be obtained as follows. In this case equation (20) simplifies

to
Q*+Q((n—1)eg +ey)—(n—1)A=0.

To proceed further, we specify the parameter values, n =10, A =5, c; = 8
and ¢, = 2. The unique positive solution of the industrial output is Q ~ 0.6032
with the equilibrium outputs of the firms = ~ 0.01962 and y ~ 0.42661. It is
clear that firm y is dominant. We can see this by using relation (21) as well.
Its right hand side equals

5(n—2)+ 2  5n-8

n—1 n—1 n—1"7
since
Qgp)z —24++v4+5 -1
1

So firm y is dominant if ¢; > (57 — 8)/(n — 1) ~ 4.67.

The stability region is shown as the gray region in Figure 4 where the upper
decreasing curve (i.e., the ¢ = 1 locus) is the Neimark-Sacker bifurcation line,
and the increasing curve is the Period-doubling bifurcation line (i.e., the —p +
g+ 1=0 locus).

Figure 4: The feasible stability region is in gray

Figure 5 shows the corresponding bifurcation diagrams: Figure 5(a) shows
the Period-doubling bifurcation with K, = K with changing values of K,
while Figure 5(b) illustrates the Neimark-Sacker bifurcation with K, = KZ

13



and changing values of K. The equilibrium loses stability at the dotted point
either on the Niemark-Sacker bifurcation line or the Period-doubling bifurcation
line in Figure 4. Under K;f = 0.5 and K;j1 = 0.9, the corresponding abscissas
of the dotted points are K2 =~ 0.52 and KZ ~ 0.47. It is also seen that the
equilibrium bifurcates to a period-2 cycle at K in Figure 5(a) while it bifurcates
to a period-3 cycle at K2 and then turns into aperiodic cycles for larger values
of K. and finally converges to a period-2 cycle for even larger values of K in
Figure 5(b).

X s 08 & K 06 048 &

(a) Ky =0.5 (b) Ky =0.9

Figure 5: Bifurcation diagrams with n =10, A=5,c; =2 and ¢, =8

7 Conclusions

Isoelastic oligopolies with linear cost functions were examined under uncertainty
in the price function. After the best response functions were determined the ex-
istence of a unique equilibrium was proved and simple algorithm was introduced
to compute the equilibrium output levels of the firms.

Complete stability analysis was performed in the semi-symmetric case and
the occurrence of Hopf and Neimark-Sacker bifurcations was shown. The theo-
retical results were also illustrated by computer simulation, where the stability
regions and the two types of bifurcation diagrams were presented.

In future research we will examine the more general case with nonlinear cost
functions, a case that might result in more complex dynamics.
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