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Abstract

We propose a procedure for building macroeconomic models of a large num-
ber of interacting agents by dividing the collection of agents by ”types” into
clusters or subsets. These clusters form random exchangeable partitions.
We argue that this approach is useful in implementng some of the ideas
originally proposed by Schumpter by adding more information on dynamic
aspects of his proposals.

Introduction

Economists often face problems of examining collective behavior of a large
number of interacting agents, where agents are generally heterogeneous in
their characteristics such as their risk attidutes, and their circumstances,
that is, constraints they face, and so forth.

We use the word ”type” to denote agents of different categories or classes.
This word should be interpreted broadly. Agents may be differentiated by
the behavioral rules they use, by their risk attitudes, the products they
produce, services they render, and so forth. We assume that the number of
types are at most countable.

One of the important components in macroeconomic modeling is the
specification of entry behavior of agents. We do not assume in advance the
number of types is fixed. Agents of new or unanticipated types may enter the
market. Economists do not have a well-established procedure for building
macroeconomic models with this contingency, that is, they do not deal with
situations of unanticipate knowledge in the terminology by Zabell (1992).
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We observe here a close parallel with the ideas of random exchangeable
partitions by Kingman (1978 a, b). Zabell (1992) discusses the distinction
between the problems in which the types of agents is fixed in advance, and
those with new, so far unsuspected types of agents may enter in the future.
This latter is the situation of unanticipated knowledge according to Zabell.
The entry by agents or goods in economics is exactly this situation since
new goods, optimizaation procedures, manufacturing methods and so on
are known to arise in the future, even though we do not know exactly when
they enter the economy. The conditional expectations that an agent next
enters the market is of a new type is related to the laws of sucession of
Johnson, as exposited by Zabell (1982, 1992).

This paper proposes a new approach to macroeconomic model building
which explicitly deals with clusters of agents, including new ones. We use
stationary distributions of order statistics of cluster sizes to draw inferences
on model behaviors in markets in stochastic equilibria. We adapt tools that
are originally developed by population genetists such as Ewens, Watterson,
and by mathematicians and statisticians such as Kingman, Zabell, Hoppe,
among others.

Exchangeable Random Partitions

This section explains briefly that the notion of exchangeable random parti-
tions, which is due to Kingman (1978a, 1978b). This is used to discuss a
large number of agents forming clusters of various sizes. We follow Zabell
(1992) to describe the notion. Appendix has further details in order to make
this paper more self-contained.

This notion extends that of exchangeable sequences of de Finetti, which
is appropriate when the number of categories is finite and known in ad-
vance. Two exchangeable sequences have the same probability if one is a
rearrangement of the other. Thus, the sequences are invariant with respect
to permutations of time indices of the sequences of samples or agents who
enter the market. In exhcnageable partitons, the sequences are not only in-
variant with respect to time indicies but also with respect to permutations
of category or cluster indices.

Given that there are n agents, we denote by [n] the set, {1, 2, . . . , n}.
The set [n] is partitioned into Kn subsets or clusters. A random partion
Πn is a random object whose values are partitions of a set [n]. This set is
partitioned into {A1, A2, . . . AK} where Ai has ni elements. This is denoted
by |Ai| = ni. Partition vector a is a vector made up of ai, which is the
number of clusters or blocks with i elements, i = 1, 2, . . . , n.1 We have the
accounting identity relations:

∑n
i=1 ai = K, is the total number of types in

the model, and
∑n

i=1 iai = n is the total number of agents in the model. To
emphasize that the number of types varies with the sample, we sometimes
write Kn as the number of clusters of [n].

Random partitions are called exchangeable if two partitions with the
1This definition is due to Zabell. Kingman has the same concept, but his name is

specific to genetic application. So we follow Zabell.
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same partition vectors have the same probabilities. Note that the notion
of exchangebility of random sequences, which has to do with invariance of
probability with respect to permutation of time indices of samples or agents,
are extended in random partitions to invariance of probability with repsect
to time indicies and to category or type indicies. See Appendix for further
details.

It may help to recall the occupancy problem in elementary probability
textbooks in which identical-looking fresh tennis balls are to be placed in
unmarked undistinguishable boxes. Then, the only way to describe the con-
figurations of how balls are distributed among boxes is in terms of partition
vectors of balls. There are so many boxes containing one ball, two balls,
and so on. More precisely, partition vector a = (a1, a2, . . . , an) are such
that ai counts the number of boxes with exactly i balls, that is, the number
of categories or types with exactly i agents.

Let X1,X2, . . . be an infinite sequence of random variables taking on K
distinct values, which are possible categories or types of agents, and where
n is the frequency vector, that is, empirical distribution. ni is the number
of Xs observed to be of type i. By exchangeability, each of the seqeunces
with the same frequendcy vector is equi-probable. Therefore, In the case of
exchangeable random sequences we have

Pr(X1,X2, . . . ,Xn|n) =
n1!n2! · · · nK !

n!
.

In the case of exchangeable random partitions with partition vector a,
its probability is given by

Pr(a|n) =
n!
θ[n]

n∏
j=1

θaj

jaj aj!
,

where θ[n] = θ(θ + 1)(θ + 2) · · · (θ + n − 1) denotes an ascending factorial.
It has one parameter θ which controls the correlatedness of agents. Higher
the value of θ a randomly selected two agents are less correlated.

There are a number of ways to derive this. One way is to relate the
partition vector to the cyclic product representation of permutation by in-
terpreting ai as the number of cycles of length i. Then we ask how many
permutations are there with a given partition vector. Permutations are not
distinct either because all cycles containing the same elements in the same
cyclic order are the same, or because relative positions of cycles is imma-
terial. In a cycle with j elements, there are j possible first elements of
the cycles. Hence ther are jaj duplicates. Since the relative positions of
aj cycles in the permutation do not matter. This gives rise to aj! fators
of duplications. Therefore, among n! permutations the number of distinct
permutations with the same partition vector a is given by

Cn(a) =
n!

1a12a2 · · ·nana1!a2! · · · an!
.

The probability is therefore given by the inverse of this expression when all
permutations are equally likely. This is the special case with θ = 1. When
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permutations with k cycles are weighted proportional to θk with positive θ,
we derive the formula shown above. See also Aoki (2002, A.9) for further
details.

We use partition vectors as state vectors in our model.
Instead of the Polya urn, the generalized Polya urn with one ball of

special color (black in Hoppe and called mutator by Zabell) generates the
correct conditional expectation when the Polya urn is modified by a device
that when the black ball is drawn, the black ball and a ball of new type is
returned into the urn. See Hoppe (1987).

Ewens distribution is the stationary distribution function of the parti-
tion vector and is given by the last equation above. This distribution is also
known as the Ewens sampling formula or MED (multivarite Ewens distri-
bution). See Ewens (1972) or Johnson, Kotz, and Balakrishnan (1997).

There are also several ways of deriving the above as the stationary dis-
tributions of back-ward Chapman-Kolmogorov equation (also called master
equations in the physics literature and in Aoki (1996, 2002) by associat-
ing continous-time Markov chains to state vectors. Kingman also used this
equation in some of his writings without identifying it as such when he
introduces the notion of coalesence, Kingman (1978a, b, 1982).

Market Share Distributions

We use shares of a market by n agents as a motivating example to arrive
at the Poisson-Dirichlet distribution which plays an important role in what
follows. We follow Kingman (1993) and suppose that x1, x2, . . . xn are the
market shares of n firms, that is xi ≥ 0, and

∑n
i xi = 1. Suppose that these

share have the Dirichlet distribution with parameter α, D(α,n). Its density
is given by

f(x1, x2, . . . , xn) =
Γ(nα)
Γ(α)n

(x1x2 · · · xn)α−1.

This is a probability density on the simplex ∆n. This density is symmetric,
and the shares are exchangeable.

Next, consider their order statistics, that is, rearrange xs and let

x(1) ≥ x(2) · · · ≥ x(n).

We let n goes to infinity, and let nα approach θ. The distribution of the
infinite random sequence ξ = (ξ1, ξ2, . . .), satisfying ξ1 ≥ ξ2 ≥ · · ·, ∑

i ξi = 1
depends only on θ and is called Poisson-Dirichlet distribution, PD(θ).

The important of this distribution in genetics and ecology has been noted
by Kingman and many others. We show that this distribution is also im-
portant in economic applications as well. For small values of θ a few shares
dominate. For example, see Aoki (2000). In this paper, it is shown that
the largest two shares may determine market clearing prices under certain
conditions.

Unfortunately, this distribution is rather difficult to deal with, even
though Watterson and Guess have used elementary methods to obtain joint
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probabability distributions for the largest r shares. See also Arratia, Bar-
bour, and Tavaré (2003), and Pitman (2003) for additional details.

There is a simpler distribution than PD distribution, called size-biased
version, from which PD distribution can be derived. See Kingman (1993,
Chap. 9), Hoppe (1987), or Carlton (1999).

We say that {Qn} has a GEM distribution with parameter θ, when it is
generated from {Wn}, which are i.i.d. Beta (1, θ) distribution,

Q1 = W1, Qn = (1 − W1) · · · (1 − Wn−1)Wn, n = 2, 3, . . . .

When these Q’s are rearranged in non-increasing order as Q(1) ≥ Q(2) ≥ . . .,
then the sequence {Q(n)} is known to have a Poisson-Dirichlet distribution,
denoted by PD(θ). See Carlton (1999, p. 7).

There is one more important notion, called invariance under size-biased
permutation, Kingman (1993, p.98) Given a sequence {Pn}, permute this
sequence to generate a sized-bised sequence {P̃n} by

Pr(P̃1 = Pn|P1, P2, . . .) = Pn,

and for j = 2, 3, . . .

Pr(P̃j+1 = Pn|P̃1, . . . P̃j, P1, P2, . . .) = Pn/[1 − P̃1 − P̃2 . . . − P̃j],

provided that Pn is not equal to any of the P̃i, i = 1, 2, . . . , j.
When the distribution of the resampled sequence is the same as the orig-

inal one, the sequence is called invariant under the size-biased permutation.
Pitman (1996) has shown that the probability sequence {Pn} is invariant
under size-biased permutation if and only if the sequence is a GEM (θ) for
some positive θ. The ranked sequence {Pn} of GEM (θ) is a Poisson-Dirichlet
distribution PD(θ) .

Law of Sucession: Entries by New Type

Johnson did not consider entries by unknown types, but his sufficientness
postulate addresses the question of what is the type of next entrant. Let
X1,X2, . . . ,XN be an exchangeable sequence of K-valued random variables
such that for every n ≤ N the joint probability

Pr(X1 = i1,X2 = i2, . . . ,Xn = in) > 0,

for all (i1, . . . in), and

Pr(Xn+1 = i|X1,X2, . . . ,Xn) = fi(ni),

where fi(ni) = ai+b(n)ni, with ai non-negative, for K greater than 2, Zabell
(1982, Th2.1).

When some unknown type, that is, a type not foreseen or anticipated
enter, the law of sucession becomes2

Pr(Xn+1 = new|X1,X2, . . . ,Xn) =
θ

n + θ
.

2Later, Pitman generalizes the one-parameter PD(θ) to a two-parameter version.
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Distribution of Order Statistics

Given that we have observed a number of types of agents so far, summa-
rized by the empirical distribution, and given the Poisson-Dirichlet prior,
we obtain

Pr(XN+1 = ck|n) =
nk

N + θ
.

Dynamics of Clustering Processes

We use continous-time Markov chains to model economic models in general.
To express transition rates in partition vectors, define u1 = e1, and for i ≥ 2

ui = ei − ei−1,

where the vector ei has the only non-zero entry at the ith component which
is one. When an agent leaves a group of j agents, the number of clusters
of size j is reduced by one and that of size j − 1 increases by one. That is,
aj is reduced by one and aj−1 is increased by one. This transition rate is
therefore expressed by w(a,a + uj). For example we may define a process
with

w(a,a + uj) = λ
jaj

n
.

Kelly (1979, p. 146) has discussed a birth-death process which can be
expressed in this matter. He has derived the equilibrium distribution of the
process

Pr(a) = const ×
∞∏

j=1

βaj

aj !
,

where βj = xj/j, with x = λ/µ.

Economic Applications

There are many examples with entries by unknown or unanticipated agents.3

Here, we mention two that appeared elsewhere. Aoki (2000) gives one appli-
cation of the Ewens sampling formula in finance, and mentions power-laws
as the tail-distribution for the returns of certain financial assets. In this ap-
plication, stocks of a holding company is traded by a large number of agents.
With θ = 0.3, two largest groups of agents are shown to capture nearly 80
percent of the market shares and hence dominate the market excess demands
for the shares, which in turn determines the stationary distributions of re-
turns. This example shows that for small values of θ, that is, when agents
are correlated to some significant degree, two types of agents may not be a
bad approximation.

Aoki (2002, Sec.7.3 and 7.4) have several models of industries wtih in-
novators and imitators. Aoki (1996) has an example of technical diffusion.
In this model the new and old technology co-exist in long-run equilibrium.

3The notion of coalescence of Kingman (1982) may be applied to trace genealogy of
products or how firms grow. We will treat this subject in another paper.
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There are two equilibria. In the good equilibrium a majority of the firms
adopt new technology, while in the bad equilibrium only a minority of firms
ends up adopting the new technolgy. This is an example in the spirit of Iwai
(2001) since statistical equilibria of two technologies co-exist in the long-run.
The economy of this model will not approach a classical or neoclassical equi-
libria of uniform technology. Iwai states that this phenomena contradicts
the long-held tradition in economics about the determination of the normal
rates of profit.

In another application Aoki and Yoshikawa (2003) models of entries of
new production factors into various sectors of economy using the laws of
succession. The notion of holding times of a continous-time Markov chain is
used to probabilistically determine which sector jump first. Different sectors
grow at different rates. This example will be outlined later.

Example of innovating and imitating sectors

Consider a sector of economy composed of two types of firms. Firms of type
1 are technically advanced and benefit from occaisional innovations, while
firms of type 2 are not so blessed with innovations. Let n1(t) and n2(t) be
the number of firms in the two sectors ( measured in some convenient and
fixed units.) We use a continous-time Markov chain to describe the time
evolution of n(t) with two components. Let ei, i = 1, 2 be two-dimensional
vectors with the only non-zero element 1 in the first and second component,
respectively. Then, the transition rates of the process is determined uniquely
by the transition rates

q(n,n + e1) = c1n1 + f1,

q(n,n + e2) = c2n2,

q(n,n − ej) = djnj, j = 1, 2,

q(n,n + e1 − e2) = µg1n2(n1 + h1),

and
q(n,n + e2 − e1) = µg2n2.

In the above gi = ci/di, i = 1, 2.
Let P (n(t)) be the probability distribution of the vector n(t). Its time

evolution is governed by the backward Chapman-Kolmogorov equation (also
called as master equation, the name we use from now on),

∂P (n(t))
∂t

= I(n(t)) − O(n(t)),

where the first term represents the inflow and the second outflow of proba-
bility fluxes. For example, the outflow is given by

O(n(t)) = P (n(t))[
2∑

j=1

{q(n,n + ej) + q(n,n− ej)}

+ q(n,n + e1 − e2) + q(n,n + e2 − e1)]
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.
The expressions for the inflows are similar, and consist of six terms, the

first of which is q(n + e1,n)P (n(t) + e1.
The time evolution of the probability distribution must be obtained by

solving this master equation. It can be equally be done by solving the partial
differential equation for the probability generating function

G(z1, z2, t) =
∑
n1

∑
n2

zn1
1 zn2

2 P (n(t)).

Since this is also complicated, we solve for the moments by using the
cumulant generating function

K(θ1, θ2, t) = lnG(e−θ1 , e−θ2 , t).

See Aoki (2002, Sec 7.1.3) on converting probability generating functions
into cumulant generating function.

The equations for the first moments, that is the means of n1(t) and n2(t)
are, dropping the time argument for shorter notation

dκ1

dt
= f1 − (d1 − c1)κ1 + λd2f1κ2 + αλ(κ12 + κ1κ2),

and
dκ2

dt
= −(d2 − c2 + λd2f1)κ2 − αλ(κ12 + κ1κ2),

where α = d1d2(1 − g2) and λ = µ/(d1d2).
In this example the ordinary differential equation for the cumulant κi(t)

the means of ni(t), i = 1, 2 involves the cross covariance term κ12(t). The
ordinary differential equations for the components of the covariance matrix,
κ11(t), κ12(t), and κ22(t), are closed, that is, do not involve any higher order
cumulants, and can be solved.

There are two important cases; one with parameters 1 > g2 > g1; and
the other 1 < g2 < 1 + λf1, and g2 < g1.

What this example shows is again the co-existence in the long-run of two
types of firms of disparate technical capabilities. This illustrate the central
conclusion of Iwai in a more straightforward manner. See Aoki, Nakano,
and Yoshida for the actual expressions for the coupled differential equations
of the cumulants and other technical details.

Example: Model of Fluctuations and Growth

Next, we consider a simple stochastic model of economy composed of sev-
eral sectors, in which fluctuation and growth of output happen, together
with creations or entries of new sectors with new goods. This model is used
in Aoki and Yoshikawa (2003) to demonstrate a possibility that demand
patterns affect the aggregate output. Here this example illustrates the ap-
plications of laws of sucession. In the literature, economic fluctuations are
usually explained as a direct outcome of the individual agent behavior. The
focus is on individual agents. Often, elaborate microeconomic models of
optimization or rational expectations are the starting points. The more
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stronly one wishes to interpret aggregate fluctuations as something ’ratio-
nal’ or ’optimal’, the more likely one is led to this essentialy microeconomic
approach.

This model proposes a different approach to explain economic growth
and fluctuations. The focus is not on individual agents, nor on elaborate
microeconomic optimization modeling. Rather, the focus is on the proba-
bilistic manner by which a large number of agents enter and interact.

Resources are stochastically allocated to existing sectors in response to
aggregate demands for the goods of sectors, and a new sector appear stochas-
tically, as outlined in our discussion of law of succession.

Because we assume zero adjustment cost for the sizes of sectors, our
model is a model of economy with underutilized factors of production, such
as hours of work of emplyees.4 For empirical studies of such economies see
Davis, Haltiwanger and Schuh (1996).

We assume that sector i has productiviy coefficient, ci, which is exoge-
nously given and fixed. Assume, for convenience, that sectors are arranged
in the decreasing order in productivity. Sector i employs Ni units of factor
of production. It is a non-negative integer-valued random variable. We call
its value as ”size” of the sector. When Ni(t) = ni, i = 1, 2, . . . ,K, the
output of sector i is cini, and the total output (GDP) of this economy is

Y (t) :=
K∑

i=1

cini(t). (1)

Demand for the output of sector i is denoted by siY (t), where si > 0
is the share of sector i, and

∑
i si = 1. The shares are also assumed to be

exogeously given and fixed.
We denote the excess demand for goods of sector i by

fi(t) := siY (t) − cini(t), (2)

i = 1, 2, . . . ,K. Denote the set of sectors with positive excess demands by

I+ = {i; fi > 0},

and similarly for the set of sectors with negative demands by5

I− = {j; fj ≤ 0}.

To shorten notation, summations over these subsets are denoted as
∑

+ and∑
−. Denote by n+ the number of ns in the set I+, that is, we write

n+ :=
∑
+

ni,

4Clower (1965) and Leijonhufvud (1968) pointed out that quantity adjustment might
be actually more important than price adjustment in economic fluctuations. Although this
insight spawned a vast literature of the so-called ’non-Walrasian’ or ’disequilibrium anal-
ysis, this approach suffers either from basically static, or deterministic nature of analysis.

5To be definite we include sectors with zero excess demands as well.
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where the subscript + is a short-hand for the set I+, and similarly

n− :=
∑
−

nj,

for the sum over the sectors with negative excess demands. Let n = n++n−.
Sectors with non-zero excess demands attempt to reduce the sizes of

excess demands by adjusting their sizes, up or down by unit amounts, de-
pending on the signs of the excess demands. No adjustment cost is included
in the model. The size nis may be interpreted as some measure of capacity
utlization factor in situations where capacity constraint is not binding.6

We set this model as a continous-time Markov chain to avoid the phe-
nomenon of a lock-step adjustment by several different sectors in the econ-
omy.

Transition Rate Specifications

The transition probabilities are such that

Pr(Ni(t + h) = ni + 1|Ni(t) = ni) = γih + o(h),

for i ∈ I+, and

Pr(Ni(t + h) = ni − 1|Ni(t) = ni) = ρih + o(h),

for i ∈ I−. We assume that γs and ρs depend on the total number of sizes
and the current size of the sector that adjusts,

γi = γi(ni, n),

and
ρj = ρ(nj, n).

This is an example of applying W. E. Johnson’s sufficientness postulate
we have earlier discussed. We have discussed specifications of entry and
exit probabilities in Aoki (2000). See also Costantini and Garibaldi (1979,
1989), who give clear discussions on reasons for these specifications. We
follow Zabell in specifying γi to depend only on ni and n, and similarly for
ρi.

We specify the entry rate, that is, the rate of size increase by

γa(na, n) =
α + na

θ+ + n+
,

and that of the exit rate, namely, the rate of size decrease by

ρa(na, n) =
na

n−
,

where subscripts + and − refer to the signs of the excess demands.
6With fixed numbers of employees in each sector, hours worked per period may be an

example of units of production factor entering and leaving production processes without
cost of hiring or firing.
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If α is much smaller than θ+, then

γi(ni, n) ≈ n+

θ + n+

ni

n+
.

So long as θ is kept constant, the above expression implies that the choice
of K and α do not matter, provided α is much smaller than K. It is also
clear that γi is nearly the same as the fraction ni/n, which is the probability
for exit. Then, time histories of ni are nearly those of a near fair coin tosses.
We have K such coin tosses available at each jump. The sector that jumps
determines which coin toss is selected from these K coins.

We set α = 0 to discuss economies with fixed numbers of sectors, and
set it to a positive number to allow for new sectors to emerge. In the latter
case, a new sector emerges with probability θ/(θ+n), while a size of sector i
increases by one when the sector has positive excess demand with probability
(α + ni)/(θ + n). See Ewens (1972).

Holding Times

The question of which sector acts first is resolved by means of the holding
time of this continuous-time Markov chain. We assume that the time it takes
for sector i to adjust its size by one unit, up or down, Ti, is exponentially
distributed,

Pr(Ti > t) = exp(−bit),

where bi is either γi or ρi depending on the sign of the excess demand. This
time is called sojourn time or holding time in the probability literature. We
assume that the random variables T s of the sectors with non-zero excess
demand are independent.

The sector that adjusts first is determined by the sector with the shortest
holding time. Let T ∗ be the minimum of all the holding times of the sectors
with non-zero excess demands. Lawler calculates that for a ∈ I+

Pr(Ta = T ∗) =
γa

γ+ + ρ−
,

where γ+ =
∑

+ γi, and ρ− =
∑

− ρj , and if a ∈ I−, then the probability of
the jump in sector a is given by

ρa/(γ+ + ρ−),

and similarly for γs. See Lawler (1995, 56) or Aoki (1996, Sec.4.2).

Aggregate Outputs and Demands

After a change in the size of a sector, the total output of the economy
changes to

Y (t + h) = Y (t) + sgn{fa(t)}ca,

where a is the sector that jumped first by the time t + h.7
7For the sake of simplicity we may think of the skeleton Markov chain, in which the

directions of jump are chosen appropriately but the holding times themselves are replaced
by a fixed unit time interval. Limiting behavior of the original and the skeletal version
are known to be the same under certain technical conditions, which hold for this example.
See Cinlar (1975), or Norris (1997, 87).
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After the jump, this sector’s excess demand changes to

fa(t + h) = fa(t) − ca(1 − sa)sgn{fa(t)}. (3)

Other, non-jumping sectors have the excess demands changed to

fi(t + h) = fi(t) + sgn{fa(t)}sica, (4)

for i �= a.
These two equations show the effects of an increase of size in one sector.

An increase by ca of output increases GDP by the same amount. However,
sector a experiences an increase of its demand by only a fraction sa of it,
while all other sectors experience increase of their demands by sica, i �= a.
Eq. (4) shows a source of externality for this model that affects the model
behavior significantly. The index sets I+ and I− also change in general.

Defining ∆Y (t) := Y (t+h)−Y (t), and ∆fi(t) = fi(t+h)−fi(t), rewrite
(1), (3) and (4) as

∆Y (t) = sgn{fa(t)}ca,

and
∆fa(t) = −(1 − sa)∆Y (t),

and
∆fi(t) = si∆Y (t),

for i �= a.
See Aoki (2002, Sec.8.6) for some results of simulations and some exam-

ples of patterns of growth and fluctuations, as the values of θ and demand
patterns are varied. .

Simulation Analysis

A number of simulations have been run on this model. One clear conclusion
is that the GDP responds to the demand patterns, i.e., the specification of
{si}. The more demands on productive sectore, higher is GDP. Another is
the larger the value of θ, the more new sectors are created. See Aoki (2002,
Sec.8.6) for details on the simulation results

Concluding Remarks

This paper uses the framework of continous-time Markov chains and the
master equations to derive some examples which show that several types of
agents can co-exist stochastically in the long-run. This supports the claims
by Iwai (2001) that technologies with a wide range of efficiency will indeed
coexist even in the long run, and shed new lights and add new elements
to the sorts of discussions in Aghion and Howitt (1992), for example. In
this paper we add a set of new concepts and tools drawn from random
combinatorial analysis and claim that exchangeable random partitions and
their stationary distributions are the right tools to deal with entries by new
types of agents or goods.
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We have not discussed the notion of coalescence by Kingman (1982),
and by Watterson (1984). These have important implications on the lines
of developments of new products, and the familty trees of how firms grow.
We plan to explore their implications in connection with Schumperterian
dynamics, and to discuss questions of distributions of sizes and ages of firms.
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Appendices

We collect here some relevant material from Zabell (1992).

Exchangeable Random Sequences

Let X1,X2, . . . be an infinite sequence of random variables taking on k dis-
crete values, c1, c2, . . . , ck, say. These are possible categories or types of
decisions or choices by agents,or cells in the literature on occupancy num-
bers in probability into which the outcomes or realizations of the sequence
are classified.

The sequence is said to be exchangeable, if for every n, the ’cylinder set’
probabilities

Pr(X1 = e1,X2 = e2, . . . ,XN = eN ) = Pr(e1, e2, . . . , eN )

are invariant under all possible permutations of the subscripts of Xs.8 In
other words, two sequences have the same probability if one is the rearrange-
ment of the other.

Let ni denote the number of times the j-th type occurs in the sequence.
The vector n = (n1, n2, . . . , nk) is called the frequency vector. The vector
n/N is known as the empirical distribution in statistics. Note that given
any two sequences, one can be obtained from the other if and only if the
two sequences have the same frequency vector or empirical distribution.

The observed frequency counts nj = nj(X1,X2, . . . ,XN ) are sufficient
statistics in the language of statistics for the sequence {X1,X2,XN} because
probabilities conditional on the frequency counts depend only on n, and are
independent of the choice of the exchangeable probability Pr.

8These subscripts may be thought of time index or the order by which samples are
taken.
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By exchangeablity each of the sequences having the same frequency vec-
tor is equally probable or equally likely. There are N !/n1!n2! · · ·nk! such
sequences, and consequently

Pr(X1,X2, . . . ,XN |n) =
n1!n2! · · · nk!

N !
.

We have the representation theorem for exchangeable sequences by de
Finetti (1937). He established that if an infinite sequence of k-valued random
variables X1,X2, . . . is excahngeable, then the infinite limiting frequency

Z := lim
N→∞

(
n1

N
,
n2

N
, · · · , nk

N
)

exists almost surely; and if

µ(A) = Pr(Z ∈ A)

denotes the distribution of this limiting frequency, then

Pr(X1 = e1,X2 = e2, . . . ,XN = eN ) =
∫
∆K

pn1
1 pn2

2 · · · pnk
k dµ(p1, p2, . . . , pk−1).

To apply de Finetti theorem, we must choose a specific ’prior’ or mixing
measure dµ. One way is to follow Johnson and postulate that all ordered
k-partitions of N are equally likely. This Johnson fpostulate uniquely de-
termines dµ to be

dµ(p1, p2, . . . pk) = dp1dp2 · · · dpk−1,

a flat prior.
Less arbitrary is the Johnson,s sufficientness postulate9

Pr(XN+1 = ci|X1,X2, . . . ,XN ) = Pr(XN+1 = ci|n) = f(niN),

if Pr(X1 = c1, . . . ,XN = cN ) > 0 for all cs. This formula states that in
predicting that the next outcome is ci, ni is the only relevant information
contained in the sample.

Zabell shows that Johnson’s sufficientness postulate implies that

Pr(XN+1 = ci|n) =
ni + α

N + kα
,

where α is the parameter of the symmetrical Dirichlet prior which is the
mixing measure dµ. Note that the Polya urn model [Feller (1968, 119–21)]
can produce the same conditional probability.

9This term is adopted to avoid confusion with the usual meaning of sufficiency in
statistics. (see Good (1965, p. 26).
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Partition Exchangeability

In economic applications in which groups of agents of different types interact,
such as multiple-agent models of stock markets, we face exactly the same
problem which confronted statisticians in dealing with the so-called sampling
of species problem. Sometimes this problem is referred to as the ecological
problem in the emerging literature on multi-agent or agent-based modelling
in economics: Suppose we take a snap shot of all the agents in the market
at a point in time, and observe all different trading strategies in use. Some
or most trategies (types of agents) have been seen in such snapshots taken
earlier. There may be new ones not so far observed, however. As Zabell
clearly explains this is not the problem of observing the event to which we
assign 0 probability, that is the event whose probability we judge to be 0.
Rather, the problem is when we observe an event whose existence we did not
even previously suspect. A new strategy is invented, or new type of agents
are born, and so on. Zabell calls it the problem of unanticipated knowledge.
To deal with this problem we need Kingman’s construction of exchangeable
partition.
A probability function P is partition exchangeable if the cylinder set prob-
abilities Pr(X1 = e1,X2 = e2, . . . ,XN = eN ) are invariant with respect to
permutations of the time index and the category index.

Define the frequencies of the frequencies (called abundances in the pop-
ulation genetics or sampling of species literature) by what Zabell names
partition vector a = (a1, a2, . . . aN ) where ar is the number of nj which is
exactly equal to r.10 In the above example, the original sample has the
frequency n1 = 1, n2 = 1, n3 = 0, n4 = 3, n5 = 2, n6 = 2,

n = (1, 1, 0, 3, 2, 2) = 01122231,

where the last expression is the notation of Andrew (1971) used to indicate
cyclic products of permutations with ai cycles of size i. In this example
a1 = 2, a2 = 2, a3 = 1a4 = a5 = · · · = a10 = 0. Note also that a0 = 1.

The partition vector plays the same role relative to partition exchange-
able sequences that the frequency vector plays for exchangeable sequences.
Two sequences are equivalent, in the sense that one can be obtained from
the other by a permutation of the time set and a permutation of the category
set, if and only the two sequences have the same partition vector.

We formally define that a random partition is exchangeable if any two
partitions π1 and π2 having the same partition vector have the same prob-
ability

a(π1) = a(π2) → P (π1) = P (π2).

Since partition exchangeable sequences are exchageable, they can be rep-
resented by dµ on the K-simplex �K . To prepare our way for letting K
becomes infinite, we use the order statistics. Denote by �∗

K the simplex of
10Kingman named it differently because he was working in population genetics. We

use Zabell’s more neutral name. In Sachkov (1997, 82) it is called state vector of second
specification.
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the ordered probabilities

�∗
K := {(p∗1, p∗2, . . . , p∗K); p∗1 ≥ p∗2 ≥ · · · ≥ p∗K ≥ 0,

K∑
i=1

p∗i = 1}.

In the case of the partition exchangeable sequences, the conditional prob-
ability becomes

P (XN+1 = ci|X1,X2, . . . ,XN ) = f(ni;a).

In taking the snapshots of a market situation and counting the numbers
of agents by types of strategies they are using at that point in time, the
relevant information is an exchan geable random partition of the set N :=
{1, 2, . . . ,N}, where N is the total numbers of agents in the market at that
time. We observe the first type, then possibly later the second type and
so on. We need not identify what the first type is, for example. We have
merely a partition of N

N = A1 ∪ A2 ∪ · · · ,

where Ai ∩ Aj = φ, i �= j, and where

A1 := {t11, t21, . . . ; 1 = t11 < t21 < · · ·}.

This means that the type of the first agent observed (sampled) is called
type 1. Agent of the same type may be observed (sampled) at later times
t21, t

3
1 and so on. Agent of a different type, called type 2, is first observed

(sampled) at t12. We construct a set

A2 := {t12, t22, . . . ; t12 < t22 < · · ·},

where t12 is the first positive integer not in the set A1.
Example Given a sample of size 10, taken in the order 6, 3, 4,2,3,1,6,2,2,3
we have a partition

{1, 2, . . . , 10} = {1, 7} ∪ {2, 5, 10} ∪ {3} ∪ {4, 8, 9}.

Its partition vector is a=(2,1,2,0,0,. . . 0). This indicates that there are
two singletons, 1 subgroup with two numbers, and two clusters with three
elements each, and others are emply. The sum

∑
i ai = 5 gives the total

number of clusters, that is 5 different groupings have been observed in this
sample.
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